Next Article in Journal
Market, Policies and Local Governance as Drivers of Environmental Public Benefits: The Case of the Localised Processed Tomato in Northern Italy
Previous Article in Journal
Limits to the Biofortification of Leafy Brassicas with Zinc
Open AccessArticle

Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil

1
Department of Soil Science, Faculty of Agriculture, Universitas Padjadjaran Jatinangor Campus, Jalan Raya Bandung-Sumedang Km. 21, Sumedang, West Java 45363, Indonesia
2
Maluku Corner Center of Excellence Universitas Padjadjaran Bandung Campus, Graha Soeria Atmaja Lantai 2, Jalan Dipati Ukur No. 46 Bandung, West Java 40132, Indonesia
*
Author to whom correspondence should be addressed.
Agriculture 2018, 8(3), 33; https://doi.org/10.3390/agriculture8030033
Received: 15 December 2017 / Revised: 16 February 2018 / Accepted: 17 February 2018 / Published: 27 February 2018
Illegal gold mining and the resulting gold mine tailing ponds on Buru Island in Maluku, Indonesia have increased Mercury (Hg) levels in agricultural soil and caused massive environmental damage. High levels of Hg in soil lowers plant productivity and threatens the equilibrium of the food web. One possible method of handling Hg-contaminated soils is through bioremediation, which could eliminate Hg from the rhizosphere (root zone). In this study, indigenous fungi isolated from Hg-contaminated soil exhibited Hg-resistance in vitro. Soil samples were collected from the rhizosphere of pioneer plants which grew naturally in areas contaminated with gold mine tailing. The fungi’s capacity for Hg-resistance was confirmed by their better growth in chloramphenicol-boosted potato dextrose agar media which contained various HgCl2 concentrations. Four isolates exhibited resistance of up to 25 mg kg−1 of Hg, and in an experiment with young Chinese cabbage (Brassica rapa L.) test plants, two fungi species (including Aspergillus) were demonstrated to increase the soil’s availability of Hg. The results suggest that Hg-resistant indigenous fungi can mobilize mercury in the soil and serve as potential bioremediation agents for contaminated agricultural land. View Full-Text
Keywords: mercury; phytoextraction; soil contamination mercury; phytoextraction; soil contamination
Show Figures

Figure 1

MDPI and ACS Style

Hindersah, R.; Asda, K.R.; Herdiyantoro, D.; Kamaluddin, N.N. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil. Agriculture 2018, 8, 33.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop