Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate
Abstract
:1. Introduction
2. Materials and Methods
Specimen ID | Initial Void Ratio, e0 | Percentage of Intraparticle Voids Filled with Hydrate | Effective Void Ratio, e′ | Hydrate Saturation, Sh (%) | Effective Confining Stress, σc′ (kPa) |
---|---|---|---|---|---|
1 | 0.799 | 0 | 0.799 | 0 | 100, 200, 300, 400 |
2 | 0.799 | 100 | 0.510 | 24 | 100, 300, 500, 800 |
3 a | 0.733 | 0 | 0.733 | 0 | 100. 200, 300, 400 |
4 | 0.733 | 25 | 0.672 | 5 | 100, 300, 500 |
5 | 0.733 | 50 | 0.593 | 12 | 100, 300, 500, 800 |
6 a | 0.733 | 100 | 0.447 | 27 | 100, 300, 500, 800 |
7 | 0.666 | 0 | 0.666 | 0 | 100, 200, 300, 400 |
8 | 0.666 | 100 | 0.381 | 31 | 100, 300, 500, 800 |
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Waite, W.F.; Santamarina, J.C.; Cortes, D.D.; Dugan, B.; Espinoza, D.N.; Germaine, J.; Jang, J.; Jung, J.W.; Kneafsey, T.J.; Shin, H.; et al. Physical properties of hydrate-bearing sediments. Rev. Geophys. 2009, 47, RG4003. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Santamarina, J.C.; Waite, W.F.; Kneafsey, T.J. Hydrate morphology: Physical properties of sands with patchy hydrate saturation. J. Geophys. Res. Sol. Earth 2012, 117, B11205. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Santamarina, J.C. Laboratory strategies for hydrate formation in fine-grained sediments. J. Geophys. Res. Sol. Earth 2018, 123, 2583–2596. [Google Scholar] [CrossRef]
- Argentino, C.; Conti, S.; Fioroni, C.; Fontana, D. Evidences for Paleo-Gas Hydrate Occurrence: What We Can Infer for the Miocene of the Northern Apennines (Italy). Geosciences 2019, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Hesselbo, S.P.; Grocke, D.R.; Jenkyns, H.C.; Bjerrum, C.J.; Farrimond, P.; Bell, H.S.M.; Green, O.R. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 2000, 406, 392–395. [Google Scholar] [CrossRef]
- Wang, X.; Collett, T.S.; Lee, M.W.; Yang, S.; Guo, Y.; Wu, S. Geological controls on the occurrence of gas hydrate from core, downhole log, and seismic data in the Shenhu area, South China Sea. Mar. Geol. 2014, 357, 272–292. [Google Scholar] [CrossRef]
- Lei, L.; Seol, Y.; Choi, J.-H.; Kneafsey, T.J. Pore habit of methane hydrate and its evolution in sediment matrix-laboratory visualization with phase-contrast micro-CT. Mar. Pet. Geol. 2019, 104, 451–467. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Seol, Y. Pore-scale investigation of methane hydrate bearing sediments under triaxial condition. Geophys. Res. Lett. 2020, 47, e2019GL086448. [Google Scholar] [CrossRef]
- Yang, M.; Fu, Z.; Jiang, L.; Song, Y. Gas recovery from depressurized methane hydrate deposits with different water saturations. Appl. Energy 2017, 187, 180–188. [Google Scholar] [CrossRef]
- Chong, Z.R.; Pujar, G.A.; Yang, M.J.; Linga, P. Methane hydrate formation in excess water simulating marine locations and the impact of thermal stimulation on energy recovery. Appl. Energy 2016, 177, 409–421. [Google Scholar] [CrossRef]
- Liu, W.; Wu, Z.; Li, Y.; Song, Y.; Ling, Z.; Zhao, J.; Lv, Q. Experimental study on the gas phase permeability of methane hydrate-bearing clayey sediments. J. Nat. Gas Sci. Eng. 2016, 36, 378–384. [Google Scholar] [CrossRef]
- Wu, Z.; Li, Y.; Sun, X.; Wu, P.; Zheng, J. Experimental study on the effect of methane hydrate decomposition on gas phase permeability of clayey sediments. Appl. Energy 2018, 230, 1304–1310. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Zhu, Y.; Chen, Y.; Song, Y.; Li, Q. Mechanical behaviors of permafrost-associated methane hydrate-bearing sediments under different mining methods. Appl. Energy 2016, 162, 1627–1632. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, Y.; Liu, W.; Li, Y.; Lu, Y.; Shen, Z. The effects of methane hydrate dissociation at different temperatures on the stability of porous sediments. J. Pet. Sci. Eng. 2016, 147, 77–86. [Google Scholar] [CrossRef]
- Liu, W.; Luo, T.; Li, Y.; Song, Y.; Zhu, Y.; Liu, Y.; Zhao, J.; Wu, Z.; Xu, X. Experimental study on the mechanical properties of sediments containing CH4 and CO2 hydrate mixtures. J. Nat. Gas Sci. Eng. 2016, 32, 20–27. [Google Scholar] [CrossRef]
- Yun, T.; Santamarina, J.; Ruppel, C. Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J. Geophys. Res. Sol. Earth 2007, 112, B04106. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lu, X.; Shi, Y.; Xia, Z.; Liu, W. Centrifuge experimental study on instability of seabed stratum caused by gas hydrate dissociation. Ocean Eng. 2015, 105, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Zhang, X.; Lu, X.; Wang, S.; Wang, A. Experimental study on the static mechanical properties of hydrate-bearing silty-clay in the South China Sea. Chin. J. Theor. Appl. Mech. 2015, 47, 521–528. [Google Scholar] [CrossRef]
- Hyodo, M.; Yoneda, J.; Yoshimoto, N.; Nakata, Y. Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found. 2013, 53, 299–314. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Kim, J.; Hu, G.; Hu, W.; Ning, F. Geomechanical property evolution of hydrate-bearing sediments under dynamic loads: Nonlinear behaviors of modulus and damping ratio. Eng. Geol. 2021, 295, 106427. [Google Scholar] [CrossRef]
- Liu, W.; Liu, R.; Zhang, M.; Liu, Z.; Lang, C.; Li, Y. Rheological properties of hydrate slurry formed from mudflows in South China Sea. Energy Fuels 2021, 35, 10575–10583. [Google Scholar] [CrossRef]
- Clayton, C.R.I.; Priest, J.A.; Rees, E.V.L. The effects of hydrate cement on the stiffness of some sands. Geotechnique 2010, 60, 435–445. [Google Scholar] [CrossRef]
- Liu, C.; Ye, G.; Meng, Q.; He, X.; Lu, H.; Zhang, J.; Liu, J.; Yang, S. The characteristics of gas hydrates recovered from Shenhu Area in the South China Sea. Mar. Geol. 2012, 307, 22–27. [Google Scholar] [CrossRef]
- Ma, L.; Chiu, C.F.; Cheng, Y.P.; Ren, Y.Z. Effects of particle breakage on the compression behaviour of gap graded carbonate sand–silt mixtures. Geotech. Lett. 2021, 11, 16–20. [Google Scholar] [CrossRef]
- Yun, T.S.; Francisca, F.M.; Santamarina, J.C.; Ruppel, C. Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys. Res. Lett. 2005, 32, L10609. [Google Scholar] [CrossRef]
- Mahabadi, N.; Zheng, X.; Jang, J. The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophys. Res. Lett. 2016, 43, 4279–4287. [Google Scholar] [CrossRef] [Green Version]
- Nikitin, V.V.; Dugarov, G.A.; Duchkov, A.A.; Fokin, M.I.; Drobchik, A.N.; Shevchenko, P.D.; De Carlo, F.; Mokso, R. Dynamic in-situ imaging of methane hydrate formation and self-preservation in porous media. Mar. Pet. Geol. 2020, 115, 104234. [Google Scholar] [CrossRef]
- Li, C.; Hu, G.; Zhang, W.; Ye, Y.; Liu, C.; Li, Q.; Sun, J. Influence of foraminifera on formation and occurrence characteristics of natural gas hydrates in fine-grained sediments from Shenhu area, South China Sea. Sci. China Earth Sci. 2016, 46, 1223–1230. [Google Scholar] [CrossRef]
- Ji, L.; Chiu, A.C.F.; Ma, L.; Jian, C. Shear modulus of hydrate bearing calcareous sand-fines mixture. EWeb Conf. 2019, 92, 04002. [Google Scholar] [CrossRef]
- Cheng, Z.; Leong, E.C. Determination of damping ratios for soils using bender element tests. Soil Dyn. Earthq. Eng. 2018, 111, 8–13. [Google Scholar] [CrossRef]
- Sodeifian, G. Non-Linear Rheology of Polymer Melts; LAP Lambert Academic Publishing: Chisinau, Moldova, 2011. [Google Scholar]
- Lee, J.Y.; Santamarina, J.C.; Ruppel, C. Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates. Mar. Pet. Geol. 2008, 25, 884–895. [Google Scholar] [CrossRef]
- Kim, H.; Cho, G.; Kwon, T. Effect of CO2 hydrate formation on seismic wave velocities of fine-grained sediments. Geochem. Geophys. Geosyst. 2013, 14, 1787–1799. [Google Scholar] [CrossRef]
- Hardin, B.O.; Richart, F.E., Jr. Elastic Wave Velocities in Granular Soils. J. Geotech. Geoenviron. 1963, 89, 33–65. [Google Scholar] [CrossRef]
- Santamarina, J.C.; Klein, K.A.; Fam, M.A. Soils and waves: Particulate materials behavior, characterization and process monitoring. J. Soils Sediments 2001, 1, 130. [Google Scholar] [CrossRef]
- Hardin, B.O.; Blandford, G.E. Elasticity of particulate materials. J. Geotech. Eng. ASCE 1989, 115, 788–805. [Google Scholar] [CrossRef]
- Jamiolkowski, M.; Lancellotta, R.; Lo Presti, D.C.F. Remarks on the stiffness at small strains of six Italian clays. Pre-Fail. Deform. Geomater. 1994, 2, 817–836. [Google Scholar]
- Stokoe, K.H., II; Darendeli, M.B.; Andrus, R.D.; Brown, L.T. Dynamic soil properties: Laboratory, field and correlation studies, theme lecture. In Proceedings of the 2nd International Conference on Earthquake Geotechnical Engineering, Lisbon, Portugal, 21–25 June 1999. [Google Scholar]
- Bui, M.T. Influence of Some Particle Characteristics on the Small Strain Response of Granular Materials. Ph.D. Thesis, University of Southampton, Southampton, UK, 2009. [Google Scholar]
- Hardin, B.O. The nature of stress-strain behaviour of soils. In Proceedings of the ASCE Geotechnical Engineering Division Speciality Conference, Pasadena, CA, USA, 19–21 June 1978. [Google Scholar] [CrossRef]
- Lee, M.W. Elastic Properties of Overpressured and Unconsolidated Sediments; U.S. Geological Survey Bulletin 2214; US Department of the Interior, US Geological Survey: Reston, VA, USA, 2003. [Google Scholar] [CrossRef]
- Dvorkin, J.; Nur, A. Rock Physics for Characterization of Gas Hydrates. In the Future of Energy Gases; US Geological Survey Professional Paper; US Government Printing Office: Washington, DC, USA, 1993; Volume 1570, pp. 293–298. [Google Scholar]
- Helgerud, M.B.; Dvorkin, J.; Nur, A.; Sakai, A.; Collett, T. Elastic-wave velocity in marine sediments with gas hydrates: Effective medium modeling. Geophys. Res. Lett. 1999, 26, 2021–2024. [Google Scholar] [CrossRef]
- Suzuki, M.; Oshima, T. Estimation of the co-ordination number in a multi-component mixture of spheres. Power Technol. 1983, 35, 159–166. [Google Scholar] [CrossRef]
- Schmidt, J.; Parteli, E.J.R.; Uhlmann, N.; Wörlein, N.; Wirth, K.-E.; Pöschel, T.; Peukert, W. Packings of micron-sized spherical particles-Insights from bulk density determination, X-ray microtomography and discrete element simulations. Adv. Powder Technol. 2020, 31, 2293–2304. [Google Scholar] [CrossRef]
- Yu, Y.; Xu, X.; Cheng, Y.P.; Soga, K. Study on small-strain behaviours of methane hydrate sandy sediments using discrete element method. Powders Grains 2013, 1542, 555–558. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.-W.; Santamarina, J.C.; Soga, K. Stress-strain response of hydrate-bearing sands: Numerical study using discrete element method simulations. Geophys. Res. Sol. Earth 2012, 117, B04202. [Google Scholar] [CrossRef]
- Zhu, H.P.; Zhou, Z.Y.; Yang, R.Y.; Yu, A.B. Discrete particle simulation of particulate systems: A review of major applications and findings. Chem. Eng. Sci. 2009, 63, 5728–5770. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. A 1952, 65, 349–354. [Google Scholar] [CrossRef]
- Suzuki, M.; Oshima, T. Co-ordination number of a multi-component randomly packed bed of spheres with size distribution. Power Technol. 1985, 44, 213–218. [Google Scholar] [CrossRef]
Soils | Specific Gravity, Gs | Diameter Range (mm) | d50 (mm) | Maximum Void Ratio | Minimum Void Ratio |
---|---|---|---|---|---|
Nonplastic silt | 2.63 | <0.075 | 0.043 | 1.176 | 0.560 |
Carbonate sand (CS) | 2.77 | 0.5−1.0 | 0.750 | 1.336 | 0.957 |
Soil mixture | - | <0.075, 0.5−1.0 | 0.050 | 1.010 | 0.476 |
Soil | C0 | h | R2 |
---|---|---|---|
CS–silt mixture | 2 | 0.57 | 0.92 |
CS–silt mixture with Sh = 24–31% | 78 | 0.28 | 0.82 |
LB-E sand | 12 | 0.42 | 0.99 |
LB-E sand with Sh = 10% (excess gas method) | 1394 | 0.02 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Chiu, C.F.; Ma, L.; Cheng, Y.P.; Ji, L.; Jiang, C. Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate. J. Mar. Sci. Eng. 2022, 10, 1519. https://doi.org/10.3390/jmse10101519
Ren Y, Chiu CF, Ma L, Cheng YP, Ji L, Jiang C. Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate. Journal of Marine Science and Engineering. 2022; 10(10):1519. https://doi.org/10.3390/jmse10101519
Chicago/Turabian StyleRen, Yuzhe, C. F. Chiu, Lu Ma, Y. P. Cheng, Litong Ji, and Chao Jiang. 2022. "Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate" Journal of Marine Science and Engineering 10, no. 10: 1519. https://doi.org/10.3390/jmse10101519
APA StyleRen, Y., Chiu, C. F., Ma, L., Cheng, Y. P., Ji, L., & Jiang, C. (2022). Shear Modulus of a Carbonate Sand–Silt Mixture with THF Hydrate. Journal of Marine Science and Engineering, 10(10), 1519. https://doi.org/10.3390/jmse10101519