# Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier

^{*}

## Abstract

**:**

^{−1}, and 14.47 cm h

^{−1}, while irrigated croplands, rainfed croplands and pasture areas have much smaller infiltration rates, with ${K}_{sat}$ equal to 3.01 cm h

^{−1}, 6.22 cm h

^{−1}and 5.01 cm h

^{−1}, respectively. Our results suggest that the agriculture practices do not directly affect the vertical nature of hydrological flowpath, except in the case of intensive irrigated agriculture areas, where ${K}_{sat}$ reduction can lead to erosive processes favoring organic matter losses, and decreases in productivity and soil quality. Impacts of land use change on hydraulic and physical soil properties are a reality in the Cerrado agriculture frontier and there is an urgent need to monitor how these changes occur over time to develop effective mitigation strategies of soil and water conservation.

## 1. Introduction

## 2. Methods

#### 2.1. Study Area

^{2}(Figure 1). Marked by the arrival of migrant rural producers from the southern region in 1990, Western Bahia is today one of the largest producers of soybean in MATOPIBA and the largest producer of cotton in Brazil.

#### 2.2. Soil Sampling Design

^{3}volume. The 100 samples of 0–5 cm of depth were used to calculate the saturated hydraulic conductivity (${K}_{sat}$), soil water content at 10 kPa and 1500 kPa (${\theta}_{fc}$, ${\theta}_{wp}$), texture (coarse sand fraction (${f}_{csa}$), fine sand (${f}_{fsa}$), and silt (${f}_{s}$), total porosity (${\varphi}_{tot}$), microporosity (${\varphi}_{m}$), macroporosity (${\varphi}_{M}$), and soil particle density (${\rho}_{s}$), while all layers (0–5, 5–10, 10–15, 15–20, 30, 50 and 70 cm) were used to calculate the soil bulk density (${\rho}_{a}$).

#### 2.3. Measuring Methods

#### 2.4. Pedotransfer Model

#### 2.4.1. Adjustment of Soil Water retention Curve

^{3}cm

^{−3}, ${\theta}_{s}$ is the saturated volumetric water content cm

^{3}cm

^{−3}, and b is the empirical Campbell parameter, related to the particle size distribution. It is strongly dependent on soil texture [39] and is considered an index for soil pore-size distribution [40]. This model was chosen due to its minimal set of parameters necessary to describe the soil hydraulic properties, favoring its implementation in regional and global scales, and it has been widely used in modeling studies [41,42].

#### 2.4.2. Development of Pedotransfer Functions

^{−3}, ${\varphi}_{tot}$ is the total soil porosity in cm

^{3}cm

^{−3}, and ${f}_{csa}$ represents the coarse sand fraction in percent. The stepwise method with 5% of significance was chosen to select the most important variables for determination of y through the backward and forward mechanism. This stepwise method uses the Akaike criterion to eliminate collinear variables, excluding non-informative variables of the final model [43].

#### 2.5. Data Analysis

## 3. Results

#### 3.1. Soil Physical and Hydraulic Properties

^{−3}(Figure 3a and Table 1). Under natural land cover, FOR and CDO, the ${\rho}_{a}$ was lower and statistically different from agricultural areas with average ${\rho}_{a}$≤ 1.36 g cm

^{−3}(Figure 3a and Table 1). Along the soil profile, the soil ${\rho}_{a}$ showed an increase trend from 0–5 cm to 30 cm for all LULCCs (Figure 4). This increase of ${\rho}_{a}$ in the subsurface layers is higher in areas under managed soil, than in FOR and CDO soils with values above 1.65 g cm

^{−3}(Figure 4).

^{−3}and 2.65 g cm

^{−3}for all LULCCs, showing no statistical differences according to the Tukey Cramer test. The soil total porosity (${\varphi}_{tot}$) ranged between 26% and 60%, with average of 43% for all samples collected (Table 1 and Figure 3b). The compaction pattern found in ${\rho}_{a}$ was also observed in ${\varphi}_{tot}$, with reduction of the ${\varphi}_{M}$ in agriculture land use compared to CDO and FOR areas. In natural ecosystems, ${\varphi}_{tot}$ ranged between 26% and 57% for CDO and between 38% and 60% for FOR, while in agriculture systems the total soil porosity ranged between 30% and 53% (Figure 3e). Average CDO and FOR ${\varphi}_{tot}$ was greater than 45%, while under agriculture land use ${\varphi}_{tot}$ were smaller than 41% (Table 1).

^{−1}for CDO, and 14.47 cm h

^{−1}for FOR, while among the agriculture land uses, average infiltration rates were much smaller, ranging from 3.01 cm h

^{−1}in irrigated croplands to 6.22 cm h

^{−1}in RAG (Table 1 and Figure 3f).

^{3}cm

^{−3}to 0.27 cm

^{3}cm

^{−3}. Although LULCCs present different values of field capacity (${\theta}_{fc}$) and wilt point (${\theta}_{wp}$), the average difference between ${\theta}_{fc}$ and ${\theta}_{wp}$ for each LULCC is typically around 0.06 cm

^{3}cm

^{−3}, highlighting the low water retention capacity for these soils (Table 1).

#### 3.2. Pedotransfer Functions

## 4. Discussion

^{−3}. Cunha et al. [46] also found increased ${\rho}_{a}$ in different crop areas with different periods of cultivation, demonstrating that duration of land use also has an influence on soil structure. Naturally, the Cerrado Western Bahia soils present a cohesive sub-surface horizon [46,48,49,50], making it more susceptible to compaction by grazing, mechanization and management applied at the soil surface. This transitional or subsurface horizon was observed and characterized by a slight increase in ${\rho}_{a}$, generally within 10–30 cm [48]. Indeed, our results show the natural cohesive sub-surface in the CDO and FOR areas (Figure 4b), and the intensification of the increase of ${\rho}_{a}$ in agriculture land uses. The ${\rho}_{a}$ in RAG was twice as high in the 10–15 cm layer in relation to the 0–5 cm surface layer. In IRR areas, there was also an increase in ${\rho}_{a}$ in these layers, although with less intensity than observed in RAG areas (Figure 4).

^{−3}, significantly higher than at the surface (0–5 cm) layer (1.57 g cm

^{−3}) (Table 3), which is a vertical pattern similar to all the other LULCCs (Figure 4). While the difference in ${\rho}_{a}$ between surface and subsurface layers is significant, it is not sufficient to influence the hydraulic parameters, such as ${K}_{sat}$, ${\varphi}_{tot}$, ${\theta}_{wp}$ and ${\theta}_{paw}$ (Table 3), although ${\psi}_{e}$ and ${\theta}_{fc}$ are significantly different in the vertical.

_{sat}in soils under natural vegetation was also extremely high. In CDO, K

_{sat}varied between 224.35 cm h

^{−1}and 1.14 cm h

^{−1}, while, in FOR, it varied between 376.69 cm h

^{−1}and 4.86 cm h

^{−1}. For Cerrado areas in the MATOPIBA, other studies have found ${K}_{sat}$ in the range between 403.8 cm h

^{−1}[48] and 5.26 cm h

^{−1}[20].

^{−1}[53]. For other agriculture areas, in the Cerrado biome, the ${K}_{sat}$ values presented in the literature range between 5.41 cm h

^{−1}[20], and 15.47 cm h

^{−1}[48]. Likely, the use of rotation among maize, soybean, cotton and other croplands, in addition to the mixed management in Western Bahia, contribute to the maintenance of the high rates of ${K}_{sat}$ in agriculture land uses areas even with the presence of soil compaction.

## 5. Conclusions

^{−1}and 62 mm h

^{−1}, which are still considered high hydrological infiltration rates. Thus, our results reveal that in Western Bahia the agriculture land use areas do not affect directly the vertical nature of hydrological flowpath for visited areas, but, in the case of very intense precipitation events, the ${K}_{sat}$ reduction may lead to erosive processes favring nutrient and soil losses. In Western Bahia, however, the farmers are very interested in adopting sustainable practices that preserve the soil quality, investing in state-of-the-art technology, increasing the intervals of soil revolving and implementing crop rotation system.

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- De Oliveira, S.N.; de Carvalho Júnior, O.A.; Gomes, R.A.T.; Guimarães, R.F.; McManus, C.M. Landscape-fragmentation change due to recent agricultural expansion in the Brazilian Savanna, Western Bahia, Brazil. Reg. Environ. Chang.
**2017**, 17, 411–423. [Google Scholar] [CrossRef] - Nunes de Oliveira, S.; Abílio de Carvalho Júnior, O.; Trancoso Gomes, R.A.; Fontes Guimarães, R.; McManus, C.M. Deforestation analysis in protected areas and scenario simulation for structural corridors in the agricultural frontier of Western Bahia, Brazil. Land Use Policy
**2017**, 61, 40–52. [Google Scholar] [CrossRef] - Brannstrom, C.; Jepson, W.; Filippi, A.M.; Redo, D.; Xu, Z.; Ganesh, S. Land change in the Brazilian Savanna (Cerrado), 1986-2002: Comparative analysis and implications for land-use policy. Land Use Policy
**2008**. [Google Scholar] [CrossRef] - Batistella, M.; Valladares, G.S. Farming expansion and land degradation in Western Bahia, Brazil. Biota Neotrop.
**2009**. [Google Scholar] [CrossRef] - Spera, S.A.; Galford, G.L.; Coe, M.T.; Macedo, M.N.; Mustard, J.F. Land-use change affects water recycling in Brazil’s last agricultural frontier. Global Chang. Biol.
**2016**, 22, 3405–3413. [Google Scholar] [CrossRef] [PubMed] - Filho, A.C.; Costa, K. A Expansão da Soja no Cerrado—Caminhos Para a Ocupação Territorial, Uso do Solo e Produção Sustentável; Technical Report; AGROICONE: São Paulo, Brazil, 2016. [Google Scholar]
- Sano, E.E.; dos Santos, C.C.M.; da Silva, E.M.; Chaves, J.M. Fronteira agrícola do oeste baiano: Considerações sobre os aspectos temporais e ambientais. Geociencias
**2011**, 30, 479–489. [Google Scholar] - AIBA. Anuário Agropecuário do Oeste da Bahia Safra 2014/2015; AIBA: Barreiras, Brazil, 2015; p. 64. [Google Scholar]
- Batistella, M.; Guimarães, M.; de Miranda, E.E.; Vieira, H.R.; Valladares, G.S.; Mangabeira, J.A.d.C.; de Assis, M.C. Monitoramento da expansão agropecuária na reião Oeste da Bahia. Embr. Monit. Satél.
**2002**, 20, 41. [Google Scholar] - AIBA. Anuário Agropecuário do Oeste da Bahia Safra 2016/2017; AIBA: Barreiras, Brazil, 2017; p. 53. [Google Scholar]
- Elsenbeer, H.; Newton, B.E.; Dunne, T.; De Moraes, J.M. Soil hydraulic conductivities of latosols under pasture, forest and teak in Rondonia, Brazil. Hydrol. Process.
**1999**. [Google Scholar] [CrossRef] - Muller, M.M.L.; Guimarães, M.D.F.; Desjardins, T.; Martins, P.F.D.S. Degradação de pastagens na Região Amazônica: Propriedades físicas do solo e crescimento de raízes. Pesquisa Agropec. Bras.
**2001**, 36, 1409–1418. [Google Scholar] [CrossRef] - Scheffler, R.; Neill, C.; Krusche, A.V.; Elsenbeer, H. Soil hydraulic response to land-use change associated with the recent soybean expansion at the Amazon agricultural frontier. Agric. Ecosyst. Environ.
**2011**, 144, 281–289. [Google Scholar] [CrossRef] [Green Version] - Lal, R. Deforestation and land-use effects on soil degradation and rehabilitation in western Nigeria 1. Soil physical and hydrological properties. Land Degrad. Dev.
**1996**, 7, 19–45. [Google Scholar] [CrossRef] - De Moraes, J.F.; Volkoff, B.; Cerri, C.C.; Bernoux, M. Soil properties under Amazon forest and changes due to pasture installation in Rondônia, Brazil. Geoderma
**1996**, 70, 63–81. [Google Scholar] [CrossRef] - Zimmermann, B.; Elsenbeer, H.; De Moraes, J.M. The influence of land-use changes on soil hydraulic properties: Implications for runoff generation. For. Ecol. Manag.
**2006**, 222, 29–38. [Google Scholar] [CrossRef] - Horel, Á.; Tóth, E.; Gelybó, G.; Kása, I.; Bakacsi, Z.; Farkas, C. Effects of Land Use and Management on Soil Hydraulic Properties. Open Geosci.
**2015**, 7. [Google Scholar] [CrossRef] [Green Version] - De Almeida, V.P.; Alves, M.C.; Da Silva, E.C.; De Oliveira, S.A. Rotação de culturas e propriedades físicas e químicas em latossolo vermelho de cerrado sob preparo convencional e semeadura direta em adoção. Rev. Bras. Cienc. Solo
**2008**, 32, 1227–1237. [Google Scholar] [CrossRef] - De Faria, A.F.G.; dos Santos, A.C.; dos Santos, T.M.; Batistella Filho, F. Influência do manejo do solo nas propriedades químicas e físicas em topossequência na bacia do rio Araguaia, Estado do Tocantins. Rev. Bras. Cienc. Solo
**2010**, 34, 517–524. [Google Scholar] [CrossRef] [Green Version] - Filizola, H.F.; Fontana, A.; Donagemma, G.K.; de Souza, M.D.; Bortolon, E.S.O.; Bortolon, L. Qualidade física de solos influenciada pelo uso e manejo na região de Guaraí-TO. Bol. Pesquisa Desenvol.
**2017**, 72, 35. [Google Scholar] - Bonetti, J.d.A.; Paulino, H.B.; de Souza, E.D.; Carneiro, M.A.C.; Caetano, J.O. Soil physical and biological properties in an integrated crop-livestock system in the Brazilian Cerrado. Pesquisa Agropec. Bras.
**2018**, 53, 1239–1247. [Google Scholar] [CrossRef] - Nóbrega, R.L.B.; Guzha, A.C.; Torres, G.N.; Kovacs, K.; Lamparter, G.; Amorim, R.S.S.; Couto, E.; Gerold, G. Effects of conversion of native cerrado vegetation to pasture on soil hydro-physical properties, evapotranspiration and streamflow on the Amazonian agricultural frontier. PLoS ONE
**2017**, 12, e0179414. [Google Scholar] [CrossRef] [PubMed] - Anache, J.A.; Flanagan, D.C.; Srivastava, A.; Wendland, E.C. Land use and climate change impacts on runoff and soil erosion at the hillslope scale in the Brazilian Cerrado. Sci. Total Environ.
**2018**, 622–623, 140–151. [Google Scholar] [CrossRef] - Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology
**2015**, 8, 1154–1180. [Google Scholar] [CrossRef] - Dias, L.C.P.; Macedo, M.N.; Costa, M.H.; Coe, M.T.; Neill, C. Effects of land cover change on evapotranspiration and streamflow of small catchments in the Upper Xingu River Basin, Central Brazil. J. Hydrol. Reg. Stud.
**2015**, 4, 108–122. [Google Scholar] [CrossRef] [Green Version] - Moreira, V.S.; Candido, A.; Roberti, D.R.; Webler, G.; Diaz, M.B.; Gon, G.; Gonçalves, D.; Pousa, R.; Degrazia, A. Influence of Soil Properties in Different Management Systems: Estimating Soybean Water Changes in the Agro-IBIS Model. Earth Interact.
**2018**, 22. [Google Scholar] [CrossRef] - Przeździecki, K.; Zawadzki, J.; Cieszewski, C.; Bettinger, P. Georgia and South Carolina using the triangle method. Silva Fennica
**2017**, 51, 1–19. [Google Scholar] - Wang, J.; Chagnon, F.J.F.; Williams, E.R.; Betts, A.K.; Renno, N.O.; Machado, L.A.T.; Bisht, G.; Knox, R.; Bras, R.L. Impact of deforestation in the Amazon basin on cloud climatology. Proc. Natl. Acad. Sci. USA
**2009**, 106, 3670–3674. [Google Scholar] [CrossRef] [Green Version] - Malhado, A.C.M.; Pires, G.F.; Costa, M.H. Cerrado conservation is essential to protect the Amazon rainforest. Ambio
**2010**, 39, 580–584. [Google Scholar] [CrossRef] - Coe, M.T.; Marthews, T.R.; Costa, M.H.; Galbraith, D.R.; Greenglass, N.L.; Imbuzeiro, H.M.; Levine, N.M.; Malhi, Y.; Moorcroft, P.R.; Muza, M.N.; et al. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci.
**2013**, 368, 20120155. [Google Scholar] [CrossRef] - Pires, G.F.; Costa, M.H. Deforestation causes different subregional effects on the Amazon bioclimatic equilibrium. Geophys. Res. Lett.
**2013**, 40, 3618–3623. [Google Scholar] [CrossRef] [Green Version] - IBGE. Manual Técnico da Vegetação Brasileira (Manuais Técnicos em Geociências n. 1); Fundação Instituto Brasileiro de Geografia e Estatística (IBGE): Rio de Janeiro, RJ, Brazil, 1992.
- Dos Santos, H.G.; Jacomine, P.K.T.; dos Anjos, L.H.C.; de Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; de Almedia, J.A.; de Araujo Filho, J.C.; de Oliveria, J.B.; Cunha, T.J.F. Brazilian Soil Classification System, 5th re ed.; EMBRAPA Solos: Brasília, DF, Brazil, 2018. [Google Scholar]
- Youngs, E. Hydraulic Conductivity of Saturated Soils. In Soil Analysis: Physical Methods; Marcel Dekker Inc.: New York, NY, USA, 1991; pp. 161–207. [Google Scholar]
- Ruiz, H.A. Incremento da exatidão da análise granulométrica do solo por meio da coleta da suspensão (silte + argila). Rev. Bras. Cien. Solo
**2005**, 29, 297–300. [Google Scholar] [CrossRef] - Richards, L.A.; Fireman, M. Pressure-plate apparatus for measuring moisture sorption and transmission by soils. Soil Sci.
**1943**, 56, 395–404. [Google Scholar] [CrossRef] - ClassenL, M.E.C.; Barreto, W.D.O.; Paula, J.L.D.; Duarte, M.N. Manual de Métodos de Análise de Solo; EMBRAPA; Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil, 1997; Volume 2, pp. 7–9. [Google Scholar]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics, 2nd ed.; Springer: New York, NY, USA, 1998; Volume 6, p. 474. [Google Scholar]
- Clapp, R.B.; Hornberger, G.M. Empirical equations for some soil hydraulic properties. Water Resour. Res.
**1978**, 14, 601–604. [Google Scholar] [CrossRef] - Moldrup, P.; Olesen, T.; Komatsu, T.; Schjønning, P.; Rolston, D. Tortuosity, Diffusivity, and Permeability in the Soil Liquid and Gaseous Phases. Soil Sci. Soc. Am. J.
**2001**, 65, 613. [Google Scholar] [CrossRef] - Van Looy, K.; Bouma, J.; Herbst, M.; Koestel, J.; Minasny, B.; Mishra, U.; Montzka, C.; Nemes, A.; Pachepsky, Y.A.; Padarian, J.; et al. Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Rev. Geophys.
**2017**, 55, 1199–1256. [Google Scholar] [CrossRef] [Green Version] - Pittaki-Chrysodonta, Z.; Moldrup, P.; Knadel, M.; Iversen, B.V.; Hermansen, C.; Greve, M.H.; de Jonge, L.W. Predicting the Campbell Soil Water Retention Function: Comparing Visible–Near-Infrared Spectroscopy with Classical Pedotransfer Function. Vadose Zone J.
**2018**, 17. [Google Scholar] [CrossRef] - R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Wilk, M.B.; Shapiro, S.S. An Analysis of Variance Test for Normality. Biometrika
**1965**, 52, 591–611. [Google Scholar] - Jacomine, P.K.T.; Cavalcanti, A.C.; Ribeiro, M.R.; Montenegro, J.O.; Burgos, N.; Filho, T.F.R.d.M.; Formiga, R.A. Levantamento exploratório - Reconhecimento de solos da margem esquerda do Rio São Francisco da Bahia. Bol. Técnico EMBRAPA Rec.
**1976**, 38, 1–439. [Google Scholar] - Cunha, T.J.F.; Macedo, J.R.; Ribeiro, L.P.; Palmieri, F.; de Freitas, P.L.; Aguiar, A.d.C. Impacto do manejo convencional sobre propriedades físicas e substâncias húmicas de solos sob cerrado. Ciênc. Rural
**2001**. [Google Scholar] [CrossRef] - Fontana, A.; de Oliveira, A.P. Levantamento e caracterização de solos frágeis no Município de Luís Eduardo Magalhães, BA. In Solos Frágeis: Caracterização, Manejo e Sustentabilidade; de Castor, S.S., Hernani, L.C., Eds.; EMBRAPA Solos: Brasília, DF, Brazil, 2015; Chapter 3. [Google Scholar]
- Fontana, A.; Teixeira, W.G.; Balieiro, F.d.C.; de Moura, T.P.A.; de Menezes, A.R.; Santana, C.I. Características e atributos de Latossolos sob diferentes usos na região Oeste do Estado da Bahia. Pesquisa Agropec. Bras.
**2016**. [Google Scholar] [CrossRef] - Giarola, N.F.B.; Silva, A.P.; Tormena, C.; Souza, L.S.; Ribeiro, L.P. Similaridades entre o caráter coeso dos solos e o comportamento hardsetting: Estudo de caso. Revista Bras. Ciênc. Solo
**2001**, 25, 239–247. [Google Scholar] [CrossRef] - Giarola, N.F.B.; Silva, A.P.D. Conceitos sobre solos coesos e hardsetting. Sci. Agric.
**2002**, 59, 613–620. [Google Scholar] [CrossRef] [Green Version] - Stone, L.F.; Silveira, P.M. Efeitos do sistema de preparo e da rotação de culturas na porosidade e densidade do solo. Rev. Bras. Ciênc. Solo
**2001**, 25, 395–401. [Google Scholar] [CrossRef] [Green Version] - Santos, G.G.; Marchão, R.L.; da Silva, E.M.; da Silveira, P.M.; Becquer, T. Qualidade física do solo sob sistemas de integração lavoura-pecuária. Pesquisa Agropec. Bras.
**2011**, 46, 1339–1348. [Google Scholar] [CrossRef] [Green Version] - Da Silva, N.F.; Nobre, F.; de Carvalho, R.C.; Filho, F.R.C.; Teixeira, M.B.; Joaquim, J. Características físico-hídricas de um latossolo sob diffrentes sistemas de manejo. Rev. Bras. Agric. Irrigada
**2014**, 8, 375–390. [Google Scholar]

**Figure 1.**Study area and location of the soil samples collected considering different land use and land cover in Western Bahia.

**Figure 2.**Average soil texture fractions for 0–5 cm layer in Western Bahia according to the USDA soil classification and to the Brazilian soil classification system—SiBCS.

**Figure 3.**Soil hydraulic and physical properties considering 0–5 cm depth for different LULCCs in Western Bahia.In the box plots, the lower limit of the box indicates the 25th percentile, the black line within the box marks the median, the red point within the box marks the mean, and the upper limit of the box indicates the 75th percentile. Bars above and below the box indicate the confidence interval. The samples are distributed in Cerrado areas (CDO), n = 22; Forest formations (FOR), n = 19; Irrigated agriculture (IRR), n= 20; Pasture (PAST), n = 21; and Rainfed agriculture (RAG), n = 20. Different letters means that averages are statistically different according to Tukey Cramer test at $\alpha $ = 0.05.

**Figure 4.**Profile average of soil bulk density standard deviation for different land use and land cover classes. The total samples are 714 distributed in: Cerrado areas (CDO), n = 22; Forest formations (FOR), n = 19; Irrigated agriculture (IRR), n= 20; Pasture (PAST), n = 21; and Rainfed agriculture areas (RAG), n = 20, multiplied by 7 depths.

**Table 1.**Average soil physical parameters for 0–5 cm layer under different land use cover in the Western of Bahia used in this study.

LULCC | ${\mathit{\psi}}_{\mathit{e}}$ | b | ${\mathit{\rho}}_{\mathit{a}}$ | ${\mathit{K}}_{\mathit{sat}}$ | ${\mathit{\rho}}_{\mathit{s}}$ | ${\mathit{\varphi}}_{\mathit{tot}}$ | ${\mathit{\theta}}_{\mathit{fc}}$ | ${\mathit{\theta}}_{\mathit{wp}}$ | ${\mathit{\theta}}_{\mathit{paw}}$ |
---|---|---|---|---|---|---|---|---|---|

CDO | 0.71 | −4.18 | 1.36 | 16.29 | 2.53 | 0.4813 | 0.1274 | 0.0848 | 0.0425 |

FOR | 0.87 | −5.10 | 1.35 | 14.47 | 2.52 | 0.4619 | 0.1789 | 0.1109 | 0.0680 |

IRR | 1.46 | −4.26 | 1.57 | 3.01 | 2.61 | 0.3991 | 0.1494 | 0.0858 | 0.0636 |

PAST | 1.80 | −5.00 | 1.61 | 5.10 | 2.58 | 0.3762 | 0.1663 | 0.1052 | 0.0611 |

RAG | 1.20 | −5.30 | 1.52 | 6.22 | 2.59 | 0.4108 | 0.1719 | 0.1177 | 0.0542 |

^{−3}; ${K}_{sat}$: saturated hydraulic conductivity, cm h

^{−1}; ${\rho}_{s}$: soil particle density, g cm

^{−3}; ${\varphi}_{tot}$: soil total porosity, fraction; ${\theta}_{fc}$: volumetric moisture at 10 kPa, cm

^{3}cm

^{−3}; ${\theta}_{wp}$: volumetric moisture at 1500 kPa, cm

^{3}cm

^{−3}; ${\theta}_{paw}$: volumetric moisture available to plants, cm

^{3}cm

^{−3}

Pedotransfer Function—PTF | Validation | ||||
---|---|---|---|---|---|

y | Equation | R^{2} | F | p-Value | r |

IRR—Irrigated Agriculture | |||||

$log{\psi}_{e}$ | 3.5824 − 1.2283 ${f}_{csa}$ − 7.7754 ${\varphi}_{tot}$ | 0.59 | 8.60 | 0.005 | 0.84 |

b | −3.7421 − 1.6219 ${f}_{csa}$ | 0.17 | 2.71 | 0.123 | −0.69 |

${K}_{sat}$ | −0.8328 + 3.2159 ${\varphi}_{tot}$ | 0.06 | 1.95 | 0.186 | −0.008 |

${\theta}_{fc}$ | 0.86625 − 0.01727${f}_{csa}$ − 0.21859 ${\rho}_{a}$ − 0.85690 ${\varphi}_{tot}$ | 0.08 | 0.31 | 0.816 | 0.29 |

${\theta}_{wp}$ | 0.5624 − 0.1561 ${\rho}_{a}$ − 0.5720 ${\varphi}_{tot}$ | 0.11 | 0.67 | 0.528 | 0.20 |

CDO—Cerrado formations | |||||

$log{\psi}_{e}$ | 1.6879 − 0.5922 ${f}_{csa}$ − 3.6247 ${\varphi}_{tot}$ | 0.63 | 10.91 | 0.002 | 0.55 |

b | −6.204 + 3.530 ${f}_{csa}$ | 0.16 | 2.71 | 0.122 | 0.36 |

${K}_{sat}$ | 1.7913 − 1.2343 ${f}_{csa}$ | 0.16 | 3.58 | 0.081 | −0.15 |

${\theta}_{fc}$ | 0.46082 − 0.18014 ${\rho}_{a}$ | 0.27 | 5.09 | 0.041 | 0.80 |

${\theta}_{wp}$ | 0.24049 − 0.10555 ${\rho}_{a}$ | 0.18 | 3.08 | 0.101 | 0.68 |

PAST—Pasture | |||||

$log{\psi}_{e}$ | 4.4995 − 1.5082 ${\rho}_{a}$ − 5.1395 ${\varphi}_{tot}$ | 0.51 | 6.33 | 0.013 | 0.93 |

b | −12.938 + 6.370 ${f}_{csa}$ + 12.937 ${\varphi}_{tot}$ | 0.59 | 8.53 | 0.05 | 0.24 |

${K}_{sat}$ | 4.4227 + 1.5955 ${f}_{csa}$ − 2.7828 ${\rho}_{a}$ | 0.50 | 7.96 | 0.006 | 0.58 |

${\theta}_{fc}$ | 0.59324 − 0.14310 ${f}_{csa}$ + 0.18177 ${\rho}_{a}$ | 0.73 | 15.64 | 4.54 × 10^{−4} | 0.93 |

${\theta}_{wp}$ | 0.17058 − 0.14580 ${f}_{csa}$ | 0.56 | 16.47 | 0.001 | 0.45 |

FOR—Forest Formations | |||||

$log{\psi}_{e}$ | 2.5457 − 0.8746 ${f}_{csa}$ − 5.3052 ${\varphi}_{tot}$ | 0.53 | 6.19 | 0.016 | 0.98 |

b | −36.460 + 7.915 ${f}_{csa}$ + 11.956 ${\rho}_{a}$ + 26.145 ${\varphi}_{tot}$ | 0.59 | 4.81 | 0.025 | 0.74 |

${K}_{sat}$ | −0.6224 + 1.2973 ${f}_{csa}$ + 2.7719 ${\varphi}_{tot}$ | 0.18 | 2.48 | 0.130 | −0.76 |

${\theta}_{fc}$ | 1.42937 − 0.28125 ${f}_{csa}$ − 0.46640 ${\rho}_{a}$ − 1.00496 ${\varphi}_{tot}$ | 0.53 | 3.67 | 0.051 | 0.79 |

${\theta}_{wp}$ | 1.24529 − 0.21743 ${f}_{csa}$ − 0.43746 ${\rho}_{a}$ − 0.99032 ${\varphi}_{tot}$ | 0.68 | 7.30 | 0.007 | 0.84 |

RAG—Rainfed Agriculture | |||||

$log{\psi}_{e}$ | 11.351 − 4.110 ${f}_{csa}$ − 12.448 ${\varphi}_{tot}$ | 0.47 | 5.30 | 0.022 | 0.84 |

b | −36.157 + 10.086 ${f}_{csa}$ + 7.275 ${\rho}_{a}$ + 35.835 ${\varphi}_{tot}$ | 0.86 | 23.03 | 4.80 × 10^{−5} | 0.73 |

${K}_{sat}$ | −0.1303 + 1.6849 ${f}_{csa}$ | 0.21 | 4.82 | 0.047 | −0.28 |

${\theta}_{fc}$ | 2.84267 − 0.26601 ${f}_{csa}$ − 0.97267 ${\rho}_{a}$ −2.40257 ${\varphi}_{tot}$ | 0.80 | 14.60 | 37.5 × 10^{−5} | −0.33 |

${\theta}_{wp}$ | 1.30028 − 0.20449 ${f}_{csa}$ − 0.40620 ${\rho}_{a}$ − 1.12476 ${\varphi}_{tot}$ | 0.76 | 11.76 | 0.001 | 0.42 |

Depth | ${\mathit{\psi}}_{\mathit{e}}$ | b | ${\mathit{\rho}}_{\mathit{a}}$ | ${\mathit{K}}_{\mathit{sat}}$ | ${\mathit{\rho}}_{\mathit{s}}$ | ${\mathit{\varphi}}_{\mathit{tot}}$ | ${\mathit{\theta}}_{\mathit{fc}}$ | ${\mathit{\theta}}_{\mathit{wp}}$ | ${\mathit{\theta}}_{\mathit{paw}}$ |
---|---|---|---|---|---|---|---|---|---|

0–5 | 1.46 ^{a} | −4.26 ^{a} | 1.574 ^{a} | 3.00 ^{a} | 2.612 ^{a} | 0.397 ^{a} | 0.169 ^{a} | 0.0858 ^{a} | 0.0840 ^{a} |

15–20 | 0.03 ^{b} | −4.16 ^{a} | 1.665 ^{b} | 3.07 ^{a} | 2.662 ^{a} | 0.374 ^{a} | 0.172 ^{b} | 0.0902 ^{a} | 0.0818 ^{a} |

^{ab}Values significantly different according to the t Student test at $\alpha $ = 0.05 are followed by different letters. ${\psi}_{e}$: soil air potential entry, kPa; b: Campbell parameter; ${\rho}_{a}$: soil bulk density, g cm

^{−3}; ${K}_{sat}$: saturated hydraulic conductivity, cm h

^{−1}; ${\rho}_{s}$: soil particle density, g cm

^{−3}; ${\varphi}_{tot}$: soil total porosity; fraction; ${\theta}_{fc}$: volumetric moisture at 10 kPa, cm

^{3}cm

^{−3}; ${\theta}_{wp}$: volumetric moisture at 1500 kPa, cm

^{3}cm

^{−3}; ${\theta}_{paw}$: volumetric moisture available to plants, cm

^{3}cm

^{−3}.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dionizio, E.A.; Costa, M.H.
Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. *Agriculture* **2019**, *9*, 24.
https://doi.org/10.3390/agriculture9010024

**AMA Style**

Dionizio EA, Costa MH.
Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier. *Agriculture*. 2019; 9(1):24.
https://doi.org/10.3390/agriculture9010024

**Chicago/Turabian Style**

Dionizio, Emily Ane, and Marcos Heil Costa.
2019. "Influence of Land Use and Land Cover on Hydraulic and Physical Soil Properties at the Cerrado Agricultural Frontier" *Agriculture* 9, no. 1: 24.
https://doi.org/10.3390/agriculture9010024