A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Data Collection
2.2. Remote Sensing Data
2.3. Deep Neural Network Architecture
2.4. Accuracy Assessment
2.5. Validation of the Model Using Random Sample Points Dataset
3. Results and Discussion
3.1. Training Configuration
3.2. Deep Neural Network Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sokol, E.V.; Kokh, S.N.; Kozmenko, O.A.; Lavrushin, V.Y.; Belogub, E.V.; Khvorov, P.V.; Kikvadze, O.E. Boron in an onshore mud volcanic environment: Case study from the Kerch Peninsula, the Caucasus continental collision zone. Chem. Geol. 2019, 525, 58–81. [Google Scholar] [CrossRef]
- Kharytonov, M.M.; Mitsik, O.; Stankevich, S.; Titarenko, O. Geomining Site Ecological Assessment and Reclamation Along Coastal Line of the Kerch Peninsula. In Black Sea Energy Resource Development and Hydrogen Energy Problems; Veziroğlu, A., Tsitskishvili, M., Eds.; Springer: Dordrecht, The Netherlands, 2013; pp. 325–336. [Google Scholar]
- Kayukova, E. Resources of Curative Mud of the Crimea Peninsula. In Thermal and Mineral Waters: Origin, Properties and Applications; Balderer, W., Porowski, A., Idris, H., LaMoreaux, J.W., Eds.; Environmental Earth Sciences; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–72. ISBN 978-3-642-28824-1. [Google Scholar]
- Zakharov, V.S.; Simonov, D.A.; Bryantseva, G.V.; Kosevich, N.I. Self-Similarity Properties of the Kerch Peninsula Stream Network and Their Comparison with the Results of Structural and Geomorphological Analysis. Izv. Atmos. Ocean. Phys. 2019, 55, 721–730. [Google Scholar] [CrossRef]
- Borovskaya, R.; Krivoguz, D.; Chernyi, S.; Kozhurin, E.; Zinchenko, E. Surface Water Salinity Evaluation and Identification for Using Remote Sensing Data and Machine Learning Approach. J. Mar. Sci. Eng. 2022, 10, 257. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, L. Landslide susceptibility analysis for the Kerch Peninsula using weights of evidence approach and GIS. Russ. J. Earth Sci. 2020, 20, ES1003. [Google Scholar] [CrossRef]
- Krivoguz, D.; Bespalova, L. Analysis of Kerch Peninsula’s climatic parameters in scope of landslide susceptibility. Bull. KSMTU 2018, 1, 5–11. [Google Scholar]
- Kotov, S.; Kotova, I.; Kayukova, E. Geological controls and the impact of human society on the composition of peloids of present-day salt lakes (coastal zones of the Black, Azov, and Dead Seas). J Coast Conserv 2019, 23, 843–855. [Google Scholar] [CrossRef]
- Ovsyuchenko, A.N.; Vakarchuk, R.N.; Korzhenkov, A.M.; Larkov, A.S.; Sysolin, A.I.; Rogozhin, E.A.; Marakhanov, A.V. Active Faults in the Kerch Peninsula: New Results. Dokl. Earth Sc. 2019, 488, 1152–1156. [Google Scholar] [CrossRef]
- Kokh, S.N.; Shnyukov, Y.F.; Sokol, E.V.; Novikova, S.A.; Kozmenko, O.A.; Semenova, D.V.; Rybak, E.N. Heavy carbon travertine related to methane generation: A case study of the Big Tarkhan cold spring, Kerch Peninsula, Crimea. Sediment. Geol. 2015, 325, 26–40. [Google Scholar] [CrossRef]
- Trikhunkov, Y.I.; Bachmanov, D.M.; Gaidalenok, O.V.; Marinin, A.V.; Sokolov, S.A. Recent Mountain Building at the Junction Zone of the Northwestern Caucasus and Intermediate Kerch–Taman Region, Russia. Geotectonics 2019, 53, 517–532. [Google Scholar] [CrossRef]
- Borovskaya, R.V.; Zhugaylo, S.S.; Pugach, M.N.; Adzhiumerov, E.N.; Krivoguz, D.O. Current state of the habitat of commercial invertebrates in the hypersaline lakes of Crimea. Aquat. Bioresour. Environ. 2020, 3, 35–49. [Google Scholar] [CrossRef]
- Sobolev, A.S.; Chernyi, S.G.; Krivoguz, D.O.; Nyrkov, A.P.; Zinchenko, E.G. Convolution Neural Network for Identification of Underwater Objects. In Proceedings of the IEEE—2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), St. Petersburg, Russia, 25–28 January 2022; pp. 455–458. [Google Scholar]
- Krivoguz, D.; Mal’ko, S.; Borovskaya, R.; Semenova, A. Automatic processing of Sentinel-2 image for Kerch peninsula lake areas extraction using QGIS and Python. In Proceedings of the E3S Web of Conferences 2020, Blagoveshchensk, Russia, 23–24 September 2020; Volume 203, p. 3011. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Li, Z.; Wang, Y.; Chen, H.; Gao, H.; Zhou, Z.; Hao, J.; Li, C.; Wu, X. A new method for surface water extraction using multi-temporal Landsat 8 images based on maximum entropy model. Eur. J. Remote Sens. 2022, 55, 303–312. [Google Scholar] [CrossRef]
- Bao, L.; Lv, X.; Yao, J. Water Extraction in SAR Images Using Features Analysis and Dual-Threshold Graph Cut Model. Remote Sens. 2021, 13, 3465. [Google Scholar] [CrossRef]
- An, S.; Rui, X. A High-Precision Water Body Extraction Method Based on Improved Lightweight U-Net. Remote Sens. 2022, 14, 4127. [Google Scholar] [CrossRef]
- Perikamana, K.K.; Balakrishnan, K.; Tripathy, P. A CNN based method for Sub-pixel Urban Land Cover Classification using Landsat-5 TM and Resourcesat-1 LISS-IV Imagery. arXiv 2021, arXiv:2112.08841. [Google Scholar] [CrossRef]
- Agarap, A.F. Deep Learning using Rectified Linear Units (ReLU). arXiv 2019, arXiv:1803.08375. [Google Scholar] [CrossRef]
- Chernyi, S.; Emelianov, V.; Zinchenko, E.; Zinchenko, A.; Tsvetkova, O.; Mishin, A. Application of Artificial Intelligence Technologies for Diagnostics of Production Structures. J. Mar. Sci. Eng. 2022, 10, 259. [Google Scholar] [CrossRef]
- Wang, M.; Lu, S.; Zhu, D.; Lin, J.; Wang, Z. A High-Speed and Low-Complexity Architecture for Softmax Function in Deep Learning. In Proceedings of the 2018 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS), Chengdu, China, 26–30 October 2018; pp. 223–226. [Google Scholar]
- Gao, B.; Pavel, L. On the Properties of the Softmax Function with Application in Game Theory and Reinforcement Learning. arXiv 2018, arXiv:1704.00805. [Google Scholar] [CrossRef]
- Zhilenkov, A.; Chernyi, S.; Emelianov, V. Application of Artificial Intelligence Technologies to Assess the Quality of Structures. Energies 2021, 14, 8040. [Google Scholar] [CrossRef]
- Covington, P.; Adams, J.; Sargin, E. Deep Neural Networks for YouTube Recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; Association for Computing Machinery: New York, NY, USA, 2016; pp. 191–198. [Google Scholar]
- Kakarla, J.; Isunuri, B.V.; Doppalapudi, K.S.; Bylapudi, K.S.R. Three-class classification of brain magnetic resonance images using average-pooling convolutional neural network. Int. J. Imaging Syst. Technol. 2021, 31, 1731–1740. [Google Scholar] [CrossRef]
- Skripka, G.; Ivlieva, O.; Bespalova, L.; Filatov, A.; Saprygin, V. Monitoring of dangerous shore processes of Tsimlyansk Reservoir using GIS-technologies. ICIGIS 2020, 26, 253–263. [Google Scholar] [CrossRef]
Predicted Water Presence | Actual Water Presence | |
---|---|---|
Positive | Negative | |
Positive | True positive | False positive |
Negative | False negative | True negative |
Accuracy Metric | Value |
---|---|
Accuracy | 0.96 |
Precission | 0.76 |
Recall | 0.91 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krivoguz, D.; Bespalova, L.; Zhilenkov, A.; Chernyi, S. A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data. J. Mar. Sci. Eng. 2022, 10, 1392. https://doi.org/10.3390/jmse10101392
Krivoguz D, Bespalova L, Zhilenkov A, Chernyi S. A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data. Journal of Marine Science and Engineering. 2022; 10(10):1392. https://doi.org/10.3390/jmse10101392
Chicago/Turabian StyleKrivoguz, Denis, Liudmila Bespalova, Anton Zhilenkov, and Sergei Chernyi. 2022. "A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data" Journal of Marine Science and Engineering 10, no. 10: 1392. https://doi.org/10.3390/jmse10101392
APA StyleKrivoguz, D., Bespalova, L., Zhilenkov, A., & Chernyi, S. (2022). A Deep Neural Network Method for Water Areas Extraction Using Remote Sensing Data. Journal of Marine Science and Engineering, 10(10), 1392. https://doi.org/10.3390/jmse10101392