Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl
Abstract
1. Introduction
2. Materials and Methods
2.1. Test Compounds
2.2. Biological Materials
2.3. Statistical Analysis
3. Results and Discussions
3.1. Effect of DMSO on P. parvus sl Egg-Hatching Rate and Nauplius Mortality
3.2. Toxicity Test of Antifouling Biocides
3.3. Concentration of Metal and Organic Biocides
3.4. Toxicity Test of WHPB and WHPB-MeOH
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Maritime Organization (IMO). International Conference on the Control of Harmful Antifouling Systems on Ships; IMO Headquartes: London, UK, 2001; Available online: https://www.imo.org/en/About/Conventions/Pages/International-Convention-on-the-Control-of-Harmful-Anti-fouling-Systems-on-Ships-(AFS).aspx (accessed on 8 November 2022).
- Qian, P.Y.; Chen, L.; Xu, Y. Mini-review: Molecular mechanisms of antifouling compounds. Biofouling 2013, 29, 381–400. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Lam, J.C. SeaNine 211 as antifouling biocide: A coastal pollutant of emerging concern. J. Environ. Sci. 2017, 61, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.V.; McHugh, M.; Waldock, M. Antifouling paint booster biocides in UK coastal waters: Inputs, occurrence and environmental fate. Sci. Total Environ. 2002, 293, 117–127. [Google Scholar] [CrossRef]
- Soroldoni, S.; Abreu, F.; Castro, Í.B.; Duarte, F.A.; Pinho, G.L.L. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment? J. Hazard. Mater. 2017, 330, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Turner, A.; Comber, S.; Rees, A.B.; Gkiokas, D.; Solman, K. Metals in boat paint fragments from slipways, repair facilities and abandoned vessels: An evaluation using field portable XRF. Talanta 2014, 131, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Kim, M.; Hong, C.P.; Kang, J.H.; Jung, J.H. Is hull cleaning wastewater a potential source of developmental toxicity on coastal non-target organisms? Aquat. Toxicol. 2020, 227, 105615. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.R.; Arifin, M.M.; Sheikh, M.A.; Mohamed Shazili, N.A.; Bachok, Z. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia. Mar. Pollut. Bull. 2013, 70, 253–257. [Google Scholar] [CrossRef]
- Bao, V.W.W.; Leung, K.M.Y.; Lui, G.C.S.; Lam, M.H.W. Acute and chronic toxicities of Irgarol alone and in combination with copper to the marine copepod Tigriopus japonicus. Chemosphere 2013, 90, 1140–1148. [Google Scholar] [CrossRef]
- Kim, N.S.; Hong, S.H.; An, J.G.; Shin, K.H.; Shim, W.J. Distribution of butyltins and alternative antifouling biocides in sediments from shipping and shipbuilding areas in South Korea. Mar. Pollut. Bull. 2015, 95, 484–490. [Google Scholar] [CrossRef]
- Devilla, R.A.; Brown, M.T.; Donkin, M.; Tarran, G.A.; Aiken, J.; Readman, J.W. Impact of antifouling booster biocides on single microalgal species and on a natural marine phytoplankton community. Mar. Ecol. Prog. Ser. 2005, 286, 1–12. [Google Scholar] [CrossRef]
- Bao, V.W.; Leung, K.M.; Kwok, K.W.; Zhang, A.Q.; Lui, G.C. Synergistic toxic effects of zinc pyrithione and copper to three marine species: Implications on setting appropriate water quality criteria. Mar. Pollut. Bull. 2008, 57, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.M.; Bae, J.S.; Kang, S.G.; Son, J.S.; Jeon, J.H.; Lee, H.J.; Jeon, J.Y.; Sidharthan, M.; Ryu, S.H.; Shin, H.W. Acute toxicity of organic antifouling biocides to phytoplankton Nitzschia pungens and zooplankton Artemia larvae. Mar. Pollut. Bull. 2017, 124, 811–818. [Google Scholar] [CrossRef] [PubMed]
- Bao, V.W.; Lui, G.C.; Leung, K.M. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus. Aquat. Toxicol. 2014, 157, 81–93. [Google Scholar] [CrossRef]
- Wendt, I.; Backhaus, T.; Blanck, H.; Arrhenius, Å. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa. Ecotoxicology 2016, 25, 871–879. [Google Scholar] [CrossRef]
- Soroldoni, S.; Martins, S.E.; Castro, I.B.; Pinho, G.L.L. Potential ecotoxicity of metals leached from antifouling paint particles under different salinities. Ecotoxicol. Environ. Saf. 2018, 148, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Bellas, J.; Granmo, Å.; Beiras, R. Embryotoxicity of the antifouling biocide zinc pyrithione to sea urchin (Paracentrotus lividus) and mussel (Mytilus edulis). Mar. Pollut. Bull. 2005, 50, 1382–1385. [Google Scholar] [CrossRef]
- Bellas, J. Comparative toxicity of alternative antifouling biocides on embryos and larvae of marine invertebrates. Sci. Total Environ. 2006, 367, 573–585. [Google Scholar] [CrossRef]
- Schipp, G.R.; Bosmans, J.M.; Marshall, A.J. A method for hatchery culture of tropical calanoid copepods, Acartia spp. Aquaculture 1999, 174, 81–88. [Google Scholar] [CrossRef]
- Payne, M.F.; Rippingale, R.J. Intensive cultivation of the calanoid copepod Gladioferens imparipes. Aquaculture 2001, 201, 329–342. [Google Scholar] [CrossRef]
- Barata, C.; Medina, M.; Telfer, T.; Baird, D.J. Determining demographic effects of cypermethrin in the marine copepod Acartia tonsa: Stage-specific short tests versus life-table tests. Arch. Environ. Contam. Toxicol. 2002, 43, 373–378. [Google Scholar] [CrossRef]
- Medina, M.; Barata, C.; Telfer, T.; Baird, D.J. Age-and sex-related variation in sensitivity to the pyrethroid cypermethrin in the marine copepod Acartia tonsa Dana. Arch. Environ. Contam. Toxicol. 2002, 42, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Gorbi, G.; Invidia, M.; Savorelli, F.; Faraponova, O.; Giacco, E.; Cigar, M.; Buttino, I.; Leoni, T.; Prato, E.; Lacchetti, I.; et al. Standardized methods for acute and semichronic toxicity tests with the copepod Acartia tonsa. Environ. Toxicol. Chem. 2012, 31, 2023–2028. [Google Scholar] [CrossRef] [PubMed]
- Ringwood, A.H. Short-term accumulation of cadmium by embryos, larvae, and adults of an Hawaiian bivalve, Isognomon californicum. J. Expe. Mar. Biol. Ecol. 1991, 149, 55–66. [Google Scholar] [CrossRef]
- Ensminger, M.P.; Hess, F.D. Photosynthesis involvement in the mechanism of action of diphenyl ether herbicides. Plant Physiol. 1985, 78, 46–50. [Google Scholar] [CrossRef]
- Amara, I.; Miled, W.; Slama, R.B.; Ladhari, N. Antifouling processes and toxicity effects of antifouling paints on marine environment. A review. Environ. Toxicol. Pharmacol. 2018, 57, 115–130. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Wang, X.; Li, Y.; Wang, Y.; Wang, Y. Acute toxicity and synergism of binary mixtures of antifouling biocides with heavy metals to embryos of sea urchin Glyptocidaris crenularis. Hum. Exp. Toxicol. 2011, 30, 1009–1021. [Google Scholar] [CrossRef]
- Eom, H.J.; Haque, M.N.; Nam, S.E.; Lee, D.H.; Rhee, J.S. Effects of sublethal concentrations of the antifouling biocide Sea-Nine on biochemical parameters of the marine polychaete Perinereis aibuhitensis. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2019, 222, 125–134. [Google Scholar] [CrossRef]
- Moon, Y.S.; Kim, M.; Hong, C.P.; Kang, J.H.; Jung, J.H. Overlapping and unique toxic effects of three alternative antifouling biocides (Diuron, Irgarol 1051®, Sea-Nine 211®) on non-target marine fish. Ecotoxicol. Environ. Saf. 2019, 180, 23–32. [Google Scholar] [CrossRef]
- Harino, H.; Mori, Y.; Yamaguchi, Y.; Shibata, K.; Senda, T. Monitoring of antifouling booster biocides in water and sedimentfrom the port of Osaka, Japan. Arc. Environ. Contam. Toxicol. 2005, 48, 303–310. [Google Scholar] [CrossRef]
- Steen, R.J.; Ariese, F.; van Hattum, B.; Jacobsen, J.; Jacobson, A. Monitoring and evaluation of the environmental dissipation of the marine antifoulant 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) in a Danish Harbor. Chemosphere 2004, 57, 513–521. [Google Scholar] [CrossRef]
- Martinez, K.; Ferrer, I.; Barceló, D. Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 2000, 879, 27–37. [Google Scholar] [CrossRef]
- Martinez, K.; Barceló, D. Determination of antifouling pesticides and their degradation products in marine sediments by means of ultrasonic extraction and HPLC–APCI–MS. Fresenius J. Anal. Chem. 2001, 370, 940–945. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Alba, A.R.; Hernando, M.D.; Piedra, L.; Chisti, Y. Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal. Chim. Acta 2002, 456, 303–312. [Google Scholar] [CrossRef]
- Okamura, H.; Aoyama, I.; Liu, D.; Maguire, R.J.; Pacepavicius, G.J.; Lau, Y.L. Fate and ecotoxicity of the new antifouling compound Irgarol 1051 in the aquatic environment. Water Res. 2000, 34, 3523–3530. [Google Scholar] [CrossRef]
- Onduka, T.; Ojima, D.; Ito, M.; Ito, K.; Mochida, K.; Fujii, K. Toxicity of the antifouling biocide Sea-Nine 211 to marine algae, crustacea, and a polychaete. Fish. Sci. 2013, 79, 999–1006. [Google Scholar] [CrossRef]
- Yamada, H. Behaviour, occurrence, and aquatic toxicity of new antifouling biocides and preliminary assessment of risk to aquatic ecosystems. Bull. Fish. Res. Agen. 2007, 21, 31–45. [Google Scholar]
- Shaala, N.M.A.; Zulkifli, S.Z.; Ismail, A.; Azmai, M.N.A.; Mohamat-Yusuff, F. Lethal concentration 50 (LC50) and effects of Diuron on morphology of brine shrimp Artemia salina (Branchiopoda: Anostraca) Nauplii. Procedia Environ. Sci. 2015, 30, 279–284. [Google Scholar] [CrossRef]
- ALYÜRÜK, H.; ÇAVAŞ, L. Toxicities of diuron and irgarol on the hatchability and early stage development of Artemia salina. Turk. J. Biol. 2013, 37, 151–157. [Google Scholar] [CrossRef]
- Jacobson, A.H.; Willingham, G.L. Sea-nine antifoulant: An environmentally acceptable alternative to organotin antifoulants. Sci. Total Environ. 2000, 258, 103–110. [Google Scholar] [CrossRef]
- Price, A.R.G.; Readman, J.W.; Gee, D. Booster biocide antifoulants: Is history repeating itself? In EEA Report No. 1/2013—Late Lessons from Early Warnings: Science, Precaution, Innovation; European Environment Agency: Copenhagen, Denmark, 2013; pp. 265–278. [Google Scholar]
- Soon, Z.Y.; Jung, J.H.; Jang, M.; Kang, J.H.; Jang, M.C.; Lee, J.S.; Kim, M. Zinc pyrithione (ZnPT) as an antifouling biocide in the marine environment—A literature review of its toxicity, environmental fates, and analytical methods. Wat. Air. Soil Pollut. 2019, 230, 310. [Google Scholar] [CrossRef]
Species | WHPB | WHPB-MeOH | Diuron | Irgarol 1051 | Sea-Nine 211 |
---|---|---|---|---|---|
(Dilution Gradient) | mg L−1 | ||||
P. parvus sl | 50 | 1 | 15 | 15 | 1 |
100 | 2 | 10 | 10 | 0.5 | |
1000 | 22 | 7.5 | 7.5 | 0.1 | |
5000 | 110 | 5 | 5 | 0.01 | |
7500 | 155 | 2 | 2.5 | 0.005 | |
8000 | 220 | 1 | 1 | 0.001 | |
10,000 | 1099 | 0.1 | 0.1 | 0.0001 |
Material | Unit | 95% CI | t-Value | p-Value | |||
---|---|---|---|---|---|---|---|
24-h LC50 | Std. Error | Low Limit | High Limit | ||||
Diuron | μg L−1 | 1968 | 136 | 1832 | 2104 | 14.4505 | 1.1 × 10−11 |
Irgarol 1051 | 1391 | 276 | 1115 | 1667 | 5.0481 | 4.7 × 10−5 | |
Sea-nine 211 | 0.438 | 0.096 | 0.342 | 0.534 | 4.5443 | 2.2 × 10−4 | |
WHPB (1) | Dilution factor | 11,820 | 2459 | 9361 | 14,279 | 48.0738 | 2.2 × 10−16 |
WHPB-MeOH (2) | 1079 | 145 | 934 | 1224 | 7.4148 | 2.0 × 10−7 |
Biocide | Phylum, Order | Species | Effect Level | Concentration | Reference |
---|---|---|---|---|---|
(µg L−1) | |||||
Diuron | Arthropoda, Cladocera | Daphnia magna | 48 h EC50 | 8600 | [34] |
Arthropoda, Anostraca | Artemia Larvae | 48 h LC50 | 30,573 | [13] | |
Artemia salina (Larvae) | 24 h LC50 | 23,270 | [38] | ||
24 h LC50 | 12,500 | [39] | |||
Arthropoda, Decapoda | Palaemon serratus (Larvae) | 24 h EC50 | 3011 | [17] | |
Arthropoda, Amphipoda | Hyalella azteca | 96 h LC50 | 19,400 | [34] | |
Irgarol 1051 | Arthropoda, Cladocera | Daphnia magna | 24 h LC50 | 16,000 | [35] |
Daphnia pulex | 24 h LC50 | 5700 | [35] | ||
Arthropoda, Anostraca | Artemia salina | 24 h LC50 | >4000 | [35] | |
Arthropoda, Harpacticoida | Tigriopus japonicus (Larvae) | 24 h LC50 | >4000 | [9] | |
Sea-nine 211 | Arthropoda, Cladocera | Daphnia magna | 24 h EC50 | 8 | [34] |
Arthropoda, Anostraca | Artemia salina (Larvae) | 48 h LC50 | 318 | [13] | |
Arthropoda, Calanoida | Acartia tonsa | 48 h LC50 | 16.1 | [15] | |
Arthropoda, Harpacticoida | Tigriopus japonicus (Larvae) | 24 h LC50 | 23 | [36] | |
24 h LC50 | 77 | [37] | |||
Arthropoda, Decapoda | Portunus trituberculatus (Larvae) | 24 h LC50 | >101 | [36] | |
Arthropoda, Sessilia | Amphibalanus amphitrite (Larvae) | 24 h LC50 | 340 | [40] | |
Mollusca | Mytilus edulis (embryonic) | 24 h LC50 | 11 | [18] |
Dissolved Metals (μg L−1, ppb) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cr | Mn | Fe | Co | Ni | Cu | Zn | As | Se | Cd | Ba | Pb | ||
WHPB (1) | Mean | 0.92 | 439 | 260 | 1.53 | 7.28 | 6964 | 12,269 | 53 | 3.52 | 1.88 | 528 | 0.80 |
Std | 0.17 | 12 | 82 | 0.16 | 0.13 | 129 | 473 | 1 | 1.32 | 0.08 | 13 | 0.14 | |
KMEPC (2) | Mean | 200 | - | - | - | 11 | 3 | 34 | 9.4 | - | 19 | - | 7.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hyun, B.; Jang, P.-G.; Shin, K.; Kim, M.; Jung, J.-H.; Cha, H.-G.; Jang, M.-C. Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl. J. Mar. Sci. Eng. 2022, 10, 1784. https://doi.org/10.3390/jmse10111784
Hyun B, Jang P-G, Shin K, Kim M, Jung J-H, Cha H-G, Jang M-C. Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl. Journal of Marine Science and Engineering. 2022; 10(11):1784. https://doi.org/10.3390/jmse10111784
Chicago/Turabian StyleHyun, Bonggil, Pung-Guk Jang, Kyoungsoon Shin, Moonkoo Kim, Ju-Hak Jung, Hyung-Gon Cha, and Min-Chul Jang. 2022. "Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl" Journal of Marine Science and Engineering 10, no. 11: 1784. https://doi.org/10.3390/jmse10111784
APA StyleHyun, B., Jang, P.-G., Shin, K., Kim, M., Jung, J.-H., Cha, H.-G., & Jang, M.-C. (2022). Toxicity of Antifouling Biocides and Wastes from Ships’ Surfaces during High-Pressure Water-Blasting Cleaning Activities in the Nauplii and Eggs of the Estuarine Copepod Paracalanus parvus sl. Journal of Marine Science and Engineering, 10(11), 1784. https://doi.org/10.3390/jmse10111784