A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Reference Measurements
2.2. Reference Field Data and Biomass Sampling
2.3. Remote Sensing Data Acquisition
2.4. Remote Sensing Data Processing
2.5. Feature Extraction from the Remote Sensing Datasets
2.5.1. Height Features
2.5.2. Vegetation Indices
2.6. Estimation Techniques
2.7. Precision Evaluation
3. Results
3.1. Mosaics and CHMs
3.2. Comparison of Manual and Automatic DTM Extraction Methods
3.3. Regressions Using Individual Features
3.3.1. CHM Features
3.3.2. VI Features
3.4. Biomass Estimation Using MLR and RF
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
Appendix A
DMY | FY | Href | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | 6 June | 15 June | 19 June | 28 June | 6 June | 15 June | 19 June | 28 June | 6 June | 15 June | 19 June | 28 June |
RGBVI | 0.51 | 0.49 | 0.77 | 0.76 | 0.58 | 0.43 | 0.73 | 0.79 | 0.51 | 0.63 | 0.79 | 0.59 |
GRVI | 0.80 | 0.93 | 0.90 | 0.95 | 0.79 | 0.91 | 0.88 | 0.93 | 0.70 | 0.96 | 0.92 | 0.87 |
MGRVI | 0.23 | 0.93 | 0.90 | 0.95 | 0.17 | 0.91 | 0.88 | 0.92 | 0.16 | 0.96 | 0.92 | 0.87 |
ExG | 0.77 | 0.75 | 0.87 | 0.89 | 0.82 | 0.71 | 0.84 | 0.89 | 0.72 | 0.85 | 0.89 | 0.76 |
ExR | 0.60 | 0.96 | 0.86 | 0.91 | 0.55 | 0.96 | 0.85 | 0.85 | 0.50 | 0.94 | 0.87 | 0.91 |
ExGR | 0.80 | 0.92 | 0.90 | 0.95 | 0.79 | 0.90 | 0.88 | 0.92 | 0.70 | 0.96 | 0.91 | 0.87 |
NDVI | 0.92 | 0.94 | 0.94 | 0.89 | 0.94 | 0.92 | 0.92 | 0.81 | 0.86 | 0.97 | 0.94 | 0.88 |
MSAVI | 0.95 | 0.94 | 0.96 | 0.95 | 0.96 | 0.95 | 0.97 | 0.99 | 0.85 | 0.94 | 0.93 | 0.81 |
OSAVI | 0.94 | 0.94 | 0.96 | 0.97 | 0.96 | 0.94 | 0.96 | 0.97 | 0.86 | 0.96 | 0.95 | 0.87 |
RVI | 0.95 | 0.94 | 0.96 | 0.64 | 0.98 | 0.96 | 0.97 | 0.56 | 0.86 | 0.92 | 0.93 | 0.74 |
ExG + Hp90 | 0.91 | 0.94 | 0.96 | 0.90 | 0.95 | 0.92 | 0.94 | 0.83 | 0.84 | 0.97 | 0.96 | 0.89 |
ExG + Hmax | 0.91 | 0.92 | 0.96 | 0.91 | 0.94 | 0.90 | 0.93 | 0.85 | 0.83 | 0.97 | 0.96 | 0.90 |
GrassIp90 | 0.88 | 0.91 | 0.96 | 0.90 | 0.93 | 0.88 | 0.92 | 0.85 | 0.82 | 0.96 | 0.96 | 0.89 |
GrassImax | 0.88 | 0.92 | 0.96 | 0.90 | 0.94 | 0.90 | 0.93 | 0.83 | 0.83 | 0.96 | 0.96 | 0.89 |
DMY | FY | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Feature | 0 | 50 | 75 | 100 | 125 | 150 | 0 | 50 | 75 | 100 | 125 | 150 |
RGBVI | 0.77 | 0.85 | 0.67 | 0.82 | 0.89 | 0.87 | 0.80 | 0.90 | 0.76 | 0.86 | 0.89 | 0.87 |
GRVI | 0.22 | 0.55 | 0.48 | 0.56 | 0.62 | 0.55 | 0.17 | 0.64 | 0.59 | 0.65 | 0.75 | 0.60 |
MGRVI | 0.62 | 0.72 | 0.72 | 0.74 | 0.71 | 0.78 | 0.69 | 0.87 | 0.85 | 0.85 | 0.87 | 0.86 |
ExG | 0.75 | 0.88 | 0.68 | 0.84 | 0.85 | 0.90 | 0.77 | 0.94 | 0.79 | 0.89 | 0.92 | 0.91 |
ExGR | 0.17 | 0.55 | 0.49 | 0.58 | 0.62 | 0.59 | 0.13 | 0.64 | 0.60 | 0.67 | 0.77 | 0.64 |
ExR | 0.30 | 0.25 | 0.23 | 0.29 | -0.02 | 0.48 | 0.35 | 0.20 | 0.22 | 0.26 | 0.37 | 0.45 |
NDVI | 0.75 | 0.95 | 0.94 | 0.95 | 0.88 | 0.91 | 0.73 | 0.95 | 0.92 | 0.94 | 0.96 | 0.91 |
MSAVI | 0.62 | 0.91 | 0.90 | 0.91 | 0.87 | 0.94 | 0.59 | 0.95 | 0.87 | 0.90 | 0.94 | 0.92 |
OSAVI | 0.72 | 0.94 | 0.92 | 0.93 | 0.88 | 0.94 | 0.70 | 0.96 | 0.90 | 0.92 | 0.96 | 0.93 |
RVI | 0.74 | 0.83 | 0.84 | 0.86 | 0.78 | 0.88 | 0.69 | 0.79 | 0.74 | 0.79 | 0.82 | 0.84 |
ExG + Hp90 | 0.80 | 0.92 | 0.96 | 0.96 | 0.93 | 0.88 | 0.75 | 0.98 | 0.99 | 0.98 | 0.98 | 0.91 |
ExG + Hmax | 0.85 | 0.88 | 0.95 | 0.94 | 0.91 | 0.87 | 0.83 | 0.97 | 0.99 | 0.97 | 0.98 | 0.92 |
GrassIp90 | 0.87 | 0.89 | 0.95 | 0.94 | 0.92 | 0.89 | 0.87 | 0.98 | 0.99 | 0.98 | 0.98 | 0.94 |
GrassImax | 0.83 | 0.93 | 0.96 | 0.96 | 0.93 | 0.91 | 0.81 | 0.99 | 0.99 | 0.99 | 0.99 | 0.94 |
Href | ||||||
---|---|---|---|---|---|---|
Feature | 0 | 50 | 75 | 100 | 125 | 150 |
RGBVI | 0.76 | 0.83 | 0.69 | 0.84 | 0.89 | 0.81 |
GRVI | 0.19 | 0.62 | 0.54 | 0.61 | 0.62 | 0.63 |
MGRVI | 0.59 | 0.79 | 0.80 | 0.84 | 0.68 | 0.88 |
ExG | 0.75 | 0.88 | 0.71 | 0.87 | 0.79 | 0.85 |
ExGR | 0.15 | 0.62 | 0.55 | 0.63 | 0.62 | 0.66 |
ExR | 0.32 | 0.16 | 0.19 | 0.27 | 0.06 | 0.37 |
NDVI | 0.77 | 0.93 | 0.95 | 0.92 | 0.89 | 0.86 |
MSAVI | 0.71 | 0.89 | 0.89 | 0.85 | 0.88 | 0.87 |
OSAVI | 0.79 | 0.92 | 0.92 | 0.89 | 0.92 | 0.88 |
RVI | 0.71 | 0.80 | 0.81 | 0.76 | 0.73 | 0.75 |
ExG + Hp90 | 0.76 | 0.93 | 0.99 | 0.97 | 0.88 | 0.94 |
ExG + Hmax | 0.78 | 0.93 | 0.98 | 0.96 | 0.87 | 0.93 |
GrassImax | 0.80 | 0.93 | 0.97 | 0.97 | 0.88 | 0.94 |
GrassIp90 | 0.80 | 0.93 | 0.98 | 0.97 | 0.89 | 0.95 |
Feature | DMY | FY | Href |
---|---|---|---|
RGBVI | 0.81 | 0.80 | 0.83 |
GRVI | 0.70 | 0.74 | 0.68 |
MGRVI | 0.71 | 0.75 | 0.80 |
ExG | 0.86 | 0.87 | 0.86 |
ExGR | 0.70 | 0.74 | 0.68 |
ExR | 0.27 | 0.33 | 0.24 |
NDVI | 0.82 | 0.81 | 0.81 |
MSAVI | 0.89 | 0.92 | 0.82 |
OSAVI | 0.86 | 0.88 | 0.81 |
RVI | 0.81 | 0.73 | 0.79 |
Hmean | 0.91 | 0.9 | 0.93 |
Hmedian | 0.9 | 0.89 | 0.93 |
Hmin | 0.82 | 0.78 | 0.81 |
Hmax | 0.91 | 0.92 | 0.94 |
Hstd | 0.54 | 0.55 | 0.56 |
Hp50 | 0.9 | 0.89 | 0.93 |
Hp70 | 0.91 | 0.9 | 0.94 |
Hp80 | 0.92 | 0.91 | 0.94 |
Hp90 | 0.92 | 0.92 | 0.94 |
ExG + Hp90 | 0.93 | 0.93 | 0.95 |
ExG + Hmax | 0.92 | 0.93 | 0.95 |
GrassImax | 0.94 | 0.93 | 0.96 |
GrassIp90 | 0.93 | 0.93 | 0.96 |
Href | 0.95 | 0.93 | - |
Appendix B
Case | DMY | FY |
---|---|---|
MLR | ||
RGB | B | B |
VI | RGBVI, GRVI, MGRVI, ExR, MSAVI, RVI | RGBVI, MGRVI, ExR, RVI |
3D | Hmin, Hmax, Hstd | Hmedian, Hmin, Hmax, Hstd, Hp50 |
RGB + VI | R, G, B, GRVI, ExGR, ExR, NDVI, MSAVI, RVI | R, B, MGRVI, ExG, NDVI, MSAVI, RVI |
RGB + 3D | R, G, B, Hmin, Hp80 | R, G, B, Hmedian, Hmax, Hstd, Hp50 |
VI + 3D | RGBVI, MGRVI, ExG, ExR, MSAVI, RVI, Hmedian, Hp50, Hp80, GrassImax, ExG + Hp90 | RGBVI, MGRVI, ExR, NDVI, MSAVI, OSAVI, Hmean, Hmax, Hstd, Hp90, GrassImax, GrassIp90, ExG + Hmax |
RGB + VI + 3D | R, B, RGBVI, MGRVI, ExG, ExR, NDVI, MSAVI, OSAVI, Hmedian, Hmax, Hp50, Hp90, ExG + Hmax, ExG + Hp90 | R, B, MGRVI, ExR, NDVI, OSAVI, Hmean, Hmax, Hstd, Hp90, GrassImax, GrassIp90, ExG + Hmax, ExG + Hp90 |
Case | DMY | FY |
---|---|---|
Date | ||
6 June | GrassImax, ExG + Hmax, GrassIp90, ExG + Hp90, MSAVI, OSAVI, NDVI, Hmax, B, RVI | GrassImax, ExG + Hmax, MSAVI, NDVI, GrassIp90, OSAVI, ExG + Hp90, RVI, Hp80, Hmax |
15 June | ExR, MSAVI, B, ExGR, GRVI, Hmean, Hmedian, NDVI, G, ExG + Hmax | GrassImax, OSAVI, RVI, NDVI, MSAVI, Hp70, Hp90, Hp80, MGRVI, ExG + Hp90 |
19 June | ExG + Hmax, ExG, OSAVI, ExR, NDVI, ExG + Hp90, MGRVI, GrassIp90, Hmean, Hp50 | ExG + Hmax, RVI, NDVI, ExG + Hp90, Hmean, OSAVI, Hp50, Hp90, Hmedian, GrassIp90 |
28 June | ExG + Hmax, ExR, ExG, GRVI, MGRVI, MSAVI, OSAVI, ExGR, GrassImax, NDVI | ExGR, OSAVI, MSAVI, ExR, GRVI, ExG, MGRVI, ExG + Hp90, NDVI, Hp90 |
Nitrogen | ||
0 | Hmax, Hp90, Hp80, GrassIp90, Exg + Hmax, GrassImax, ExG + Hp90, Hstd, Hp70, RVI | ExG + Hp90, Hmax, GrassIp90, GrassImax, Exg + Hmax, Hstd, Hp90, Hp80, RVI, NDVI |
50 | GrassIp90, Hmin, MSAVI, OSAVI, GrassImax, RVI, B, Hp70, Hp90, Hp80 | Hp70, ExG + Hp90, Hmax, GrassIp90, RVI, MGRVI, B, ExG + Hmax, MSAVI, GrassImax |
75 | Hmax, GrassImax, ExG + Hmax, Hp80, GrassIp90, Hmin, Hp90, Hp50, ExG + Hp90, Hmedian | OSAVI, GrassIp90, RGBVI, MSAVI, MGRVI, G, ExG + Hp90, RVI, ExG |
100 | ExG + Hmax, Hp80, Hp90, GrassImax, Hp70, Hmax, Hmean, Hp50, GrassIp90 | Hp90, GrassImax, Hp80, Hmedian, RVI, Hmean, GrassIp90, Hmin, NDVI |
125 | Hp90, Hp80, GrassImax, ExG + Hmax, Hmax, GrassIp90, OSAVI, MSAVI, Hp70 | ExG + Hp90, MSAVI, GrassImax, RVI, ExG, B, Hp80, RGBVI, Hp90 |
150 | Hp90, RVI, Hmin, OSAVI, Hp70, Hmedian, Hmean, MSAVI, Hmax | ExG + Hp90, Hmin, GrassImax, MGRVI, GrassIp90, RVI, ExG + Hmax, Hp80, MSAVI, NDVI |
References
- Virkajärvi, P. Comparison of Three Indirect Methods for Prediction of Herbage Mass on Timothy-Meadow Fescue Pastures. Acta Agric. Scand. Sect. B Soil Plant Sci. 1999, 49, 75–81. [Google Scholar] [CrossRef]
- Pakarinen, K.; Hyrkäs, M.; Juutinen, E. Development and validation of practical methods for determination of dry matter yield in grass silage swards. In Proceedings of the 12th Congress of the European Society for Agronomy, Helsinki, Finland, 20–24 August 2012; Volume 14, pp. 542–543. [Google Scholar]
- Cunliffe, A.M.; Brazier, R.E.; Anderson, K. Ultra-fine grain landscape-scale quantification of dryland vegetation structure with drone-acquired structure-from-motion photogrammetry. Remote Sens. Environ. 2016, 183, 129–143. [Google Scholar] [CrossRef] [Green Version]
- Virkajarvi, P.; Jarvenranta, K. Leaf dynamics of timothy and meadow fescue under Nordic conditions. Grass Forage Sci. 2001, 56, 294–304. [Google Scholar] [CrossRef]
- Tucker, C.J. A critical review of remote sensing and other methods for non-destructive estimation of standing crop biomass. Grass Forage Sci. 1980, 35, 177–182. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Rotz, C.A.; Fultz, S.W.; Rayburn, E.B. Estimating Forage Mass with a Commercial Capacitance Meter, Rising Plate Meter, and Pasture Ruler. Agron. J. 2001, 93, 1281–1286. [Google Scholar] [CrossRef]
- Virkajärvi, P. Growth and Utilization of Timothy: Meadow Fescue Pastures; University of Helsinki: Helsinki, Finland, 2004. [Google Scholar]
- Pittman, J.; Arnall, D.; Interrante, S.; Moffet, C.; Butler, T. Estimation of Biomass and Canopy Height in Bermudagrass, Alfalfa, and Wheat Using Ultrasonic, Laser, and Spectral Sensors. Sensors 2015, 15, 2920–2943. [Google Scholar] [CrossRef] [PubMed]
- Hoffmeister, D.; Waldhoff, G.; Curdt, C.; Tilly, N.; Bendig, J.; Bareth, G. Spatial variability detection of crop height in a single field by terrestrial laser scanning. In Precision Agriculture ’13: Papers Presented at the 9th European Conference on Precision Agriculture; Stafford, J.V., Ed.; Wageningen Academic: Lleida, Spain, 2013; pp. 267–274. [Google Scholar]
- Tilly, N.; Hoffmeister, D.; Cao, Q.; Huang, S.; Lenz-Wiedemann, V.; Miao, Y.; Bareth, G. Multitemporal crop surface models: Accurate plant height measurement and biomass estimation with terrestrial laser scanning in paddy rice. J. Appl. Remote Sens. 2014, 8, 083671. [Google Scholar] [CrossRef]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bareth, G. UAV-based Imaging for Multi-Temporal, very high Resolution Crop Surface Models to monitor Crop Growth VariabilityMonitoring des Pflanzenwachstums mit Hilfe multitemporaler und hoch auflösender Oberflächenmodelle von Getreidebeständen auf Basis von Bildern aus UAV-Befliegungen. Photogramm. Fernerkund. Geoinf. 2013, 551–562. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef]
- Li, W.; Niu, Z.; Chen, H.; Li, D.; Wu, M.; Zhao, W. Remote estimation of canopy height and aboveground biomass of maize using high-resolution stereo images from a low-cost unmanned aerial vehicle system. Ecol. Indic. 2016, 67, 637–648. [Google Scholar] [CrossRef]
- Lucieer, A.; Turner, D.; King, D.H.; Robinson, S.A. Using an Unmanned Aerial Vehicle (UAV) to capture micro-topography of Antarctic moss beds. Int. J. Appl. Earth Obs. Geoinf. 2014, 27, 53–62. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Malenovský, Z.; King, D.; Robinson, S.A. Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling. Int. J. Appl. Earth Obs. Geoinf. 2018, 68, 168–179. [Google Scholar] [CrossRef]
- Berni, J.; Zarco-Tejada, P.J.; Suarez, L.; Fereres, E. Thermal and Narrowband Multispectral Remote Sensing for Vegetation Monitoring From an Unmanned Aerial Vehicle. IEEE Trans. Geosci. Remote Sens. 2009, 47, 722–738. [Google Scholar] [CrossRef] [Green Version]
- Hunt, E.R.; Hively, W.D.; Fujikawa, S.; Linden, D.; Daughtry, C.S.; McCarty, G. Acquisition of NIR-Green-Blue Digital Photographs from Unmanned Aircraft for Crop Monitoring. Remote Sens. 2010, 2, 290–305. [Google Scholar] [CrossRef]
- Candiago, S.; Remondino, F.; De Giglio, M.; Dubbini, M.; Gattelli, M. Evaluating Multispectral Images and Vegetation Indices for Precision Farming Applications from UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar] [CrossRef]
- Geipel, J.; Link, J.; Wirwahn, J.; Claupein, W. A Programmable Aerial Multispectral Camera System for In-Season Crop Biomass and Nitrogen Content Estimation. Agriculture 2016, 6, 4. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; González-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sens. Environ. 2012, 117, 322–337. [Google Scholar] [CrossRef]
- Honkavaara, E.; Saari, H.; Kaivosoja, J.; Pölönen, I.; Hakala, T.; Litkey, P.; Mäkynen, J.; Pesonen, L. Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture. Remote Sens. 2013, 5, 5006–5039. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. Remote Sens. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Yue, J.; Yang, G.; Li, C.; Li, Z.; Wang, Y.; Feng, H.; Xu, B. Estimation of Winter Wheat Above-Ground Biomass Using Unmanned Aerial Vehicle-Based Snapshot Hyperspectral Sensor and Crop Height Improved Models. Remote Sens. 2017, 9, 708. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Reddersen, B.; Fricke, T.; Wachendorf, M. A multi-sensor approach for predicting biomass of extensively managed grassland. Comput. Electron. Agric. 2014, 109, 247–260. [Google Scholar] [CrossRef]
- Fricke, T.; Wachendorf, M. Combining ultrasonic sward height and spectral signatures to assess the biomass of legume–grass swards. Comput. Electron. Agric. 2013, 99, 236–247. [Google Scholar] [CrossRef]
- Tilly, N.; Aasen, H.; Bareth, G. Fusion of Plant Height and Vegetation Indices for the Estimation of Barley Biomass. Remote Sens. 2015, 7, 11449–11480. [Google Scholar] [CrossRef]
- Bareth, G.; Bolten, A.; Hollberg, J.; Aasen, H.; Burkart, A.; Schellberg, J. Feasibility study of using non-calibrated UAV-based RGB imagery for grassland monitoring: Case study at the Rengen Long-term Grassland Experiment (RGE), Germany. DGPF Tag. 2015, 24, 1–7. [Google Scholar]
- Hunt, E.R.; Doraiswamy, P.C.; McMurtrey, J.E.; Daughtry, C.S.T.; Perry, E.M.; Akhmedov, B. A visible band index for remote sensing leaf chlorophyll content at the canopy scale. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 103–112. [Google Scholar] [CrossRef]
- Li, F.; Miao, Y.; Hennig, S.D.; Gnyp, M.L.; Chen, X.; Jia, L.; Bareth, G. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 2010, 11, 335–357. [Google Scholar] [CrossRef]
- Possoch, M.; Bieker, S.; Hoffmeister, D.; Bolten, A.; Schellberg, J.; Bareth, G. Multi-temporal crop surface models combined with the rgb vegetation index from uav-based images for forage monitoring in grassland. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B1, 991–998. [Google Scholar] [CrossRef]
- Marabel, M.; Alvarez-Taboada, F. Spectroscopic Determination of Aboveground Biomass in Grasslands Using Spectral Transformations, Support Vector Machine and Partial Least Squares Regression. Sensors 2013, 13, 10027–10051. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.; Feng, H.; Yang, G.; Li, Z. A Comparison of Regression Techniques for Estimation of Above-Ground Winter Wheat Biomass Using Near-Surface Spectroscopy. Remote Sens. 2018, 10, 66. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forests for land cover classification. Pattern Recognit. Lett. 2006, 27, 294–300. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Pelletier, C.; Valero, S.; Inglada, J.; Dedieu, G.; Champion, N. An assessment of image features and random forest for land cover mapping over large areas using high resolution Satellite Image Time Series. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 3338–3341. [Google Scholar]
- Baccini, A.; Friedl, M.A.; Woodcock, C.E.; Warbington, R. Forest biomass estimation over regional scales using multisource data: MAPPING FOREST BIOMASS. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Koch, B. Status and future of laser scanning, synthetic aperture radar and hyperspectral remote sensing data for forest biomass assessment. ISPRS J. Photogramm. Remote Sens. 2010, 65, 581–590. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernández, J.; Corvalán, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Wang, C.; Nie, S.; Xi, X.; Luo, S.; Sun, X. Estimating the Biomass of Maize with Hyperspectral and LiDAR Data. Remote Sens. 2016, 9, 11. [Google Scholar] [CrossRef]
- Liu, W.; Liu, C.; Hu, X.; Yang, J.; Zheng, L. Application of terahertz spectroscopy imaging for discrimination of transgenic rice seeds with chemometrics. Food Chem. 2016, 210, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Karjatilan Kannattava Peltovilejly—Hanke (KARPE). Finnish Guidelines for Producing an Estimate of Biomass for a Grass Sward Parcel. 2012. Available online: https://www.karpe.fi/materiaalit/karpekirjasto/lohkokohtaisen_satotason_arviointi_ohje.pdf (accessed on 15 May 2018).
- Ardupilot. Ardupilot Open-source Autopilot. 2018. Available online: http://ardupilot.org (accessed on 4 May 2018).
- National Land Survey of Finland. Finnref GNSS RINEX Service. 2018. Available online: https://www.maanmittauslaitos.fi/en/maps-and-spatial-data/positioning-services/rinex-palvelu (accessed on 4 May 2018).
- RTKlib. RTKlib, An Open-source Program Package for GNSS Positioning, Version 2.4.2. 2018. Available online: www.rtklib.com (accessed on 4 May 2018).
- Häkli, P. Practical test on accuracy and usability of virtual reference station method in Finland. In FIG Working Week; The Olympic Spirit in Surveying: Athens, Greece, 2004. [Google Scholar]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef]
- AgiSoft. AgiSoft Photoscan Professional (Versio 1.3.4) (Software). 2017. Available online: http://www.agisoft.com/downloads/installer/ (accessed on 24 March 2018).
- Honkavaara, E.; Eskelinen, M.A.; Polonen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [Google Scholar] [CrossRef]
- Dandois, J.P.; Ellis, E.C. High spatial resolution three-dimensional mapping of vegetation spectral dynamics using computer vision. Remote Sens. Environ. 2013, 136, 259–276. [Google Scholar] [CrossRef]
- James, M.R.; Robson, S.; Smith, M.W. 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: Precision maps for ground control and directly georeferenced surveys: 3-D uncertainty-based change detection for SfM surveys. Earth Surf. Process. Landf. 2017, 42, 1769–1788. [Google Scholar] [CrossRef]
- Agisoft. Agisoft Photoscan User Manual Professional Edition, Version 1.3. 2017. Available online: http://www.agisoft.com/pdf/photoscan-pro_1_3_en.pdf/ (accessed on 26 April 2018).
- Brovelli, M.A.; Mattia, C.; Fratarcangeli, F.; Giannone, F.; Realini, E. Accuracy assessment of High Resolution Satellite Imagery by Leave-one-out method. In Proceedings of the 7th International Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sciences, Lisbon, Portugal, 5–7 July 2006; Available online: http://www.spatial-accuracy.org/system/files/Brovelli2006accuracy.pdf (accessed on 27 April 2018).
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Méndez-Barroso, L.A.; Zárate-Valdez, J.L.; Robles-Morúa, A. Estimation of hydromorphological attributes of a small forested catchment by applying the Structure from Motion (SfM) approach. Int. J. Appl. Earth Obs. Geoinf. 2018, 69, 186–197. [Google Scholar] [CrossRef]
- Woebbecke, D.M.; Meyer, G.E.; Von Bargen, K.; Mortensen, D.A. Color Indices for Weed Identification Under Various Soil, Residue, and Lighting Conditions. Trans. ASAE 1995, 38, 259–269. [Google Scholar] [CrossRef]
- Torres-Sánchez, J.; Peña, J.M.; de Castro, A.I.; López-Granados, F. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Comput. Electron. Agric. 2014, 103, 104–113. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Meyer, G.E.; Hindman, T.W.; Laksmi, K. Machine Vision Detection Parameters for Plant Species Identification; Meyer, G.E., DeShazer, J.A., Eds.; University of Nebraska: Lincoln, NE, USA, 1999; pp. 327–335. [Google Scholar]
- Neto, J. A Combined Statistical-Soft Computing Approach for Classification and Mapping Weed Species in Minimum Tillage Systems; University of Nebraska: Lincoln, NE, USA, 2004; p. 170. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; Third Earth Resources Technology Satellite, Symposium 1; NASA: Washington, DC, USA, 1974; p. 309.
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the short-grass Prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 2–6 October 1972; pp. 1357–1381. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Dandois, J.; Olano, M.; Ellis, E. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef]
- Turner, D.; Lucieer, A.; Wallace, L. Direct Georeferencing of Ultrahigh-Resolution UAV Imagery. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2738–2745. [Google Scholar] [CrossRef]
- Motohka, T.; Nasahara, K.N.; Oguma, H.; Tsuchida, S. Applicability of Green-Red Vegetation Index for Remote Sensing of Vegetation Phenology. Remote Sens. 2010, 2, 2369–2387. [Google Scholar] [CrossRef]
- Hunt, E.R.; Cavigelli, M.; Daughtry, C.S.T.; Mcmurtrey, J.E.; Walthall, C.L. Evaluation of Digital Photography from Model Aircraft for Remote Sensing of Crop Biomass and Nitrogen Status. Precis. Agric. 2005, 6, 359–378. [Google Scholar] [CrossRef]
- Chang, K.-W.; Shen, Y.; Lo, J.-C. Predicting Rice Yield Using Canopy Reflectance Measured at Booting Stage. Agron. J. 2005, 97, 872. [Google Scholar] [CrossRef]
- Moeckel, T.; Safari, H.; Reddersen, B.; Fricke, T.; Wachendorf, M. Fusion of Ultrasonic and Spectral Sensor Data for Improving the Estimation of Biomass in Grasslands with Heterogeneous Sward Structure. Remote Sens. 2017, 9, 98. [Google Scholar] [CrossRef]
- Wachendorf, M.; Fricke, T.; Möckel, T. Remote sensing as a tool to assess botanical composition, structure, quantity and quality of temperate grasslands. Grass Forage Sci. 2018, 73, 1–14. [Google Scholar] [CrossRef]
- MicaSense Parrot Sequoia Multispectral Sensor. Available online: https://www.micasense.com/parrotsequoia (accessed on 24 March 2018).
Dataset | Date | Time (GNSS) | Cloud Conditions | Sun Azimuth (°) | Solar Elevation (°) | FH (m) |
---|---|---|---|---|---|---|
J1_F1 | 6 June | 11:49 to 11:59 | Varying | 212.51 | 48.80 | 50 |
J1_F2 | 6 June | 11:59 to 12:08 | Varying | 215.83 | 48.12 | 30 |
J2_F1 | 15 June | 08:59 to 09:14 | Sunny | 150.21 | 49.96 | 30 |
J3_F1 | 19 June | 9:09 to 09:26 | Varying | 153.34 | 50.58 | 50 |
J4_F1 | 28 June | 07:13 to 07:29 | Sunny | 117.47 | 40.45 | 50 |
Dataset | Date | FH | N | Re-Projection | Point Density | RMSE (cm) | |||
---|---|---|---|---|---|---|---|---|---|
(m) | Images | Error (pix) | Points/m² | X | Y | Z | 3D | ||
J1_F1 | 6 June | 50 | 156 | 0.783 | 5920 | 1.1 | 0.6 | 4.8 | 5.0 |
J1_F2 | 6 June | 30 | 171 | 0.534 | 14,600 | 1.0 | 1.1 | 2.5 | 2.9 |
J2_F1 | 15 June | 30 | 174 | 0.589 | 17,100 | 0.5 | 0.7 | 2.6 | 2.7 |
J3_F1 | 19 June | 50 | 320 | 1.12 | 5860 | 1.0 | 2.4 | 1.0 | 2.8 |
J4_F1 | 28 June | 50 | 350 | 1.25 | 5230 | 0.6 | 0.9 | 3.7 | 3.9 |
Index | Name | Equation |
---|---|---|
Mean height | Hmean | |
Median height | Hmedian | |
Minimum height | Hmin | |
Maximum height | Hmax | |
Standard deviation height | Hstd | |
90th percentile | Hp90 |
VI | Name | Equation | Reference |
---|---|---|---|
GRVI | Green Red Vegetation Index | Tucker [60] | |
MGRVI | Modified Green Red Vegetation Index | Bendig et al. [13] | |
RGBVI | Red Green Blue Vegetation Index | Bendig et al. [25] | |
ExG | Excess Green Index | Woebbecke et al. [58] | |
ExR | Excess Red Index | Meyer et al. [61] | |
ExGR | Excess GreenRed Index | Neto [62] | |
GrassI | Grassland Index | Bareth et al. [29] | |
ExG + CHM | Excess Green combined with CHM | Introduced here | |
NDVI | Normalized Difference Vegetation Index | Rouse et al. [63] | |
RVI | Ratio Vegetation Index | Pearson & Miller [64] | |
MSAVI | Modified Soil Adjusted Vegetation Index | Qi et al. [65] | |
OSAVI | Optimization of Soil Adjusted Vegetation Index | Rondeaux et al. [66] |
Index | Name | Equation |
---|---|---|
Pearson correlation coefficient | PCC | |
Root Mean Square Error | RMSE | |
Normalized Root Mean Square Error | NRMSE |
Date | DTM | Mean (cm) | RMSE (cm) | Median (cm) | Min (cm) | Max (cm) | Std (cm) |
---|---|---|---|---|---|---|---|
6 June | DTM30m_auto | 0.39 | 1.05 | 0.37 | −1.87 | 3.06 | 0.10 |
6 June | DTM50m_auto | 0.76 | 1.80 | 0.76 | −3.37 | 4.07 | 0.16 |
6 June | DTM50m_man | −1.08 | 1.75 | −0.95 | −4.15 | 1.49 | 0.14 |
15 June | DTMauto | 6.12 | 6.80 | 5.95 | −1.15 | 14.81 | 0.30 |
15 June | DTMman | 1.12 | 1.70 | 1.21 | −2.10 | 3.47 | 0.13 |
19 June | DTMauto | 3.01 | 3.28 | 2.96 | 0.48 | 6.30 | 0.13 |
19 June | DTMman | 2.22 | 2.48 | 2.21 | −1.01 | 5.25 | 0.11 |
28 June | DTMauto | −0.30 | 1.18 | −0.30 | −2.91 | 2.98 | 0.11 |
28 June | DTMman | −0.86 | 1.38 | −1.04 | −3.37 | 1.97 | 0.11 |
DTM | DMY | FY | Href |
---|---|---|---|
DTM30m_man | 0.92 | 0.92 | 0.94 |
DTM50m_man | 0.83 | 0.85 | 0.87 |
DTMman | 0.92 | 0.92 | 0.94 |
DTMauto | 0.88 | 0.90 | 0.92 |
Date | N-Level (kg/ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
June 6 | June 15 | June 19 | June 28 | 0 | 50 | 75 | 100 | 125 | 150 | |
DMY | ||||||||||
Hmean | 0.80 | 0.98 | 0.98 | 0.79 | 0.66 | 0.93 | 0.98 | 0.95 | 0.88 | 0.71 |
Hmax | 0.87 | 0.93 | 0.97 | 0.85 | 0.85 | 0.86 | 0.97 | 0.93 | 0.89 | 0.77 |
Hp90 | 0.85 | 0.96 | 0.97 | 0.85 | 0.74 | 0.91 | 0.97 | 0.96 | 0.91 | 0.77 |
Href | 0.84 | 0.92 | 0.95 | 0.89 | 0.68 | 0.92 | 0.98 | 0.96 | 0.94 | 0.95 |
FY | ||||||||||
Hmean | 0.80 | 0.97 | 0.96 | 0.67 | 0.55 | 0.95 | 0.98 | 0.98 | 0.91 | 0.76 |
Hmax | 0.90 | 0.92 | 0.94 | 0.78 | 0.82 | 0.95 | 0.98 | 0.96 | 0.95 | 0.83 |
Hp90 | 0.87 | 0.95 | 0.95 | 0.75 | 0.64 | 0.97 | 0.98 | 0.98 | 0.96 | 0.81 |
Href | 0.87 | 0.90 | 0.93 | 0.81 | 0.69 | 0.92 | 0.98 | 0.97 | 0.98 | 0.96 |
Href | ||||||||||
Hmean | 0.72 | 0.94 | 0.96 | 0.84 | 0.62 | 0.90 | 0.99 | 0.95 | 0.84 | 0.83 |
Hmax | 0.80 | 0.95 | 0.96 | 0.88 | 0.74 | 0.92 | 0.99 | 0.96 | 0.84 | 0.86 |
Hp90 | 0.78 | 0.96 | 0.96 | 0.88 | 0.68 | 0.92 | 0.99 | 0.97 | 0.85 | 0.87 |
Date | N-Level (kg/ha) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
6 June | 15 June | 19 June | 28 June | 0 | 50 | 75 | 100 | 125 | 150 | |
DMY | ||||||||||
MSAVI | 0.95 | 0.94 | 0.96 | 0.95 | 0.62 | 0.91 | 0.90 | 0.91 | 0.87 | 0.94 |
NDVI | 0.92 | 0.94 | 0.94 | 0.89 | 0.75 | 0.95 | 0.94 | 0.95 | 0.88 | 0.91 |
ExG | 0.77 | 0.75 | 0.87 | 0.89 | 0.75 | 0.88 | 0.68 | 0.84 | 0.85 | 0.90 |
ExG + Hp90 | 0.91 | 0.94 | 0.96 | 0.90 | 0.80 | 0.92 | 0.96 | 0.96 | 0.93 | 0.88 |
GrassIp90 | 0.88 | 0.91 | 0.96 | 0.90 | 0.87 | 0.89 | 0.95 | 0.94 | 0.92 | 0.89 |
FY | ||||||||||
MSAVI | 0.96 | 0.95 | 0.97 | 0.99 | 0.59 | 0.95 | 0.87 | 0.90 | 0.94 | 0.92 |
NDVI | 0.94 | 0.92 | 0.92 | 0.81 | 0.73 | 0.95 | 0.92 | 0.94 | 0.96 | 0.91 |
ExG | 0.82 | 0.71 | 0.84 | 0.89 | 0.77 | 0.94 | 0.79 | 0.89 | 0.92 | 0.91 |
ExG + Hp90 | 0.95 | 0.92 | 0.94 | 0.83 | 0.75 | 0.98 | 0.99 | 0.98 | 0.98 | 0.91 |
GrassIp90 | 0.93 | 0.88 | 0.92 | 0.85 | 0.87 | 0.98 | 0.99 | 0.98 | 0.98 | 0.94 |
Href | ||||||||||
MSAVI | 0.85 | 0.94 | 0.93 | 0.81 | 0.71 | 0.89 | 0.89 | 0.85 | 0.88 | 0.87 |
NDVI | 0.86 | 0.97 | 0.94 | 0.88 | 0.77 | 0.93 | 0.95 | 0.92 | 0.89 | 0.86 |
ExG | 0.72 | 0.85 | 0.89 | 0.76 | 0.75 | 0.88 | 0.71 | 0.87 | 0.79 | 0.85 |
ExG + Hp90 | 0.84 | 0.97 | 0.96 | 0.89 | 0.76 | 0.93 | 0.99 | 0.97 | 0.88 | 0.94 |
GrassIp90 | 0.82 | 0.96 | 0.96 | 0.89 | 0.80 | 0.93 | 0.98 | 0.97 | 0.89 | 0.95 |
DMY | FY | |||||
---|---|---|---|---|---|---|
PCC | RMSE (t/ha) | NRMSE (%) | PCC | RMSE (t/ha) | NRMSE (%) | |
MLR | ||||||
RGB | 0.65 | 1.19 | 44.82 | 0.66 | 5.17 | 46.83 |
VI | 0.96 | 0.44 | 16.71 | 0.91 | 2.94 | 26.62 |
3D | 0.93 | 0.59 | 22.37 | 0.92 | 2.79 | 25.27 |
RGB + VI | 0.96 | 0.45 | 17.03 | 0.94 | 2.47 | 22.34 |
RGB + 3D | 0.97 | 0.40 | 15.22 | 0.95 | 2.14 | 19.41 |
VI + 3D | 0.98 | 0.34 | 12.94 | 0.98 | 1.22 | 11.05 |
RGB + VI + 3D | 0.98 | 0.34 | 12.70 | 0.98 | 1.25 | 11.35 |
RF | ||||||
RGB | 0.77 | 1.00 | 37.65 | 0.79 | 4.22 | 38.19 |
VI | 0.96 | 0.46 | 17.37 | 0.97 | 1.67 | 15.13 |
3D | 0.93 | 0.56 | 21.16 | 0.93 | 2.58 | 23.34 |
RGB + VI | 0.96 | 0.42 | 15.94 | 0.97 | 1.63 | 14.78 |
RGB + 3D | 0.96 | 0.43 | 16.34 | 0.97 | 1.80 | 16.32 |
VI + 3D | 0.97 | 0.37 | 14.06 | 0.98 | 1.51 | 13.66 |
RGB + VI + 3D | 0.97 | 0.40 | 15.12 | 0.98 | 1.49 | 13.49 |
Case | DMY | FY |
---|---|---|
Features | ||
RGB | B, R, G | B, R, G |
VI | RVI, OSAVI, NDVI, MGRVI, ExG, MSAVI, ExGR, ExR, RGBVI, GRVI | RVI, NDVI, MGRVI, OSAVI, ExG, MSAVI, RGBVI, ExGR, GRVI, ExR |
3D | Hp90, Hp80, Hp70, Hmin, Hmax, Hp50, Hmean, Hmedian, Hstd | Hp70, Hp80, Hp90, Hmax, Hp50, Hmin, Hmean, Hmedian, Hstd |
RGB + VI | NDVI, RVI, OSAVI, MGRVI, ExG, MSAVI, B, RGBVI, GRVI, ExR | RVI, OSAVI, NDVI, ExG, MSAVI, B, ExGR, RGBVI, G |
RGB + 3D | Hp90, Hp80, Hmin, Hp70, Hp50, Hmean, Hmedian, Hmax, G, R | Hp90, Hp80, Hp70, Hp50, Hmax, Hmean, Hmedian, Hmin, G, B |
VI + 3D | Hp90, Hmin, GrassImax, Hp80, GrassIp90, Hmean, Hp50, Hp70, Hmax, ExG + Hp90 | ExG + Hmax, ExG + Hp90, GrassImax, GrassIp90, Hp90, Hp80, Hp70, Hmax, Hp50, Hmeadian |
RGB + VI + 3D | Hp90, Hmin, Hp70, Hp80, Hmean, Hmax, Hp50, Hmedian, ExG + Hmax, ExG + Hp90 | ExG + Hmax, ExG + Hp90, GrassImax, Hp90, Hmin, Hmean, Hp70, GrassIp90, Hp80, Hp50 |
DMY | FY | |||||
---|---|---|---|---|---|---|
PCC | RMSE (t/ha) | NRMSE (%) | PCC | RMSE (t/ha) | NRMSE (%) | |
Date | ||||||
6 June | 0.91 | 0.15 | 13.09 | 0.95 | 0.48 | 12.13 |
15 June | 0.95 | 0.24 | 10.44 | 0.95 | 1.27 | 11.98 |
19 June | 0.97 | 0.27 | 9.13 | 0.98 | 1.30 | 10.22 |
28 June | 0.94 | 0.52 | 12.11 | 0.97 | 1.92 | 11.30 |
Nitrogen | ||||||
0 | 0.75 | 0.19 | 24.41 | 0.73 | 0.71 | 27.78 |
50 | 0.93 | 0.41 | 17.88 | 0.97 | 0.95 | 11.37 |
75 | 0.95 | 0.41 | 14.61 | 0.97 | 1.35 | 11.99 |
100 | 0.98 | 0.35 | 10.99 | 0.97 | 1.48 | 11.25 |
125 | 0.98 | 0.42 | 12.45 | 0.98 | 1.71 | 11.55 |
150 | 0.93 | 0.64 | 18.36 | 0.96 | 2.39 | 14.86 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viljanen, N.; Honkavaara, E.; Näsi, R.; Hakala, T.; Niemeläinen, O.; Kaivosoja, J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture 2018, 8, 70. https://doi.org/10.3390/agriculture8050070
Viljanen N, Honkavaara E, Näsi R, Hakala T, Niemeläinen O, Kaivosoja J. A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone. Agriculture. 2018; 8(5):70. https://doi.org/10.3390/agriculture8050070
Chicago/Turabian StyleViljanen, Niko, Eija Honkavaara, Roope Näsi, Teemu Hakala, Oiva Niemeläinen, and Jere Kaivosoja. 2018. "A Novel Machine Learning Method for Estimating Biomass of Grass Swards Using a Photogrammetric Canopy Height Model, Images and Vegetation Indices Captured by a Drone" Agriculture 8, no. 5: 70. https://doi.org/10.3390/agriculture8050070