Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea
Abstract
1. Introduction
2. Materials and Methods
2.1. Time Series Data Collection
2.2. Data Processing
2.3. Data Analysis
3. Results
3.1. Analysis of Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid
3.2. Detecting the Effect of Climatic Factors on Dry Matter Yield Trend
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2011, 32, 585–602. [Google Scholar] [CrossRef]
- New, M.; Liverman, D.; Schroeder, H.; Anderson, K. Four degrees and beyond: The potential for a global temperature increase of four degrees and its implications. Philos. Trans. Math. Eng. Sci. 2011, 369, 6–19. [Google Scholar] [CrossRef] [PubMed]
- Korean Meteorological Administration. Korean Climate Change Assessment Report, Scientific Evidence of Climate Change; National Institute of Environmental Research: Incheon, Korea, 2014.
- Thornton, P.K.; Ericksen, P.J.; Herrero, M.; Challinor, A.J. Climate variability and vulnerability to climate change: A review. Glob. Chang. Biol. 2014, 20, 3313–3328. [Google Scholar] [CrossRef] [PubMed]
- Prażak, R. Prospects for Sorghum cultivation in Poland. Acta Agrobot. 2016, 69, 1–8. [Google Scholar] [CrossRef]
- Li, G.; Kim, S.; Han, S.H.; Son, Y. Effect of soil moisture on the response of soil respiration to open field experimental warming and precipitation manipulation. Forests 2017, 8, 56. [Google Scholar] [CrossRef]
- Jiang, Y.; Weng, Q. Estimation of Hourly and Daily Evapotranspiration and Soil Moisture Using Downsacled LST over Various Urban Surfaces. GISci. Remote Sens. 2016, 54, 95–117. [Google Scholar] [CrossRef]
- Lee, C.S.D.; Park, J.S.; Jang, J.D. Improvement of AMSR2 soil moisture products over South Korea. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3839–3849. [Google Scholar] [CrossRef]
- Lim, S.S.; Lee, S.M.; Lee, S.H.; Choi, W.J. Dry matter yield and nutrients uptake of Sorghum × Sudangrass Hybrid Grown with Different Rates of Livestock Manure Compost. Korean J. Soil Sci. Fertil. 2010, 43, 458–465. [Google Scholar]
- Seo, S.; Kim, J.; Chung, E.; Kim, W.; Kang, W. Effect of methods and rates of seeding on the forage production and nutritive value of sorghum-sudangrass hybrid grown under application of animal manure. J. Korean Soc. Grassl. Sci. 2000, 20, 49–54, (In Korean with English abstract). [Google Scholar]
- Kim, J.D.; Ko, K.H.; Kwon, C.H. Effect of heading and BMR types on the agronomic characteristics, forage yield and quality of sorghum-sudangrass hybrid. J. Korean Soc. Grassl. Forage Sci. 2012, 32, 293–300, (In Korean with English abstract). [Google Scholar] [CrossRef]
- Dann, H.M.; Grant, R.J.; Cotanch, K.W.; Thomas, E.D.; Ballard, C.S.; Rice, R. Comparison of Brown Midrib Sorghum-Sudangrass with Corn Silage on Locational Performance and Nutrient Digestibility in Holstein Dairy Cows. J. Dairy Sci. 2008, 91, 663–672. [Google Scholar] [CrossRef] [PubMed]
- Sowiński, J.; Ewelina, S. Growth rate and yields of a sorghum-sudangrass hybrid variety grown on a light and a medium-heavy soil as affected by cutting management and seeding rate. Pol. J. Agron. 2011, 4, 23–28. [Google Scholar]
- Chemere, B.; Kim, M.; Peng, J.; Kim, B.; Sung, K. Detecting dry matter yield trend of whole crop maize considering the climatic factors in the Republic of Korea. Grassl. Sci. 2018, in press. [Google Scholar] [CrossRef]
- Peng, J.L. Suitability Mapping and Yield Prediction Modeling Using Climatic And Geographic Information for Improving Forage Crops Production in South Korea. Ph.D. Thesis, Kangwon National University, Chuncheon, Korea, February 2017; pp. 1–181. [Google Scholar]
- Lobell, D.B.; Burke, M.B. On the use of statistical models to predict crop yield responses to climate change. Agric. For. Meteorol. 2010, 150, 1443–1452. [Google Scholar] [CrossRef]
- Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control, revised ed.; Holden-Day: San Fransisco, CA, USA, 1976; pp. 1–575. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics Base 23; IBM Corporation: New York, NY, USA, 2016; pp. 1–430. [Google Scholar]
- DeLurgio, S.A. Forecasting Principles and Applications; Irwin/McGraw-Hill: New York, NY, USA, 1998. [Google Scholar]
- MacKinnon, J.G. Numerical distribution functions for unit root and cointegration tests. J. App. Econ. 1996, 11, 601–618. [Google Scholar] [CrossRef]
- Chan, W.S. A comparison of some of pattern identification methods for order determination of mixed ARMA models. Statis. Prob. Lett. 1999, 42, 69–79. [Google Scholar] [CrossRef]
- Yürekli, K.; Simsek, H.; Cemek, B.; Karaman, S. Simulating climatic variables by using stochastic approach. Build. Environ. 2007, 42, 3493–3499. [Google Scholar] [CrossRef]
- Hoy, M.; Livernois, J.; Mckenna, C.; Rees, R.; Stengos, T. Mathematics for Economics, 2nd ed.; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Fribourg, H.A. Summer annual grasses. In An Introduction to Grassland Agriculture, 5th ed.; Barnes, R.F., Nelson, C.J., Collins, M., Moore, K.J., Eds.; Iowa State Univ. Press: Ames, IA, USA, 1995; pp. 463–472. [Google Scholar]
- Collins, M.; Hannaway, D.B. Forage-related animal disorders. In Forages: An Introduction to Grassland Agriculture, 6th ed.; Barnes, R.F., Nelson, C.J., Collins, M., Moore, K.J., Eds.; Blackwell Publishing: Ames, IA, USA, 2003; pp. 415–442. [Google Scholar]
- McDonald, P. The Biochemistry of Silage; Wiley-Blackwell: Chichester, UK; New York, NY, USA, 1981. [Google Scholar]
- Moisio, T.; Heikonen, M. Lactic acid fermentation in silage preserved with formic acid. Anim. Feed Sci. Technol. 1994, 47, 107–124. [Google Scholar] [CrossRef]
- McDonald, P.; Henderson, A.R.; Heron, S.J.E. Biochemistry of Silage, 2nd ed.; Chalcombe Publications: Marlow, UK, 1991; pp. 1–340. [Google Scholar]
- Kikindonov, T.; Slanev, K.; Enchev, S.; Kikindonov, G. Results of breeding sudangrass, sorghum-sudangrass hybrids and sweet sorghum for green mass productivity. Agric. Sci. 2015, 7, 17–23. [Google Scholar]
- Bae, D.H.; Jung, I.W.; Chang, H.J. Long-term trend of precipitation and runoff in Korean River Basins. Hydrol. Process. Int. J. 2008, 22, 2644–2656. [Google Scholar] [CrossRef]
- Kang, K.A.; Byun, H.R. On the developing processes of the climatological drought over the East Asia in 1982. J. Korean Meteorol. Soc. 2004, 40, 467–483. [Google Scholar]
- Min, S.K.; Kwon, W.T.; Park, E.H.; Choi, Y.G. Spatial and temporal comparisons of droughts over Korea with East Asia. Int. J. Clim. 2003, 23, 223–233. [Google Scholar] [CrossRef]
- Nam, W.H.; Hayes, M.J.; Svoboda, M.D.; Tadesse, T.; Wilhite, D.A. Drought hazard assessment in the context of climate change for South Korea. Agric. Water Manag. 2015, 160, 106–117. [Google Scholar] [CrossRef]
- Kwak, J.; Kim, S.; Jung, J.; Singh, V.P.; Lee, D.R.; Kim, H.S. Assessment of Meteorological Drought in Korea Under Climate Change. Adv. Meteorol. 2016, 1–13. [Google Scholar] [CrossRef]
- Boo, K.O.; Kwon, W.T.; Baek, H.J. Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Im, E.S.; Ahn, J.B.; Kwon, W.T.; Giorgi, F. Multi-decadal scenario simulation over Korea using a one-way double-nested regional climate model system. Part II: Future climate projection (2021–2050). Clim. Dyn. 2007, 30, 239–254. [Google Scholar] [CrossRef]
- Jang, D.W.; Park, H.S.; Choi, J.T. Development of future precipitation forecasting program using probability forecast and climate change scenario. Proced. Eng. 2016, 154, 645–649. [Google Scholar] [CrossRef]
- Kim, J.E.; Hong, S.Y. Impact of Soil Moisture Anomalies on Summer Rainfall over East Asia: A Reginal Climate Model Study. J. Clim. 2007, 20, 5732–5743. [Google Scholar] [CrossRef]
- Venuto, B.; Rryan, K. Forage and biomass feedstock production from hybrid forage sorghum and sorghum-sudangrass hybrids. Grassl. Sci. 2008, 54, 189–196. [Google Scholar] [CrossRef]
Statistics | DMY (kg ha−1) | SHAMT (°C) | SHMT (°C) | SHPA (mm) | SHPD (days) | SHDS (°C) |
---|---|---|---|---|---|---|
Mean | 17,141.7 | 3037.3 | 22.5 | 956.9 | 52.0 | 760.7 |
Median | 16,106.5 | 2999.7 | 22.5 | 908.5 | 50.0 | 745.2 |
SD | 5422.0 | 321.7 | 1.1 | 348.9 | 10.0 | 123.1 |
CS | 0.82 | −0.71 | −0.01 | 0.40 | −0.24 | 0.01 |
CK | 0.23 | 1.31 | 0.75 | −0.85 | −0.01 | −0.43 |
Min | 8175.0 | 1892.3 | 19.3 | 319.0 | 19.3 | 492.9 |
Max | 33,817.0 | 3766.7 | 25.4 | 1609.5 | 76.0 | 1020.0 |
CV | 0.32 | 0.11 | 0.05 | 0.37 | 0.19 | 0.16 |
Models | R2 | RMSE | MAPE | MAE | MaxAPE | MaxAE |
---|---|---|---|---|---|---|
ARIMA (2, 1, 0) | 0.616 | 3368.989 | 15.602 | 2549.499 | 97.511 | 11354.301 |
ARIMA (1, 0, 0) | 0.587 | 3487.953 | 17.156 | 2737.991 | 97.521 | 11006.030 |
ARIMA (1, 1, 1) | 0.623 | 3337.410 | 16.047 | 2611.557 | 113.398 | 10579.526 |
ARIMA (1, 1, 2) | 0.621 | 3347.831 | 15.729 | 2566.802 | 110.161 | 11085.822 |
ARIMA (2, 1, 1) | 0.633 | 3296.403 | 15.678 | 2544.823 | 100.008 | 10575.837 |
ARIMA (3, 1, 0) | 0.619 | 3357.194 | 15.735 | 2564.254 | 111.868 | 10967.444 |
ARIMA (3, 1, 1) | 0.633 | 3299.176 | 15.680 | 2544.528 | 100.283 | 10464.098 |
Model | Coefficient | SE | t-Statistics | p-Value |
---|---|---|---|---|
AR (1) | 0.394 | 0.074 | 5.319 | 0.001 |
AR (2) | 0.219 | 0.062 | 3.536 | 0.001 |
MA (1) | 0.891 | 0.052 | 17. 186 | 0.001 |
Variables | DMY | SHAMT | SHMT | SHPA | SHPD | SHDS |
---|---|---|---|---|---|---|
DMY | 1 | 0.223 ** | 0.039 | −0.181 ** | 0.029 | 0.216 ** |
SHAMT | 1 | −0.164 ** | 0.232 ** | 0.461 ** | 0.608 ** | |
SHMT | 1 | −0.101 * | −0.121 * | −0.416 ** | ||
SHPA | 1 | 0.447 ** | −0.159 ** | |||
SHPD | 1 | −0.121 * | ||||
SHDS | 1 |
Variables | Parameters | Coefficients | SE | VIF | p-Value |
---|---|---|---|---|---|
DMY | Constant | 2250.438 | 531.681 | 0.001 | |
AR (1) | 0.479 | 0.050 | 0.001 | ||
AR (2) | 0.272 | 0.049 | 0.001 | ||
MA (1) | 1.00 | 0.452 | 0.027 | ||
SHAMT | −0.514 | 0.223 | 1.924 | 0.022 | |
SHPA | −0.449 | 0.130 | 1.244 | 0.001 | |
SHDS | −0.307 | 0.405 | 1.868 | 0.449 | |
DMY | Constant | 2677.418 | 574.026 | 0.001 | |
AR (1) | 0.496 | 0.049 | 0.001 | ||
AR (2) | 0.274 | 0.049 | 0.001 | ||
MA (1) | 0.999 | 0.121 | 0.001 | ||
SHAMT | −0.701 | 0.186 | 1.057 | 0.001 | |
SHPT | −0.544 | 0.318 | 1.057 | 0.001 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemere, B.; Kim, J.; Lee, B.; Kim, M.; Kim, B.; Sung, K. Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea. Agriculture 2018, 8, 197. https://doi.org/10.3390/agriculture8120197
Chemere B, Kim J, Lee B, Kim M, Kim B, Sung K. Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea. Agriculture. 2018; 8(12):197. https://doi.org/10.3390/agriculture8120197
Chicago/Turabian StyleChemere, Befekadu, Jiyung Kim, Baehun Lee, Moonju Kim, Byongwan Kim, and Kyungil Sung. 2018. "Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea" Agriculture 8, no. 12: 197. https://doi.org/10.3390/agriculture8120197
APA StyleChemere, B., Kim, J., Lee, B., Kim, M., Kim, B., & Sung, K. (2018). Detecting Long-Term Dry Matter Yield Trend of Sorghum-Sudangrass Hybrid and Climatic Factors Using Time Series Analysis in the Republic of Korea. Agriculture, 8(12), 197. https://doi.org/10.3390/agriculture8120197