Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Rhode Island: Field Experiment
2.2. Washington State: Laboratory Ocean Acidification Experiment
2.3. SEM and µCT Imaging
2.4. Statistical Analyses
3. Results
3.1. Rhode Island: Field Experiment
3.2. Washington State: Ocean Acidification Shell Repair Experiment
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutiérrez, J.L.; Jones, C.G.; Strayer, D.L.; Iribarne, O.O. Mollusks as ecosystem engineers: The role of shell production in aquatic habitats. Oikos 2003, 101, 79–90. [Google Scholar] [CrossRef]
- Vaughn, C.C.; Hoellein, T.J. Bivalve impacts in freshwater and marine ecosystems. Annu. Rev. Ecol. Evol. Syst. 2018, 49, 183–208. [Google Scholar] [CrossRef] [Green Version]
- FAO. Fisheries and Aquaculture topics. The State of World Fisheries and Aquaculture (SOFIA). Topics Fact Sheets. Text by Jean- Francois Pulvenis. In FAO Fisheries Division; FAO: Rome, Italy, 2020. [Google Scholar]
- Vermeij, G.J. A Natural History of Shells; Princeton University Press: Princeton, NJ, USA, 1995; Volume 15. [Google Scholar]
- Hofmann, G.E.; Smith, J.E.; Johnson, K.S.; Send, U.; Levin, L.A.; Micheli, F.; Paytan, A.; Price, N.N.; Peterson, B.; Takeshita, Y. High-frequency dynamics of ocean pH: A multi-ecosystem comparison. PLoS ONE 2011, 6, e28983. [Google Scholar] [CrossRef] [Green Version]
- Frieder, C.; Nam, S.; Martz, T.; Levin, L. High temporal and spatial variability of dissolved oxygen and pH in a nearshore California kelp forest. Biogeosciences 2012, 9, 3917–3930. [Google Scholar] [CrossRef] [Green Version]
- George, M.N.; Andino, J.; Huie, J.; Carrington, E. Microscale pH and dissolved oxygen fluctuations within mussel aggregations and their implications for mussel attachment and raft aquaculture. J. Shellfish Res. 2019, 38, 795–809. [Google Scholar] [CrossRef]
- Lowe, A.T.; Bos, J.; Ruesink, J. Ecosystem metabolism drives pH variability and modulates long-term ocean acidification in the Northeast Pacific coastal ocean. Sci. Rep. 2019, 9, 963. [Google Scholar] [CrossRef]
- Bates, N.; Best, M.; Neely, K.; Garley, R.; Dickson, A.; Johnson, R. Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosci. Discuss. 2012, 9, 2509–2522. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean Acidification: The Other CO2 Problem; Gulf Professional Publishing: Houston, TX, USA, 2009. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, F.; Parker, L.M.; Comeau, S.; Gattuso, J.-P.; O’Connor, W.A.; Martin, S.; Pörtner, H.-O.; Ross, P.M. Impacts of ocean acidification on marine shelled molluscs. Mar. Biol. 2013, 160, 2207–2245. [Google Scholar] [CrossRef] [Green Version]
- Clements, J.C.; Chopin, T. Ocean acidification and marine aquaculture in North America: Potential impacts and mitigation strategies. Rev. Aquac. 2017, 9, 326–341. [Google Scholar] [CrossRef]
- Halpern, B.S.; Walbridge, S.; Selkoe, K.A.; Kappel, C.V.; Micheli, F.; D’Agrosa, C.; Bruno, J.F.; Casey, K.S.; Ebert, C.; Fox, H.E. A global map of human impact on marine ecosystems. Science 2008, 319, 948–952. [Google Scholar] [CrossRef] [Green Version]
- Carrington, E.; Moeser, G.M.; Dimond, J.; Mello, J.J.; Boller, M.L. Seasonal disturbance to mussel beds: Field test of a mechanistic model predicting wave dislodgment. Limnol. Oceanogr. 2009, 54, 978–986. [Google Scholar] [CrossRef]
- Menge, B.A.; Berlow, E.L.; Blanchette, C.A.; Navarrete, S.A.; Yamada, S.B. The keystone species concept: Variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 1994, 64, 249–286. [Google Scholar] [CrossRef]
- Paine, R.T. Intertidal community structure. Oecologia 1974, 15, 93–120. [Google Scholar] [CrossRef]
- Elner, R. The mechanics of predation by the shore crab, Carcinus maenas (L.), on the edible mussel, Mytilus edulis L. Oecologia 1978, 36, 333–344. [Google Scholar] [CrossRef]
- Ebling, F.; Kitching, J.; Muntz, L.; Taylor, C.M. The ecology of Lough Ine. XIII Experimental observations of the destruction of Mytilus edulis and Nucella lapillus by crabs. J. Anim. Ecol. 1964, 33, 73–82. [Google Scholar] [CrossRef]
- Clelland, E.S.; Saleuddin, A. Vacuolar-type ATPase in the accessory boring organ of Nucella lamellosa (Gmelin)(Mollusca: Gastropoda): Role in shell penetration. Biol. Bull. 2000, 198, 272–283. [Google Scholar] [CrossRef]
- Norton-Griffiths, M. Some ecological aspects of the feeding behaviour of the oystercatcher Haematopus ostralegus on the edible mussel Mytilus edulis. IBIS 1967, 109, 412–424. [Google Scholar] [CrossRef]
- Cintra-Buenrostro, C.E. Trampling, peeling and nibbling mussels: An experimental assessment of mechanical and predatory damage to shells of Mytilus trossulus (Mollusca: Mytilidae). J. Shellfish Res. 2007, 26, 221–231. [Google Scholar] [CrossRef]
- Vermeij, G.J. Traces and trends of predation, with special reference to bivalved animals. Palaeontology 1983, 26, 455–465. [Google Scholar]
- Vermeij, G.J. Unsuccessful predation and evolution. Am. Nat. 1982, 120, 701–720. [Google Scholar] [CrossRef]
- Kaehler, S.; McQuaid, C. Lethal and sub-lethal effects of phototrophic endoliths attacking the shell of the intertidal mussel Perna perna. Mar. Biol. 1999, 135, 497–503. [Google Scholar] [CrossRef]
- Christensen, A.M. Feeding biology of the sea star Astropecten irregularis Pennant. Ophelia 1970, 8, 1–134. [Google Scholar]
- Carriker, M.R.; Zandt, D.V. Predatory behavior of a shell-boring muricid gastropod. In Behavior of Marine Animals; Springer: Berlin, Germany, 1972; pp. 157–244. [Google Scholar]
- Palmer, A.R.; Szymanska, J.; Thomas, L. Prolonged withdrawal: A possible predator evasion behavior in Balanus glandula (Crustacea: Cirripedia). Mar. Biol. 1982, 67, 51–55. [Google Scholar] [CrossRef]
- Xiong, X.; Cao, Y.; Li, Z.; Jiao, Y.; Du, X.; Zheng, Z. Transcriptome analysis reveals the transition and crosslinking of immune response and biomineralization in shell damage repair in pearl oyster. Aquac. Rep. 2021, 21, 100851. [Google Scholar] [CrossRef]
- Burnett, L.E. Physiological responses to air exposure: Acid-base balance and the role of branchial water stores. Am. Zool. 1988, 28, 125–135. [Google Scholar] [CrossRef]
- Meenakshi, V.; Blackwelder, P.L.; Wilbur, K.M. An ultrastructural study of shell regeneration in Mytilus edulis (Mollusca: Bivalvia). J. Zool. 1973, 171, 475–484. [Google Scholar] [CrossRef]
- Sleight, V.A.; Thorne, M.A.; Peck, L.S.; Clark, M.S. Transcriptomic response to shell damage in the Antarctic clam, Laternula elliptica: Time scales and spatial localisation. Mar. Genom. 2015, 20, 45–55. [Google Scholar] [CrossRef] [Green Version]
- Beedham, G. Repair of the Shell in Species of Anodonta; Zoological Society of London: London, UK, 1965; pp. 107–123. [Google Scholar]
- Mount, A.S.; Wheeler, A.; Paradkar, R.P.; Snider, D. Hemocyte-mediated shell mineralization in the eastern oyster. Science 2004, 304, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Reed-Miller, C. The initial calcification process in shell-regenerating Tegula (Archaeogastropoda). Biol. Bull. 1983, 165, 265–275. [Google Scholar] [CrossRef]
- LaBarbera, M.; Merz, R.A. Postmortem changes in strength of gastropod shells: Evolutionary implications for hermit crabs, snails, and their mutual predators. Paleobiology 1992, 18, 367–377. [Google Scholar] [CrossRef]
- O’Neill, M.; Mala, R.; Cafiso, D.; Bignardi, C.; Taylor, D. Repair and remodelling in the shells of the limpet Patella vulgata. J. R. Soc. Interface 2018, 15, 20180299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crane, R.; Diaz Reyes, J.; Denny, M. Bivalves rapidly repair shells damaged by fatigue and bolster strength. J. Exp. Biol. 2021, 224, jeb242681. [Google Scholar] [CrossRef] [PubMed]
- Dunachie, J. XV—The periostracum of Mytilus edulis. Earth Environ. Sci. Trans. R. Soc. Edinb. 1963, 65, 383–411. [Google Scholar] [CrossRef]
- Checa, A.G.; Pina, C.M.; Osuna-Mascaró, A.J.; Rodríguez-Navarro, A.B.; Harper, E.M. Crystalline organization of the fibrous prismatic calcitic layer of the Mediterranean mussel Mytilus galloprovincialis. Eur. J. Mineral. 2014, 26, 495–505. [Google Scholar] [CrossRef]
- Bevelander, G.; Nakahara, H. An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calcif. Tissue Res. 1969, 3, 84–92. [Google Scholar] [CrossRef]
- Kadar, E.; Lobo-da-Cunha, A.; Azevedo, C. Mantle-to-shell CaCO3 transfer during shell repair at different hydrostatic pressures in the deep-sea vent mussel Bathymodiolus azoricus (Bivalvia: Mytilidae). Mar. Biol. 2009, 156, 959–967. [Google Scholar] [CrossRef]
- Saleuddin, A.; Chan, W. Shell regeneration in Helix: Shell matrix composition and crystal formation. Can. J. Zool. 1969, 47, 1107–1111. [Google Scholar] [CrossRef]
- Abolinš-Krogis, A. Ultrastructural study of the shell-repair membrane in the snail, Helix pomatia L. Cell Tissue Res. 1976, 172, 455–476. [Google Scholar] [CrossRef]
- Yarra, T.; Blaxter, M.; Clark, M.S. A bivalve biomineralization toolbox. Mol. Biol. Evol. 2021, 38, 4043–4055. [Google Scholar] [CrossRef]
- Yarra, T.; Ramesh, K.; Blaxter, M.; Hüning, A.; Melzner, F.; Clark, M.S. Transcriptomic analysis of shell repair and biomineralization in the blue mussel, Mytilus edulis. BMC Genom. 2021, 22, 7. [Google Scholar] [CrossRef]
- Checa, A.G. Physical and biological determinants of the fabrication of molluscan shell microstructures. Front. Mar. Sci. 2018, 353. [Google Scholar] [CrossRef] [Green Version]
- Hüning, A.K.; Lange, S.M.; Ramesh, K.; Jacob, D.E.; Jackson, D.J.; Panknin, U.; Gutowska, M.A.; Philipp, E.E.; Rosenstiel, P.; Lucassen, M. A shell regeneration assay to identify biomineralization candidate genes in mytilid mussels. Mar. Genom. 2016, 27, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef]
- Ries, J.B.; Cohen, A.L.; McCorkle, D.C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 2009, 37, 1131–1134. [Google Scholar] [CrossRef]
- Zhao, X.; Han, Y.; Chen, B.; Xia, B.; Qu, K.; Liu, G. CO2-driven ocean acidification weakens mussel shell defense capacity and induces global molecular compensatory responses. Chemosphere 2020, 243, 125415. [Google Scholar] [CrossRef] [PubMed]
- Gazeau, F.; Gattuso, J.-P.; Dawber, C.; Pronker, A.; Peene, F.; Peene, J.; Heip, C.; Middelburg, J. Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 2010, 7, 2051. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, H. Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar. Ecol. Prog. Ser. 2008, 373, 275–284. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, F.; Alliouane, S.; Bock, C.; Bramanti, L.; López Correa, M.; Gentile, M.; Hirse, T.; Pörtner, H.-O.; Ziveri, P. Impact of ocean acidification and warming on the Mediterranean mussel (Mytilus galloprovincialis). Front. Mar. Sci. 2014, 1, 62. [Google Scholar] [CrossRef] [Green Version]
- Mackenzie, C.L.; Ormondroyd, G.A.; Curling, S.F.; Ball, R.J.; Whiteley, N.M.; Malham, S.K. Ocean warming, more than acidification, reduces shell strength in a commercial shellfish species during food limitation. PLoS ONE 2014, 9, e86764. [Google Scholar] [CrossRef] [Green Version]
- Vihtakari, M.; Hendriks, I.E.; Holding, J.; Renaud, P.E.; Duarte, C.M.; Havenhand, J.N. Effects of ocean acidification and warming on sperm activity and early life stages of the Mediterranean mussel (Mytilus galloprovincialis). Water 2013, 5, 1890–1915. [Google Scholar] [CrossRef] [Green Version]
- Waldbusser, G.G.; Hales, B.; Langdon, C.J.; Haley, B.A.; Schrader, P.; Brunner, E.L.; Gray, M.W.; Miller, C.A.; Gimenez, I. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nat. Clim. Chang. 2015, 5, 273–280. [Google Scholar] [CrossRef]
- Fitzer, S.C.; Phoenix, V.R.; Cusack, M.; Kamenos, N.A. Ocean acidification impacts mussel control on biomineralisation. Sci. Rep. 2014, 4, 6218. [Google Scholar] [CrossRef] [PubMed]
- Fitzer, S.C.; Vittert, L.; Bowman, A.; Kamenos, N.A.; Phoenix, V.R.; Cusack, M. Ocean acidification and temperature increase impact mussel shell shape and thickness: Problematic for protection? Ecol. Evol. 2015, 5, 4875–4884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmer, A. Relative cost of producing skeletal organic matrix versus calcification: Evidence from marine gastropods. Mar. Biol. 1983, 75, 287–292. [Google Scholar] [CrossRef]
- Palmer, A.R. Calcification in marine molluscs: How costly is it? Proc. Natl. Acad. Sci. USA 1992, 89, 1379–1382. [Google Scholar] [CrossRef] [Green Version]
- Gazeau, F.; Quiblier, C.; Jansen, J.M.; Gattuso, J.P.; Middelburg, J.J.; Heip, C.H. Impact of elevated CO2 on shellfish calcification. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
- Pörtner, H.O.; Langenbuch, M.; Reipschläger, A. Biological impact of elevated ocean CO2 concentrations: Lessons from animal physiology and earth history. J. Oceanogr. 2004, 60, 705–718. [Google Scholar] [CrossRef] [Green Version]
- Waldbusser, G.G.; Hales, B.; Haley, B.A. Calcium carbonate saturation state: On myths and this or that stories. ICES J. Mar. Sci. 2016, 73, 563–568. [Google Scholar] [CrossRef] [Green Version]
- Carrington, E. Seasonal variation in the attachment strength of blue mussels: Causes and consequences. Limnol. Oceanogr. 2002, 47, 1723–1733. [Google Scholar] [CrossRef] [Green Version]
- Carrington, E. The ecomechanics of mussel attachment: From molecules to ecosystems. Integr. Comp. Biol. 2002, 42, 846–852. [Google Scholar] [CrossRef] [Green Version]
- Hilbish, T.J.; Bayne, B.L.; Day, A. Genetics of physiological differentiation within the marine mussel genus Mytilus. Evolution 1994, 48, 267–286. [Google Scholar] [CrossRef]
- Varvio, S.-L.; Koehn, R.K.; Väinölä, R. Evolutionary genetics of the Mytilus edulis complex in the North Atlantic region. Mar. Biol. 1988, 98, 51–60. [Google Scholar] [CrossRef]
- Saavedra, C.; Stewart, D.T.; Stanwood, R.R.; Zouros, E. Species-specific segregation of gender-associated mitochondrial DNA types in an area where two mussel species (Mytilus edulis and M. trossulus) hybridize. Genetics 1996, 143, 1359–1367. [Google Scholar] [CrossRef] [PubMed]
- Comesaña, A.; Toro, J.; Innes, D.; Thompson, R. A molecular approach to the ecology of a mussel (Mytilus edulis–M. trossulus) hybrid zone on the east coast of Newfoundland, Canada. Mar. Biol. 1999, 133, 213–221. [Google Scholar] [CrossRef]
- Toro, J.; Innes, D.; Thompson, R. Genetic variation among life-history stages of mussels in a Mytilus edulis–M. trossulus hybrid zone. Mar. Biol. 2004, 145, 713–725. [Google Scholar] [CrossRef]
- Penney, R.W.; Hart, M.J.; Templeman, N.D. Shell strength and appearance in cultured blue mussels Mytilus edulis, M. trossulus, and M. edulis × M. trossulus hybrids. N. Am. J. Aquac. 2007, 69, 281–295. [Google Scholar] [CrossRef]
- Carboni, S.; Evans, S.; Tanner, K.E.; Davie, A.; Bekaert, M.; Fitzer, S.C. Are Shell Strength Phenotypic Traits in Mussels Associated with Species Alone? Aquac. J. 2021, 1, 3–13. [Google Scholar] [CrossRef]
- Baird, R. Measurement of condition in mussels and oysters. ICES J. Mar. Sci. 1958, 23, 249–257. [Google Scholar] [CrossRef]
- Rueden, C.T.; Schindelin, J.; Hiner, M.C.; DeZonia, B.E.; Walter, A.E.; Arena, E.T.; Eliceiri, K.W. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinform. 2017, 18, 529. [Google Scholar] [CrossRef]
- Bell, E.; Gosline, J. Mechanical design of mussel byssus: Material yield enhances attachment strength. J. Exp. Biol. 1996, 199, 1005–1017. [Google Scholar] [CrossRef]
- Palmerini, P.; Bianchi, C. Biomass measurements and weight-to-weight conversion factors: A comparison of methods applied to the mussel Mytilus galloprovincialis. Mar. Biol. 1994, 120, 273–277. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; George, M.N.; Carrington, E. Mussel byssus attachment weakened by ocean acidification. Nat. Clim. Chang. 2013, 3, 587–590. [Google Scholar] [CrossRef]
- Martz, T.R.; Connery, J.G.; Johnson, K.S. Testing the Honeywell Durafet® for seawater pH applications. Limnol. Oceanogr. Methods 2010, 8, 172–184. [Google Scholar] [CrossRef]
- Robbins, L.; Hansen, M.; Kleypas, J.; Meylan, S. CO2calc—A user-friendly seawater carbon calculator for Windows, Max OS X, and iOS (iPhone). US Geol. Surv. Open-File Rep. 2010, 1280, 2010. [Google Scholar]
- Orr, J.C.; Epitalon, J.-M.; Dickson, A.G.; Gattuso, J.-P. Routine uncertainty propagation for the marine carbon dioxide system. Mar. Chem. 2018, 207, 84–107. [Google Scholar] [CrossRef]
- Hu, Y.; Limaye, A.; Lu, J. A new tool for 3D segmentation of computed tomography data: Drishti Paint and its applications. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, E. Johnson: Johnson Transformation; R Package Version 1.4.; Johnson & Johnson: New Brunswick, NJ, USA, 2014. [Google Scholar]
- de Mendiburu, M. Agricolae: Statistical procedures for agricultural research. Am. J. Plant Sci. 2017, 8, 7. [Google Scholar]
- Liao, Z.; Bao, L.-F.; Fan, M.-H.; Gao, P.; Wang, X.-X.; Qin, C.-L.; Li, X.-M. In-depth proteomic analysis of nacre, prism, and myostracum of Mytilus shell. J. Proteom. 2015, 122, 26–40. [Google Scholar] [CrossRef]
- Marie, B.; Le Roy, N.; Zanella-Cléon, I.; Becchi, M.; Marin, F. Molecular evolution of mollusc shell proteins: Insights from proteomic analysis of the edible mussel Mytilus. J. Mol. Evol. 2011, 72, 531–546. [Google Scholar] [CrossRef]
- Gao, P.; Liao, Z.; Wang, X.-X.; Bao, L.-F.; Fan, M.-H.; Li, X.-M.; Wu, C.-W.; Xia, S.-W. Layer-by-layer proteomic analysis of Mytilus galloprovincialis shell. PLoS ONE 2015, 10, e0133913. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Huang, J.; Paine, M.L.; Reinhold, V.N.; Chasteen, N.D. Structural characterization of the major extrapallial fluid protein of the mollusc Mytilus edulis: Implications for function. Biochemistry 2005, 44, 10720–10731. [Google Scholar] [CrossRef] [PubMed]
- Hattan, S.J.; Laue, T.M.; Chasteen, N.D. Purification and characterization of a novel calcium-binding protein from the extrapallial fluid of the mollusc, Mytilus edulis. J. Biol. Chem. 2001, 276, 4461–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, A.; George, J.W.; Evans, C. Control of calcium carbonate nucleation and crystal growth by soluble matrx of oyster shell. Science 1981, 212, 1397–1398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falini, G.; Albeck, S.; Weiner, S.; Addadi, L. Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 1996, 271, 67–69. [Google Scholar] [CrossRef]
- Marin, F.; Luquet, G.; Marie, B.; Medakovic, D. Molluscan shell proteins: Primary structure, origin, and evolution. Curr. Top. Dev. Biol. 2007, 80, 209–276. [Google Scholar]
- Weiss, I.M.; Tuross, N.; Addadi, L.; Weiner, S. Mollusc larval shell formation: Amorphous calcium carbonate is a precursor phase for aragonite. J. Exp. Zool. 2002, 293, 478–491. [Google Scholar] [CrossRef]
- Blundon, J.; Vermeij, G. Effect of shell repair on shell strength in the gastropod Littorina irrorata. Mar. Biol. 1983, 76, 41–45. [Google Scholar] [CrossRef]
- Uozumi, S.; Suzuki, S. “Organic Membrane-Shell” and Initial Calcification in Shell Regeneration. J. Fac. Sci. Hokkaido Univ. Ser. IV 1979, 19, 37–74. [Google Scholar]
- Li, S.; Liu, C.; Huang, J.; Liu, Y.; Zheng, G.; Xie, L.; Zhang, R. Interactive effects of seawater acidification and elevated temperature on biomineralization and amino acid metabolism in the mussel Mytilus edulis. J. Exp. Biol. 2015, 218, 3623–3631. [Google Scholar] [CrossRef] [Green Version]
- Hahn, S.; Rodolfo-Metalpa, R.; Griesshaber, E.; Schmahl, W.W.; Buhl, D.; Hall-Spencer, J.; Baggini, C.; Fehr, K.; Immenhauser, A. Marine bivalve shell geochemistry and ultrastructure from modern low pH environments: Environmental effect versus experimental bias. Biogeosciences 2012, 9, 1897–1914. [Google Scholar] [CrossRef] [Green Version]
- Gaylord, B.; Hill, T.M.; Sanford, E.; Lenz, E.A.; Jacobs, L.A.; Sato, K.N.; Russell, A.D.; Hettinger, A. Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 2011, 214, 2586–2594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melzner, F.; Stange, P.; Trübenbach, K.; Thomsen, J.; Casties, I.; Panknin, U.; Gorb, S.N.; Gutowska, M.A. Food supply and seawater pCO2 impact calcification and internal shell dissolution in the blue mussel Mytilus edulis. PLoS ONE 2011, 6, e24223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolowicz, M.; Goulletquer, P. The shell organic content in the energy budget of Mytilus trossulus from the South Baltic. Haliotis 1999, 28, 1–10. [Google Scholar]
- Melzner, F.; Thomsen, J.; Koeve, W.; Oschlies, A.; Gutowska, M.A.; Bange, H.W.; Hansen, H.P.; Körtzinger, A. Future ocean acidification will be amplified by hypoxia in coastal habitats. Mar. Biol. 2013, 160, 1875–1888. [Google Scholar] [CrossRef]
- Thomsen, J.; Casties, I.; Pansch, C.; Körtzinger, A.; Melzner, F. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: Laboratory and field experiments. Glob. Chang. Biol. 2013, 19, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Hüning, A.K.; Melzner, F.; Thomsen, J.; Gutowska, M.A.; Krämer, L.; Frickenhaus, S.; Rosenstiel, P.; Pörtner, H.-O.; Philipp, E.E.; Lucassen, M. Impacts of seawater acidification on mantle gene expression patterns of the Baltic Sea blue mussel: Implications for shell formation and energy metabolism. Mar. Biol. 2013, 160, 1845–1861. [Google Scholar] [CrossRef] [Green Version]
- Roberts, E.A.; Newcomb, L.A.; McCartha, M.M.; Harrington, K.J.; LaFramboise, S.A.; Carrington, E.; Sebens, K.P. Resource allocation to a structural biomaterial: Induced production of byssal threads decreases growth of a marine mussel. Funct. Ecol. 2021, 35, 1222–1239. [Google Scholar] [CrossRef]
- Paine, R.T. Size-limited predation: An observational and experimental approach with the Mytilus-Pisaster interaction. Ecology 1976, 57, 858–873. [Google Scholar] [CrossRef]
pCO2 Target | T (°C) | Salinity | pH (total) | AT (µmol × kgSW) |
---|---|---|---|---|
400 | 15.8 ± 0.1 | 30.0 ± 0.2 | 7.95 ± 0.03 | 2079 ± 7 |
700 | 16.1 ± 0.5 | 29.9 ± 0.3 | 7.77 ± 0.02 | 2083 ± 8 |
1000 | 15.9 ± 0.2 | 30.2 ± 0.1 | 7.64 ± 0.02 | 2080 ± 10 |
1600 | 16.0 ± 0.3 | 30.4 ± 0.2 | 7.46 ± 0.02 | 2086 ± 7 |
1900 | 16.0 ± 0.2 | 30.0 ± 0.1 | 7.38 ± 0.06 | 2080 ± 6 |
2200 | 16.0 ± 0.4 | 29.8 ± 0.2 | 7.31 ± 0.03 | 2078 ± 5 |
2500 | 15.9 ± 0.1 | 30.4 ± 0.3 | 7.29 ± 0.03 | 2090 ± 9 |
pCO2 Target | pCO2 (µatm) | CO3 (µmol × kgSW) | HCO3 (µmol × kgSW) | ΩAr | ΩCa |
---|---|---|---|---|---|
400 | 483 ± 64 | 110 ± 17 | 1807 ± 38 | 1.74 ± 0.26 | 2.73 ± 0.40 |
700 | 769 ± 100 | 77 ± 13 | 1892 ± 31 | 1.21 ± 0.22 | 1.90 ± 0.32 |
1000 | 1062 ± 140 | 58 ± 10 | 1939 ± 27 | 0.91 ± 0.16 | 1.43 ± 0.25 |
1600 | 1652 ± 215 | 39 ± 7 | 1986 ± 21 | 0.62 ± 0.11 | 0.97 ± 0.18 |
1900 | 2009 ± 372 | 34 ± 7 | 2000 ± 22 | 0.53 ± 0.11 | 0.82 ± 0.18 |
2200 | 2365 ± 317 | 28 ± 5 | 2013 ± 19 | 0.44 ± 0.08 | 0.69 ± 0.13 |
2500 | 2458 ± 340 | 27 ± 7 | 2016 ± 20 | 0.43 ± 0.09 | 0.67 ± 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
George, M.N.; O’Donnell, M.J.; Concodello, M.; Carrington, E. Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification. J. Mar. Sci. Eng. 2022, 10, 359. https://doi.org/10.3390/jmse10030359
George MN, O’Donnell MJ, Concodello M, Carrington E. Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification. Journal of Marine Science and Engineering. 2022; 10(3):359. https://doi.org/10.3390/jmse10030359
Chicago/Turabian StyleGeorge, Matthew N., Michael J. O’Donnell, Michael Concodello, and Emily Carrington. 2022. "Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification" Journal of Marine Science and Engineering 10, no. 3: 359. https://doi.org/10.3390/jmse10030359
APA StyleGeorge, M. N., O’Donnell, M. J., Concodello, M., & Carrington, E. (2022). Mussels Repair Shell Damage despite Limitations Imposed by Ocean Acidification. Journal of Marine Science and Engineering, 10(3), 359. https://doi.org/10.3390/jmse10030359