Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope
Abstract
1. Introduction
2. Data and Methodology
2.1. Typhoon Mitag
2.2. In Situ Observations
2.3. Satellite Altimeter Data
2.4. Analysis and Reanalysis Data
2.5. Methodology
3. Results
3.1. Spectral Analysis
3.2. Near-Inertial Currents
3.3. Near-Inertial Kinetic Energy
3.4. Modal Content of Near-Inertial Waves
3.5. Frequency of Near-Inertial Waves
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alford, M.H.; MacKinnon, J.A.; Simmons, H.L.; Nash, J.D. Near-Inertial Internal Gravity Waves in the Ocean. Annu. Rev. Mar. Sci. 2016, 8, 95–123. [Google Scholar] [CrossRef] [PubMed]
- Millot, C.; Crépon, M. Inertial Oscillations on the Continental Shelf of the Gulf of Lions—Observations and Theory. J. Phys. Oceanogr. 1981, 11, 639–657. [Google Scholar] [CrossRef]
- Park, J.H.; Watts, D.R. Near-inertial oscillations interacting with mesoscale circulation in the southwestern Japan/East Sea. Geophys. Res. Lett. 2005, 32, 153–174. [Google Scholar] [CrossRef]
- Pallàs-Sanz, E.; Candela, J.; Sheinbaum, J.; Ochoa, J.; Jouanno, J. Trapping of the near-inertial wave wakes of two consecutive hurricanes in the Loop Current. J. Geophys. Res. Ocean. 2016, 121, 7431–7454. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiu, B.; Tian, J.; Zhao, W.; Huang, X. Latitude-dependent finescale turbulent shear generations in the Pacific trop-ical-extratropical upper ocean. Nat. Commun. 2018, 9, 4086. [Google Scholar] [CrossRef]
- Whalen, C.B.; MacKinnon, J.A.; Talley, L.D. Large-scale impacts of the mesoscale environment on mixing from wind-driven internal waves. Nat. Geosci. 2018, 11, 842–847. [Google Scholar] [CrossRef]
- Alford, M.H. Redistribution of energy available for ocean mixing by long-range propagation of internal waves. Nature 2003, 423, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Troy, C.D.; Ahmed, S.; Hawley, N.; Goodwell, A. Cross-shelf thermal variability in southern Lake Michigan during the stratified periods. J. Geophys. Res. Ocean. 2012, 117, C02028. [Google Scholar] [CrossRef]
- Jochum, M.; Briegleb, B.P.; Danabasoglu, G.; Large, W.G.; Norton, N.J.; Jayne, S.R.; Alford, M.H.; Bryan, F.O. The Impact of Oceanic Near-Inertial Waves on Climate. J. Clim. 2013, 26, 2833–2844. [Google Scholar] [CrossRef]
- D’Asaro, E.A. The Energy Flux from the Wind to Near-Inertial Motions in the Surface Mixed Layer. J. Phys. Oceanogr. 1985, 15, 1043–1059. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y.; Hu, P. Observed near-inertial waves in the wake of Typhoon Hagupit in the northern South China Sea. Chin. J. Oceanol. Limnol. 2015, 33, 1265–1278. [Google Scholar] [CrossRef]
- Xie, X.-H.; Shang, X.-D.; Van Haren, H.; Chen, G.-Y.; Zhang, Y.-Z. Observations of parametric subharmonic instability-induced near-inertial waves equatorward of the critical diurnal latitude. Geophys. Res. Lett. 2011, 38, L05603. [Google Scholar] [CrossRef]
- MacKinnon, J.A.; Alford, M.H.; Sun, O.; Pinkel, R.; Zhao, Z.; Klymak, J. Parametric Subharmonic Instability of the Internal Tide at 29° N. J. Phys. Oceanogr. 2013, 43, 17–28. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Theory. J. Phys. Oceanogr. 2010, 40, 1055–1074. [Google Scholar] [CrossRef]
- Nikurashin, M.; Ferrari, R. Radiation and Dissipation of Internal Waves Generated by Geostrophic Motions Impinging on Small-Scale Topography: Application to the Southern Ocean. J. Phys. Oceanogr. 2010, 40, 2025–2042. [Google Scholar] [CrossRef]
- van Aken, H.M.; Maas, L.R.M.; van Haren, H. Observations of Inertial Wave Events near the Continental Slope off Goban Spur. J. Phys. Oceanogr. 2005, 35, 1329–1340. [Google Scholar] [CrossRef]
- Liang, X.; Thurnherr, A. Eddy-Modulated Internal Waves and Mixing on a Midocean Ridge. J. Phys. Oceanogr. 2012, 42, 1242–1248. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Bretherton, F.P. Atmospheric frontogenesis models: Mathematical formulation and solutions. J. Atmos. Sci. 1972, 29, 11–37. [Google Scholar] [CrossRef]
- Ford, R. Gravity wave radiation from vortex trains in rotating shallow water. J. Fluid Mech. 1994, 281, 81–118. [Google Scholar] [CrossRef]
- Kunze, E. Near-Inertial Wave Propagation in Geostrophic Shear. J. Phys. Oceanogr. 1985, 15, 544–565. [Google Scholar] [CrossRef]
- Kunze, E.; Schmitt, R.W.; Toole, J. The Energy Balance in a Warm-Core Ring’s Near-Inertial Critical Layer. J. Phys. Oceanogr. 1995, 25, 942–957. [Google Scholar] [CrossRef]
- Byun, S.-S.; Park, J.J.; Chang, K.-I.; Schmitt, R.W. Observation of near-inertial wave reflections within the thermostad layer of an anticyclonic mesoscale eddy. Geophys. Res. Lett. 2010, 37, 483–496. [Google Scholar] [CrossRef]
- Chen, G.; Xue, H.; Wang, D.; Xie, Q. Observed near-inertial kinetic energy in the northwestern South China Sea. J. Geophys. Res. Ocean. 2013, 118, 4965–4977. [Google Scholar] [CrossRef]
- Guan, S.; Zhao, W.; Huthnance, J.; Tian, J.; Wang, J. Observed upper ocean response to typhoon Megi (2010) in the Northern South China Sea. J. Geophys. Res. Ocean. 2014, 119, 3134–3157. [Google Scholar] [CrossRef]
- Yang, B.; Hu, P.; Hou, Y. Variation and Episodes of Near-Inertial Internal Waves on the Continental Slope of the Southeastern East China Sea. J. Mar. Sci. Eng. 2021, 9, 916. [Google Scholar] [CrossRef]
- Rossby, C.-G. On the Mutual Adjustment of Pressure and Velocity Distributions in Certain Simple Current Systems, II. J. Mar. Res. 1938, 1, 239–263. [Google Scholar] [CrossRef]
- Gill, A.E. On the Behavior of Internal Waves in the Wakes of Storms. J. Phys. Oceanogr. 1984, 14, 1129–1151. [Google Scholar] [CrossRef]
- Qi, H.; De Szoeke, R.A.; Paulson, C.A.; Eriksen, C.C. The Structure of Near-Inertial Waves during Ocean Storms. J. Phys. Oceanogr. 1995, 25, 2853–2871. [Google Scholar] [CrossRef]
- Geisler, J.E. Linear theory of the response of a two layer ocean to a moving hurricane. Geophys. Fluid Dyn. 1970, 1, 249–272. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, D.; Zhou, L.; Liu, X.; Ding, T.; Zhou, B. Upper ocean response to typhoon Kalmaegi (2014). J. Geophys. Res. Ocean. 2016, 121, 6520–6535. [Google Scholar] [CrossRef]
- Firing, E.; Lien, R.-C.; Muller, P. Observations of strong inertial oscillations after the passage of Tropical Cyclone Ofa. J. Geophys. Res. Ocean. 1997, 102, 3317–3322. [Google Scholar] [CrossRef]
- Sanford, T.B.; Price, J.F.; Girton, J.B. Upper-Ocean Response to Hurricane Frances (2004) Observed by Profiling EM-APEX Floats. J. Phys. Oceanogr. 2011, 41, 1041–1056. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y. Near-inertial waves in the wake of 2011 Typhoon Nesat in the northern South China Sea. Acta Oceanol. Sin. 2014, 33, 102–111. [Google Scholar] [CrossRef]
- Yang, B.; Hou, Y.; Hu, P.; Liu, Z.; Liu, Y. Shallow ocean response to tropical cyclones observed on the continental shelf of the northwestern South China Sea. J. Geophys. Res. Ocean. 2015, 120, 3817–3836. [Google Scholar] [CrossRef]
- Hou, H.; Yu, F.; Nan, F.; Yang, B.; Guan, S.; Zhang, Y. Observation of Near-Inertial Oscillations Induced by Energy Transformation during Typhoons. Energies 2019, 12, 99. [Google Scholar] [CrossRef]
- Jeon, C.; Park, J.-H.; Nakamura, H.; Nishina, A.; Zhu, X.-H.; Kim, D.G.; Min, H.S.; Kang, S.K.; Na, H.; Hirose, N. Poleward-propagating near-inertial waves enabled by the western boundary current. Sci. Rep. 2019, 9, 9955. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, S.; Qi, Y.; Jing, Z. Upper ocean near-inertial response to the passage of two sequential typhoons in the north-western South China Sea. Sci. China Earth Sci. 2019, 62, 863–871. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Pan, Y.; Song, J.; He, H.; Li, P. Near-Inertial Waves Induced by Typhoon Megi (2010) in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 440. [Google Scholar] [CrossRef]
- Xu, F.H.; Yuan, Y.; Oey, L.; Lin, Y. Impacts of pre-existing ocean cyclonic circulation on sea surface chlorophyll-a concentrations off northeastern Taiwan following episodic typhoon passages. J. Geophys. Res. Oceans. 2017, 122, 6482–6497. [Google Scholar] [CrossRef]
- He, Y.; Hu, P.; Yang, B.; Yin, Y.; Hou, Y. Volume transport in the East Taiwan Channel in response to different tracks of typhoons as revealed by HYCOM data. J. Oceanol. Limnol. 2021, 40, 22–36. [Google Scholar] [CrossRef]
- Nagai, T.; Durán, G.S.; Otero, D.A.; Mori, Y.; Yoshie, N.; Ohgi, K.; Hasegawa, D.; Nishina, A.; Kobari, T. How the Kuroshio Current Delivers Nutrients to Sunlit Layers on the Continental Shelves with Aid of Near-Inertial Waves and Turbulence. Geophys. Res. Lett. 2019, 46, 6726–6735. [Google Scholar] [CrossRef]
- Whalen, C.B.; De Lavergne, C.; Garabato, A.C.N.; Klymak, J.M.; MacKinnon, J.A.; Sheen, K.L. Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ. 2020, 1, 606–621. [Google Scholar] [CrossRef]
- Ying, M.; Zhang, W.; Yu, H.; Lu, X.; Feng, J.; Fan, Y.; Zhu, Y.; Chen, D. An Overview of the China Meteorological Administration Tropical Cyclone Database. J. Atmos. Ocean. Technol. 2014, 31, 287–301. [Google Scholar] [CrossRef]
- Lu, X.; Yu, H.; Ying, M.; Zhao, B.; Zhang, S.; Lin, L.; Bai, L.; Wan, R. Western North Pacific Tropical Cyclone Database Created by the China Meteorological Administration. Adv. Atmos. Sci. 2021, 38, 690–699. [Google Scholar] [CrossRef]
- He, Y.; Hu, P.; Yin, Y.; Liu, Z.; Liu, Y.; Hou, Y.; Zhang, Y. Vertical Migration of the Along-Slope Counter-Flow and Its Relation with the Kuroshio Intrusion off Northeastern Taiwan. Remote Sens. 2019, 11, 2624. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Wang, Q.; Zeng, L.; Xing, T.; He, Y.; Shu, Y.; Chen, J.; Wang, Y. Eddy-Induced Transport of Saline Kuroshio Water into the Northern South China Sea. J. Geophys. Res. Ocean. 2019, 124, 6673–6687. [Google Scholar] [CrossRef]
- Silverthorne, K.E.; Toole, J. Seasonal Kinetic Energy Variability of Near-Inertial Motions. J. Phys. Oceanogr. 2009, 39, 1035–1049. [Google Scholar] [CrossRef]
- Leaman, K.D.; Sanford, T.B. Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles. J. Geophys. Res. 1975, 80, 1975–1978. [Google Scholar] [CrossRef]
- Oey, L.-Y.; Ezer, T.; Wang, D.-P.; Fan, S.-J.; Yin, X.-Q. Loop Current warming by Hurricane Wilma. Geophys. Res. Lett. 2006, 33, L08613. [Google Scholar] [CrossRef]
- Zhao, Z.; Alford, M.H.; MacKinnon, J.A.; Pinkel, R. Long-Range Propagation of the Semidiurnal Internal Tide from the Hawaiian Ridge. J. Phys. Oceanogr. 2010, 40, 713–736. [Google Scholar] [CrossRef]
- Larsen, L.; Cannon, G.; Choi, B. East China Sea tide currents. Cont. Shelf Res. 1985, 4, 77–103. [Google Scholar] [CrossRef]
- Park, J.-H.; Lie, H.-J.; Guo, B. Observation of Semi-diurnal Internal Tides and Near-inertial Waves at the Shelf Break of the East China Sea. Ocean Polar Res. 2011, 33, 409–419. [Google Scholar] [CrossRef][Green Version]
- Park, J.J.; Kim, K.; Schmitt, R.W. Global distribution of the decay timescale of mixed layer inertial motions observed by satellite-tracked drifters. J. Geophys. Res. Earth Surf. 2009, 114, C11010. [Google Scholar] [CrossRef]
- Zheng, Q.A.; Lai, R.J.; Huang, N.E.; Pan, J.Y.; Liu, W.T. Observation of ocean current response to 1998 Hurricane Georges in the Gulf of Mexico. Acta. Oceanol. Sin. 2006, 25, 1–14. [Google Scholar]
- Shang, X.; Liu, Q.; Xie, X.; Chen, G.; Chen, R. Characteristics and seasonal variability of internal tides in the southern South China Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 2015, 98, 43–52. [Google Scholar] [CrossRef]
- Wagner, G.L.; Young, W.R. A three-component model for the coupled evolution of near-inertial waves, quasi-geostrophic flow and the near-inertial second harmonic. J. Fluid Mech. 2016, 802, 806–837. [Google Scholar] [CrossRef]
- Le Boyer, A.; Alford, M.H.; Pinkel, R.; Hennon, T.D.; Yang, Y.J.; Ko, D.; Nash, J. Frequency Shift of Near-Inertial Waves in the South China Sea. J. Phys. Oceanogr. 2020, 50, 1121–1135. [Google Scholar] [CrossRef]
- Alford, M.H.; Gregg, M.C. Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude. J. Geophys. Res. Earth Surf. 2001, 106, 16947–16968. [Google Scholar] [CrossRef]
- Anderson, D.L.T.; Gill, A.E. Beta dispersion of inertial waves. J. Geophys. Res. Earth Surf. 1979, 84, 1836–1842. [Google Scholar] [CrossRef]
- Nencioli, F.; Dong, C.M.; Dickey, T.; Washburn, L.; Mcwilliams, J.C. A vector geometry-based detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the southern California Bright. J. Atmos. Ocean Technol. 2010, 27, 564–579. [Google Scholar] [CrossRef]
- Pollard, R.; Millard, R. Comparison between observed and simulated wind-generated inertial oscillations. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 813–821. [Google Scholar] [CrossRef]
- Alford, M.H. Internal swell generation: The spatial distribution of energy flux from the wind to mixed layer near-inertial motions. J. Phys. Oceanogr. 2001, 31, 2359–2368. [Google Scholar] [CrossRef]
- Sprintall, J.; Tomczak, M. Evidence of the barrier layer in the surface layer of the tropics. J. Geophys. Res. Ocean. 1992, 97, 7305–7316. [Google Scholar] [CrossRef]
- Dohan, K.; Davis, R.E. Mixing in the Transition Layer during Two Storm Events. J. Phys. Oceanogr. 2011, 41, 42–66. [Google Scholar] [CrossRef]
- Johnston, T.M.S.; Chaudhuri, D.; Mathur, M.; Rudnick, D.; Sengupta, D.; Simmons, H.; Tandon, A.; Venkatesan, R. Decay Mechanisms of Near-Inertial Mixed Layer Oscillations in the Bay of Bengal. Oceanography 2016, 29, 180–191. [Google Scholar] [CrossRef]
- D’Asaro, E.A. A collection of papers on the ocean storms experiment. J. Phys. Oceanogr. 1995, 25, 2817–2818. [Google Scholar]
- Niwa, Y.; Hibiya, T. Three-dimensional numerical simulation of M2 internal tides in the East China Sea. J. Geophys. Res. 2004, 109, C04027. [Google Scholar] [CrossRef]
- Niwa, Y.; Hibiya, T. Generation of baroclinic tide energy in a global three-dimensional numerical model with different spatial grid resolutions. Ocean Model. 2014, 80, 59–73. [Google Scholar] [CrossRef]
- Tian, J.; Zhou, L.; Zhang, X. Latitudinal Distribution of Mixing Rate Caused by the M2 Internal Tide. J. Phys. Oceanogr. 2006, 36, 35–42. [Google Scholar] [CrossRef]
- Fer, I. Near-Inertial Mixing in the Central Arctic Ocean. J. Phys. Oceanogr. 2014, 44, 2031–2049. [Google Scholar] [CrossRef]
- Müller, P.; Holloway, G.; Henyey, F.; Pomphrey, N. Nonlinear interactions among internal gravity waves. Rev. Geophys. 1986, 24, 493–536. [Google Scholar] [CrossRef]
- Kim, Y.C.; Powers, E.J. Digital Bispectral Analysis and Its Applications to Nonlinear Wave Interactions. IEEE Trans. Plasma Sci. 1979, 7, 120–131. [Google Scholar] [CrossRef]
- Mccomas, C.H.; Briscoe, M.G. Bispectra of internal waves. J. Fluid Mech. 1980, 97, 205–213. [Google Scholar] [CrossRef]
- Carter, G.S.; Gregg, M.C. Persistent Near-Diurnal Internal Waves Observed above a Site of M2 Barotropic-to-Baroclinic Conversion. J. Phys. Oceanogr. 2006, 36, 1136–1147. [Google Scholar] [CrossRef]
- Cao, A.; Guo, Z.; Song, J.; Lv, X.; He, H.; Fan, W. Near-Inertial Waves and Their Underlying Mechanisms Based on the South China Sea Internal Wave Experiment (2010–2011). J. Geophys. Res. Ocean. 2018, 123, 5026–5040. [Google Scholar] [CrossRef]
- Yang, W.; Wei, H.; Zhao, L. Parametric Subharmonic Instability of the Semidiurnal Internal Tides at the East China Sea Shelf Slope. J. Phys. Oceanogr. 2020, 50, 907–920. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ouyang, Z.; Liu, Z.; Sun, Y.; Yang, B.; Hou, Y. Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. J. Mar. Sci. Eng. 2022, 10, 202. https://doi.org/10.3390/jmse10020202
Ouyang Z, Liu Z, Sun Y, Yang B, Hou Y. Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. Journal of Marine Science and Engineering. 2022; 10(2):202. https://doi.org/10.3390/jmse10020202
Chicago/Turabian StyleOuyang, Zhiling, Ze Liu, Yunfei Sun, Bing Yang, and Yijun Hou. 2022. "Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope" Journal of Marine Science and Engineering 10, no. 2: 202. https://doi.org/10.3390/jmse10020202
APA StyleOuyang, Z., Liu, Z., Sun, Y., Yang, B., & Hou, Y. (2022). Observation of Near-Inertial Waves Induced by Typhoon Mitag (2019) on the Southwestern East China Sea Continental Slope. Journal of Marine Science and Engineering, 10(2), 202. https://doi.org/10.3390/jmse10020202