Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review
Abstract
:1. Introduction
2. Pathogens and Antibiotic-Resistant Bacteria in Chicken Litter or Chicken Litter-Based Organic Fertilizers
Pathogen | Year/Location | Sample source | Sample type | Sample size | Prevalence | References |
---|---|---|---|---|---|---|
Actinobacillus | N.A. a/Canada | Broiler, hen, and turkey | Litter samples | 44 | 2% | [16] |
Campylobacter | 1995/US | 19 broiler flocks | Fecal samples | 948 | 86%–100% | [19] |
1996–1997/US | Poultry | Litter samples intended for dairy cattle feed from 13 dairy ranches | 104 | - b | [28] | |
2001/US | 9 broiler flocks | Fecal samples | 450 | 80%–100% | [19] | |
N.A./Australia | 28 sheds of 28 broiler farms | Litter samples | 60 sites/shed and three sets of 20 were combined | 36% | [6] | |
Clostridium | N.A./Canada | Poultry | Litter samples | 44 | 57% | [16] |
N.A./Nigeria | Layer | Litter samples | N.A. | +c | [20] | |
E. coli | 1994–1995/US | Poultry | Litter samples | 86 (64 composted, 18 not composted, 4 samples not analyzed) | - for E. coli O157:H7 | [29] |
1996–1997/US | Poultry | Litter samples intended for dairy cattle feed from 13 dairy ranches | 104 | - for E. coli O157, 8%–15% for non-O157 E. coli | [28] | |
N.A./Nigeria | Layer | Litter samples | N.A. | + | [20] | |
N.A./Australia | 28 sheds of 28 broiler farms | Litter samples | 60 sites/shed and three sets of 20 were combined | 100% | [6] | |
2004–2007/US | Poultry | Samples of compost heaps with chicken litter or chicken carcasses | N.A. | 26% surface and 6.1% internal samples (1st composting phase); absent in all samples (2nd composting phase) | [30] | |
Listeria | N.A./Australia | 28 sheds of 28 broiler farms | Litter samples | 60 sites/shed and three sets of 20 were combined | - | [6] |
2004–2007/US | Poultry | Samples of compost heaps with chicken litter or chicken carcasses | N.A. | - | [30] | |
Mycobacterium | N.A./Canada | Poultry | Litter samples | 44 | 5% | [16] |
N.A./Nigeria | Layers | Litter samples | N.A. | + | [20] | |
Salmonella | N.A./Canada | Poultry | Litter samples | 44 | 7% | [16] |
N.A./US | Poultry from 5 premises | Litter samples | 198 | 73%–89% | [31] | |
1977/Canada | 3 broiler flocks | Litter samples (top 1.27 to 2.54 cm layer) | N.A. | 0%–2% | [32] | |
1978–1979/Canada | 60 broiler houses | Litter samples | 15 from each house | 30% | [33] | |
1980–1981/Canada | Broiler | Litter and feces samples | 36 and 2 for litter and feces samples, respectively | 19%–89% and 0%–100% for feces and litter, respectively | [21] | |
1989–1990/Canada | Broiler | Litter samples | 12 | 76% | [22] | |
1994–1995/US | Poultry | Litter samples (64 composted, 18 not composted, and no determination for 4 samples) | 86 | - | [29] | |
1996–1997/US | Poultry | Litter samples intended for dairy cattle feed from 13 dairy ranches | 104 | - | [28] | |
Salmonella | 2002/Nigeria | 5 poultry farms | Fecal samples | 120 | 38% | [34] |
2006–2007/Hungary | Broiler | Fecal samples | 60 | 35%–43% | [35] | |
N.A./US | Hen | Fecal samples | 78 | 17%–56% | [23] | |
N.A./Nigeria | Layer | Litter samples | N.A. | + | [20] | |
N.A./US | 7 broiler farms | Fecal samples | 420 | 6%–39% | [36] | |
N.A./Australia | 28 sheds of 28 broiler farms | Litter samples | 60 sites/shed and three sets of 20 were combined | 71% | [6] | |
2004–2007/US | Poultry | Samples of compost heaps with chicken litter or chicken carcasses | N.A. | 26% surface and 6.1% internal samples (1st composting phase); absent in all samples (2nd composting phase) | [30] | |
Staphylococcus | N.A./Canada | Poultry | Litter samples | 44 | 100% | [16] |
1994–1995/US | Poultry | Litter samples (64 composted, 18 not composted, and no determination for 4 samples) | 86 | - | [29] | |
N.A./Nigeria | Layers | Litter samples | N.A. | + | [20] | |
Streptococcus | N.A./Canada | Poultry | Litter samples | 44 | 100% | [16] |
Pathogen | Year/Location | Sample source | Sample type | Sample size | Comments b | Reference |
---|---|---|---|---|---|---|
Coliforms | N.A. a/US | 4 turkey farms (8 houses), 10 adult broiler breeder chicken farms (43 houses), and 30 broiler chicken farms (110 houses) | Litter samples | N.A. | In turkey litter, the percentage of NAL-resistant coliforms ranged from 0.6% to 61.9%. Two farms had houses containing coliforms resistant to ENR and SAR. There was also multiple resistance to AMP, TIO, CAM, KAN on all 4 turkey farms. There were no NAL-resistant isolates from any of the 10 adult broiler breeder chicken farms. All of the 30 broiler chicken farms with NAL-resistant isolates were also resistant to SAR. | [42] |
E. coli | 2004–2007/US | Poultry | Chicken litter, carcasses, pine shavings, pine fines, and fresh wood chips | 30 compost samples of chicken litter and carcasses, 42 compost samples of chicken litter and pine shavings, 18 compost samples of chicken litter with pine fines, and 24 compost samples of chicken litter, carcasses, and fresh wood chips | Isolates from California chicken litter/horse track had higher levels (63%) of resistance to AMP as compared with poultry compost in South Carolina (0%). E. coli isolates from poultry composts on South Carolina farms were found to be more resistant to TET (50%) as compared with isolates in compost from California, which had no resistance to this antibiotic. | [43] |
N.A./Canada | Broiler | Litter samples | 9 | All isolates were multiresistant to at least 7 antibiotics. Resistance to AMO, TIO, TET, and SA was the most prevalent. | [44] | |
Enterococcus | 2006/US | 3 broiler farms | Litter samples | N.A. | Resistance levels to CLI and ERY were 68%, 18%, respectively. No isolates were found to be resistant to VAN. | [45] |
N.A./US | 60 chicken houses | Litter samples | N.A. | ERY-resistant bacteria were only isolated from litter samples collected from farms that had used the drug. | [41] | |
Providencia | N.A./US | Turkey | Fecal samples | 11 | Isolates were found to be resistant to TET, MAC, and SA groups. | [46] |
Staphylococci | 2006/US | 3 broiler farms | Litter samples | N.A. | Resistance levels to CLI and ERY were 0% and 57%, respectively. | [45] |
N.A./US | Poultry | Litter samples | 60 | ERY-resistant bacteria were only isolated from litter samples collected from farms that had used the drug. | [41] | |
Streptococcus | N.A./US | Poultry | Litter samples | 60 | ERY-resistant bacteria were only isolated from litter samples collected from farms that had used the drug. | [41] |
3. Food Safety, and Human and Animal Health Issues Associated with Chicken Litter or Chicken Litter-Based Organic Fertilizers
4. Control of Pathogens in Chicken Litter or Chicken Litter-Based Organic Fertilizers
4.1. Composting
4.1.1. Composting Process
4.1.2. Pathogen Persistence and Regrowth after Composting
4.1.3. Composting Stress and Stress-Induced Cross-Protection
- (1)
- Desiccation stress. During composting, moisture level in the compost mixture, especially at the surface of compost pile, is reduced rapidly due to evaporation and the self-heating during the thermophilic phase [9]. Water loss through the desiccation process is an important factor affecting the survival and persistence of bacterial pathogens in low-water-activity environmental habitats, such as soil, sand, and compost surface [86].
- (2)
- Heat shock stress. Heat shock occurs when microorganisms are exposed to temperatures above their normal growth range [87]. Temperature during composting process increases gradually, from ambient temperature to the mesophilic range and then to the thermophilic phase, which may consequently cause heat shock or stimulate a concomitant genetic and physiological heat shock response in some population of pathogenic bacteria [86]. Especially during the extended mesophilic phase of composting, some bacterial cells may become acclimatized to sublethal high temperatures before lethal temperatures are reached, allowing them to survive and, in some cases, multiply under stressful conditions. In support of this notion, results of Singh et al. [11] revealed that heat-shocked E. coli O157:H7, Salmonella, and L. monocytogenes at 47.5 °C survived longer in dairy compost than non-heat-shocked cells at composting temperatures of 50, 55 and 60 °C.
- (3)
- Acid stress. Acid stress can occur in low pH conditions when H+ ions cross the bacterial cell membrane and create an acidic intracellular environment. Acid resistance is especially crucial for foodborne pathogens that must survive the hostile acidic condition in the stomach before entering and colonizing the small intestines or colon [88]. Pathogenic cells present in compost of animal origin may become acid-adapted as they are exposed to acidic condition when passing through the gastric tract.
4.2. Other Treatments
4.2.1. Physical Treatment Techniques
Source | Soil amendment | Temperature-time requirement | Acceptance criterion | |
---|---|---|---|---|
Moisture level | Microbial level | |||
USEPA [74] | Biosolids | Either the temperature of the biosolids >80 °C or the wet bulb temperature of the gas in contact with the biosolids as the biosolids leave the dryer >80 °C | <10% | For Class A biosolids, fecal coliforms: <1000 MPN/g dry weight or Salmonella: <3 MPN/4 g dry weight |
National Organic Program [102] | Animal manure | >65 °C for >60 min | <12% | Fecal coliforms, Salmonella, and E. coli O157:H7: negative |
European Union [103] | Animal manure | >70 °C for >60 min | N.A. | E. coli or Enterococaceae: <1000 MPN/g Salmonella: absence in 25 g of sample |
California Leafy Green Products Handler Marketing Agreement [104] | Animal manure | Either the process has been validated by a recognized authority or is subject to 150 °C for 60 min | <30% | Fecal coliforms, Salmonella, and E. coli O157:H7: negative or less than detection limit |
4.2.2. Chemical Treatment Techniques
4.2.3. Biological Control Techniques
5. Conclusions
Acknowledgements
Conflicts of Interest
References
- Wilkinson, K.G.; Tee, E.; Tomkins, R.B.; Hepworth, G.; Premier, R. Effect of heating and aging of poultry litter on the persistence of enteric bacteria. Poult. Sci. 2011, 90, 10–18. [Google Scholar] [CrossRef]
- Kim, J.; Diao, J.; Shepherd, M.W., Jr.; Singh, R.; Heringa, S.D.; Gong, C.; Jiang, X. Validating thermal inactivation of Salmonella spp. in fresh and aged chicken litter. Appl. Environ. Microbiol. 2012, 78, 1302–1307. [Google Scholar] [CrossRef]
- Moore, P.A., Jr.; Daniel, T.C.; Sharpley, A.N.; Wood, C.W. Poultry manure management: Environmentally sound options. J. Soil Water Conserv. 1995, 50, 321–327. [Google Scholar]
- Enticknap, J.J.; Nonogaki, H.; Place, A.R.; Hill, R.T. Microbial diversity associated with odor modification for production of fertilizers from chicken litter. Appl. Environ. Microbiol. 2006, 72, 4105–4114. [Google Scholar] [CrossRef]
- Wilkinson, S.R. Plant nutrient and economic value of animal manures. J. Anim. Sci. 1979, 48, 121–133. [Google Scholar]
- Chinivasagam, H.N.; Redding, M.; Runge, G.; Blackall, P.J. Presence and incidence of foodborne pathogens in Australian chicken litter. Br. Poult. Sci. 2010, 51, 311–318. [Google Scholar]
- Lemunier, M.; Francou, C.; Rousseaux, S.; Houot, S.; Dantigny, P.; Piveteau, P.; Guzzo, J. Long-Term survival of pathogenic and sanitation indicator bacteria in experimental biowaste composts. Appl. Environ. Microbiol. 2005, 71, 5779–5786. [Google Scholar]
- You, Y.; Rankin, S.C.; Aceto, H.W.; Benson, C.E.; Toth, J.D.; Dou, Z. Survival of Salmonella enterica serovar Newport in manure and manure-amended soils. Appl. Environ. Microbiol. 2006, 72, 5777–5783. [Google Scholar]
- Shepherd, M.W.; Liang, P.; Jiang, X.; Doyle, M.P.; Erickson, M.C. Fate of Escherichia coli O157:H7 during on-farm dairy manure-based composting. J. Food Protect. 2007, 70, 2708–2716. [Google Scholar]
- Kim, J.; Luo, F.; Jiang, X. Factors impacting the regrowth of Escherichia coli O157:H7 in dairy manure compost. J. Food Protect. 2009, 72, 1576–1584. [Google Scholar]
- Singh, R.; Jiang, X.; Luo, F. Thermal inactivation of heat-shocked Escherichia coli O157:H7, Salmonella, and Listeria monocytogenes in dairy compost. J. Food Protect. 2010, 73, 1633–1640. [Google Scholar]
- Singh, R.; Jiang, X. Thermal inactivation of acid-adapted Escherichia coli O157:H7 in dairy compost. Foodborne Pathog. Dis. 2012, 9, 741–748. [Google Scholar] [CrossRef]
- Doyle, M.P.; Erickson, M.C. Summer meeting 2007—The problems with fresh produce: An overview. J. Appl. Microbiol. 2008, 105, 317–330. [Google Scholar] [CrossRef]
- Kelleher, B.P.; Leahy, J.J.; Henihan, A.M.; O’Dwyer, T.F.; Sutton, D.; Leahy, M.J. Advances in poultry litter disposal technology–A review. Bioresource Technol. 2002, 83, 27–36. [Google Scholar] [CrossRef]
- Bolan, N.S.; Szogi, A.A.; Chuasavathi, T.; Seshadri, B.; Rothrock, M.J., Jr.; Panneerselvam, P. Uses and management of poultry litter. World’s Poult. Sci. J. 2010, 66, 673–698. [Google Scholar] [CrossRef]
- Alexander, D.C.; Carrière, J.A.; McKay, K.A. Bacteriological studies of poultry litter fed to livestock. Can. Vet. J. 1968, 9, 127–131. [Google Scholar]
- Lovett, J.; Messer, J.W.; Read, R.B. The microflora of Southern Ohio poultry litter. Poult. Sci. 1971, 50, 746–751. [Google Scholar] [CrossRef]
- Lu, J.; Sanchez, S.; Hofacre, C.; Maurer, J.J.; Harmon, B.G.; Lee, M.G. Evaluation of broiler litter with reference to the microbial composition as assessed by using 16S rRNA and functional gene markers. Appl. Environ. Microbiol. 2003, 69, 901–908. [Google Scholar] [CrossRef]
- Stern, N.J.; Robach, M.C. Enumeration of Campylobacter spp. in broiler feces and in corresponding processes carcasses. J. Food Protect. 2003, 66, 1557–1563. [Google Scholar]
- Ngodigha, E.M.; Owen, O.J. Evaluation of the bacteriological characteristics of poultry litter as feedstuff for cattle. Sci. Res. Essays 2009, 4, 188–190. [Google Scholar]
- Higgins, R.; Malo, R.; René-Roberge, E.; Gauthier, R. Studies on the dissemination of Salmonella in nine broiler-chicken flocks. Avian Dis. 1982, 26, 26–33. [Google Scholar] [CrossRef]
- Renwick, S.A.; Irwin, R.J.; Clarke, R.C.; McNab, W.B.; Poppe, C.; McEwen, S.A. Epidemiological associations between characteristics of registered broiler chicken flocks in Canada and the Salmonella culture status of floor litter and drinking water. Can. Vet. J. 1992, 33, 449–458. [Google Scholar]
- Li, X.; Payne, J.B.; Santos, F.B.; Levine, J.F.; Anderson, K.E.; Sheldon, B.W. Salmonella populations and prevalence in layer feces from commercial high-rise houses and characterization of the Salmonella isolates by serotyping, antibiotic resistance analysis, and pulsed field gel electrophoresis. Poult. Sci. 2007, 86, 591–597. [Google Scholar]
- Centers for Disease Control and Prevention (CDC). Surveillance for foodborne disease outbreaks—United States, 1998–2008. In Morbid. Mortal. Weekly Rep. (MMWR); 2013; 62, pp. 1–34. [Google Scholar]
- Forsythe, R.H.; Ross, W.J.; Ayres, J.C. Salmonella recovery following gastro-intestinal and ovarian inoculation in the domestic fowl. Poult. Sci. 1967, 46, 849–855. [Google Scholar] [CrossRef]
- Foley, S.L.; Nayak, R.; Hanning, I.B.; Johnson, T.J.; Han, J.; Ricke, S.C. Population dynamics of Salmonella enterica serotypes in commercial egg and poultry production. Appl. Environ. Microbiol. 2011, 77, 4273–4279. [Google Scholar] [CrossRef]
- Schoeni, J.L.; Glass, K.A.; McDermott, J.L.; Wong, A.C.L. Growth and penetration of Salmonella enteritidis, Salmonella heidelberg and Salmonella typhimurium in eggs. Int. J. Food Microbiol. 1995, 24, 385–396. [Google Scholar] [CrossRef]
- Jeffrey, J.S.; Kirk, J.H.; Atwill, E.R.; Cullor, J.S. Research notes: Prevalence of selected microbial pathogens in processed poultry waste used as dairy cattle feed. Poult. Sci. 1998, 77, 808–811. [Google Scholar]
- Martin, S.A.; McCann, M.A.; Waltman, W.D. Microbiological survey of Georgia poultry litter. J. Appl. Poult. Res. 1998, 7, 90–98. [Google Scholar]
- Shepherd, M.W.; Liang, P.; Jiang, X.; Doyle, M.P.; Erickson, M.C. Microbiological analysis of composts produced on South Carolina poultry farms. J. Appl. Microbiol. 2010, 108, 2067–2076. [Google Scholar]
- Smyser, C.F.; Snoeyenbos, G.H. Evaluation of several methods of isolating salmonellae from poultry litter and animal feedstuffs. Avian Dis. 1969, 13, 134–141. [Google Scholar] [CrossRef]
- Bhargava, K.K.; O’Neil, J.B.; Prior, M.G.; Dunkelgod, K.E. Incidence of Salmonella contamination in broiler chickens in Saskatchewan. Can. J. Comp. Med. 1983, 47, 27–32. [Google Scholar]
- Long, J.R.; DeWitt, W.F.; Ruet, J.L. Studies on Salmonella from floor litter of 60 broiler chicken houses in Nova Scotia. Can. Vet. J. 1980, 21, 91–94. [Google Scholar]
- Orji, M.U.; Onuigbo, H.C.; Mbata, T.I. Isolation of Salmonella from poultry droppings and other environmental sources in Awka, Nigeria. Int. J. Infect. Dis. 2005, 9, 86–89. [Google Scholar]
- Nógrády, N.; Kardos, G.; Bistyák, A.; Turcsányi, I.; Mészáros, J.; Galántai, Z.; Juhász, A.; Samu, P.; Kaszanyitzky, J.E.; Pászti, J.; et al. Prevalence and characterization of Salmonella infantis isolates originating from different points of the broiler chicken-human food chain in Hungary. Int. J. Food Microbiol. 2008, 127, 162–167. [Google Scholar] [CrossRef]
- Alali, W.Q.; Thakur, S.; Berghaus, R.D.; Martin, M.P.; Gebreyes, W.A. Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms. Foodborne Pathog. Dis. 2010, 7, 1363–1371. [Google Scholar] [CrossRef]
- Sidh, J.P.S.; Toze, S.G. Human pathogens and their indicators in biosolids: A literature review. Environ. Int. 2009, 35, 187–201. [Google Scholar] [CrossRef]
- Rensing, C.; Newby, D.T.; Pepper, I.L. The role of selective pressure and selfish DNA in horizontal gene transfer and soil microbial community adaptation. Soil Biol. Biochem. 2002, 34, 285–296. [Google Scholar] [CrossRef]
- Nandi, S.; Maurer, J.J.; Hofacre, C.; Summers, A.O. Gram-positive bacteria are a major reservoir of Class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 2004, 101, 7118–7122. [Google Scholar] [CrossRef]
- Levy, S.B. The Antibiotic Paradox: How Miracle Drugs are Destroying the Miracle; Plenum Publishing: New York, NY, USA, 1992. [Google Scholar]
- Khan, A.A.; Nawaz, M.S.; Khan, S.A.; Steele, R. Detection and characterization of erythromycin-resistant methylase genes in Gram-positive bacteria isolated from poultry litter. Appl. Microbiol. Biotechnol. 2002, 59, 377–381. [Google Scholar] [CrossRef]
- Hofacre, C.L.; Cotret, A.R.; Maurer, J.J.; Garritty, A.; Thayer, S.G. Presence of fluoroquinolone-resistant coliforms in poultry litter. Avian Dis. 2000, 44, 963–967. [Google Scholar]
- Heringa, S.; Kim, J.; Shepherd, M.W.; Singh, R.; Jiang, X. The presence of antibiotic resistance and integrons in Escherichia coli isolated from compost. Foodborne Pathog. Dis. 2010, 7, 1297–1304. [Google Scholar] [CrossRef]
- Furtula, V.; Farrell, E.G.; Diarrassouba, F.; Rempel, H.; Pritchard, J.; Diarra, M.S. Veterinary pharmaceuticals and antibiotic resistance of Escherichia coli isolates in poultry litter from commercial farms and controlled feeding trials. Poult. Sci. 2010, 89, 180–188. [Google Scholar]
- Grahama, J.P.; Evans, S.L.; Price, L.B.; Silbergeld, E.K. Fate of antimicrobial-resistant enterococci and staphylococci and resistance determinants in stored poultry litter. Environ. Res. 2009, 109, 682–689. [Google Scholar] [CrossRef]
- Chander, Y.; Goyal, S.M.; Gupta, S.C. Antimicrobial resistance of Providencia spp. isolated from animal manure. Vet. J. 2006, 172, 188–191. [Google Scholar] [CrossRef]
- Botts, C.W.; Ferguson, L.C.; Birkeland, J.M.; Winter, A.R. The influence of litter on the control of salmonella infections in chicks. Am. J. Vet. Res. 1952, 13, 562–565. [Google Scholar]
- Tucker, J.F. Survival of salmonellae in built-up litter for housing of rearing and laying fowls. Br. Vet. J. 1967, 123, 92–103. [Google Scholar]
- Himathongkham, S.; Riemann, H. Destruction of Salmonella typhimurium, Escherichia coli O157:H7 and Listeria monocytogenes in chicken manure by drying and/or gassing with ammonia. FEMS Microbiol. Lett. 1999, 171, 179–182. [Google Scholar] [CrossRef]
- Fenlon, D.R.; Ogden, I.D.; Vinten, A.; Svoboda, I. The fate of Escherichia coli and E. coli O157 in cattle slurry after application to land. J. Appl. Microbiol. 2000, 88, 149S–156S. [Google Scholar] [CrossRef]
- U. S. Food and Drug Administration (USFDA). Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption (Proposed Rule). In FDA Food Safety Modernization Act (FSMA); U. S. Food and Drug Administration (USFDA): Silver Spring, MD, USA, 2013. [Google Scholar]
- Islam, M.; Morgan, J.; Doyle, M.P.; Phatak, S.C.; Millner, P.; Jiang, X.P. Fate of Salmonella enterica serovar Typhimurium on carrots and radishes grown in fields treated with contaminated manure composts or irrigation water. Appl. Environ. Microbiol. 2004, 70, 2497–2502. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Surveillance for foodborne disease outbreaks-United States, 2009–2010. In Morbid. Mortal. Weekly Rep. (MMWR); 2013; 62, pp. 41–47. [Google Scholar]
- Pugh, D.G.; Rankins, D.L.; Powe, T.; D’Andrea, G. Feeding broiler litter to beef cattle. Vet. Med. 1994, 89, 661–664. [Google Scholar]
- Pugh, D.G.; Wenzel, J.G.W.; D’Andrea, G. A survey on the incidence of disease in cattle fed broiler litter. Vet. Med. 1994, 89, 665–667. [Google Scholar]
- Man Claims Poultry Litter Caused Illness, Food Safety News. Available online: http://www.foodsafetynews.com/2009/12/another-poultry-litter-case-to-federal-court/#.UfCZuxYVuqB (accessed on 8 January 2014).
- U. S. Food and Drug Administration (USFDA). FDA ApprovedAnimal Drug Products (Green Book); U. S. Food and Drug Administration (USFDA): Silver Spring, MD, USA, 2004.
- Berry, E.D.; Woodbury, B.L.; Nienaber, J.A.; Eigenberg, R.A.; Thurston, J.A.; Wells, J.E. Incidence and persistence of zoonotic bacterial and protozoan pathogens in a beef cattle feedlot runoff control-vegetative treatment system. J. Environ. Qual. 2007, 36, 1873–1882. [Google Scholar] [CrossRef]
- Thurston-Enriquez, J.A.; Gilley, J.E.; Eghball, B. Microbial quality of runoff following land application of cattle manure and swine slurry. J. Water Health 2005, 3, 157–171. [Google Scholar]
- Sistani, K.R.; Bolster, C.H.; Way, T.R.; Tobert, H.A.; Pote, D.H.; Watts, D.B. Influence of poultry litter application methods on the longevity of nutrient and E. coli in runoff from tall fescue pasture. Water Air Soil Pollut. 2010, 206, 3–12. [Google Scholar] [CrossRef]
- Singh, R.; Kim, J.; Marion, W.S., Jr.; Luo, F.; Jiang, X. Determining thermal inactivation of Escherichia coli O157:H7 in fresh compost by simulating early phases of the composting process. Appl. Environ. Microbiol. 2011, 77, 4126–4135. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef]
- Millner, P.D. Manure Managemen. In The Production Contamination Problem; Matthews, K., Solomon, E., Sapers, G., Eds.; U.S. Department of Agriculture (USDA): Beltsville, MD, USA, 2009; Volume 1, pp. 79–104. [Google Scholar]
- Barker, K.J.; Purswell, J.L.; Davis, J.D.; Parker, H.M.; Kidd, M.T.; McDaniel, C.D.; Kiess, A.S. Distribution of bacteria at different poultry litter depths. Int. J. Poult. Sci. 2010, 9, 10–13. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture (USDA). Chapter 2, Composting. Part 637 Environmental Engineering, National Engineering Handbook; U.S. Department of Agriculture (USDA): Washington, DC, USA, 2000. [Google Scholar]
- Sweeten, J.M. Composting Manure and Sludge. In Proceedings of the National Poultry Waste Management Symposium, Columbus, OH, USA, 18–19 April 1988; Ohio State University: Columbus, OH, USA, 1988. [Google Scholar]
- Moore, P.A.; Daniel, T.C.; Edwards, D.R. Reducing phosphorus runoff and inhibiting ammonia loss from poultry manure with aluminum sulfate. J. Environ. Qual. 2000, 29, 37–49. [Google Scholar]
- Moore, P.A.; Daniel, T.C.; Gilmour, J.T.; Shreve, B.R.; Edwards, D.R.; Wood, B.H. Decreasing metal runoff from poultry litter with aluminium sulfate. J. Environ. Qual. 1998, 27, 92–99. [Google Scholar]
- Ryckeboer, J.; Mergaert, J.; Coosemans, J.; Deprins, K.; Swings, J. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 2003, 94, 127–137. [Google Scholar] [CrossRef]
- Hassen, A.; Belguith, K.; Jedidi, N.; Cherif, A.; Cherif, M.; Boudabous, A. Microbial characterization during composting of municipal solid waste. Bioresour. Technol. 2001, 80, 217–225. [Google Scholar] [CrossRef]
- Erickson, M.C.; Liao, J.; Ma, L.; Jiang, X.; Doyle, M.P. Inactivation of Salmonella spp. in cow manure composts formulated to different initial C:N ratios. Bioresour. Technol. 2009, 100, 5898–5903. [Google Scholar] [CrossRef]
- Talaro, K.P.; Talaro, A. Physical and Chemical Control of Microbes. In Foundations in Microbiology, 4th ed.; The McGraw-Hill Companies: New York, NY, USA, 2002; pp. 325–326. [Google Scholar]
- U. S. Food and Drug Administration (USFDA). National Organic Standards Board Crops Committee Rcommendation for Guidance Use of Compost, Vermicompost, Processed Manure, and Compost Teas; U. S. Food and Drug Administration (USFDA): Silver Spring, MD, USA, 2006.
- U. S. Environmental Protection Agency (USEPA). Control of Pathogens and Vector Attraction in Sewage Sludge; U. S. Environmental Protection Agency (USEPA): Cincinnati, OH, USA, 2003.
- McCaskey, T.A. Dead Bird Composting; Auburn University: Auburn, AL, USA, 1993. [Google Scholar]
- Sims, J.T.; Murphy, D.W.; Handwerker, T.S. Composting of poultry wastes: Implications for dead poultry disposal and manure management. J. Sustain. Agric. 1993, 2, 67–82. [Google Scholar]
- Tiquia, S.M.; Tam, N.F.Y. Characterization and composting of poultry litter in forced-aeration piles. Process Biochem. 2002, 37, 869–880. [Google Scholar] [CrossRef]
- Brodie, H.L.; Donald, J.O.; Conner, D.E.; Tucker, J.K.; Harkin, H.D. Field evaluation of mini-composting of poultry carcasses. Poult. Sci. 1994, 73, 41. [Google Scholar]
- Macklin, K.S.; Hess, J.B.; Bilgili, S.F. In-house windrow composting and its effects on foodborne pathogens. J. Appl. Poult. Res. 2008, 17, 121–127. [Google Scholar] [CrossRef]
- Silva, M.E.; Lemos, L.T.; Cunha-Queda, A.C.; Nunes, O.C. Co-composting of poultry manure with low quantities of carbon-rich materials. Waste Manag. Res. 2009, 27, 119–128. [Google Scholar] [CrossRef]
- Guan, J.; Spencer, J.L.; Sampath, M.; Devenish, J. The fate of a genetically modified Pseudomonas strain and its transgene during the composting of poultry manure. Can. J. Microbiol. 2004, 50, 415–421. [Google Scholar] [CrossRef]
- Hutchison, M.L.; Walters, L.D.; Avery, S.M.; Moore, A. Decline of zoonotic agents in livestock waste and bedding heaps. J. Appl. Microbiol. 2005, 99, 354–362. [Google Scholar] [CrossRef]
- Erickson, M.C.; Liao, J.; Boyhan, G.; Smith, C.; Ma, L.; Jiang, X.; Doyle, M.P. Fate of manure-borne pathogen surrogates in static composting piles of chicken litter and peanut hulls. Bioresour. Technol. 2010, 101, 1014–1020. [Google Scholar] [CrossRef]
- Wichuk, K.M.; McCartney, D. A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting. J. Environ. Eng. Sci. 2007, 6, 573–586. [Google Scholar] [CrossRef]
- Wesche, A.M.; Gurtler, J.B.; Marks, B.P.; Ryser, E.T. Stress, sublethal injury, resuscitation, and virulence of bacterial foodborne pathogens. J. Food Protect. 2009, 72, 1121–1138. [Google Scholar]
- Shepherd, M.W.; Singh, R.; Kim, J.; Jiang, X. Effect of heat-shock treatment on the survival of Escherichia coli O157: H7 and Salmonella enteric Typhimurium in dairy manure co-composted with vegetable wastes under field conditions. Bioresour. Technol. 2010, 101, 5407–5413. [Google Scholar] [CrossRef]
- Farber, J.M.; Brown, B.E. Effect of prior heat shock on heat resistance of Listeria monocytogenes in meat. Appl. Environ. Microbiol. 1990, 56, 1584–1587. [Google Scholar]
- Berk, P.A.; de Jonge, R.; Zwietering, M.H.; Abee, T.; Kieboom, J. Acid resistance variability among isolates of Salmonella enterica serovar Typhimurium DT 104. J. Appl. Microbiol. 2005, 99, 859–866. [Google Scholar] [CrossRef]
- Johnson, K.M.; Busta, F.F. Detection and Enumeration of Injured Bacterial Spores in Processed Foods. In The Revival of Injured Microbes; Andrew, M.H.E., Russell, A.D., Eds.; Academic Press: London, UK, 1984; pp. 241–256. [Google Scholar]
- Rowe, M.T.; Kirk, R.B. Effect of nutrient starvation on the resistance of Escherichia coli O157:H7 to subsequent heat stress. J. Food Protect. 2000, 63, 1745–1748. [Google Scholar]
- Humphrey, T. Salmonella, stress response and food safety. Nat. Rev. 2004, 2, 504–509. [Google Scholar]
- Humphrey, T.J.; Williams, A.; McAlpine, K.; Lever, M.S.; Guard-Petter, J.; Cox, J.M. Isolates of Salmonella enterica Enteritidis PT4 with enhanced heat and acid tolerance are more virulent in mice and moreinvasive in chickens. Epidemiol. Infect. 1996, 177, 79–88. [Google Scholar]
- Foster, J.W.; Spector, M.P. How Salmonella survive against the odds. Annu. Rev. Microbiol. 1995, 49, 145–174. [Google Scholar] [CrossRef]
- Yousef, A.E.; Courtney, P.D. Basics of Stress Adaptation and Implications in New-Generation Foods. In Microbial Stress Adaptation and Food Safety; Yousef, A.E., Juneja, V.J., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 1–30. [Google Scholar]
- Abee, T.; Wouters, J.A. Microbial stress response in minimal processing. Int. J. Food Microbiol. 1999, 50, 65–91. [Google Scholar] [CrossRef]
- Suh, S.; Silo-Suh, L.; Woods, D.E.; Hassett, D.J.; West, S.E.H.; Ohman, D.E. Effect of rpoS mutation on the stress response and expression of virulence factors in Pseudomonas aeruginosa. J. Bacteriol. 1999, 181, 3890–3897. [Google Scholar]
- Cheville, A.M.; Arnold, K.W.; Buchrieser, C.; Cheng, C.M.; Kaspar, C.W. rpoS Regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl. Environ. Microbiol. 1996, 62, 1822–1824. [Google Scholar]
- Van Hoek, A.H.A.M.; Aarts, H.J.M.; Bouw, E.; van Overbeek, W.M.; Franz, E. The role of rpoS in Escherichia coli O157 manure-amended soil survival and distribution of allelic variations among bovine, food and clinical isolates. FEMS Microbiol. Lett. 2013, 338, 18–23. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Alhattab, M. Drying poultry manure for pollution potential reduction and production of organic fertilizer. Am. J. Environ. Sci. 2013, 9, 88–102. [Google Scholar] [CrossRef]
- Messer, J.W.; Lovett, J.; Murthy, G.K.; Murthy, G.K.; Wehby, A.J.; Schafer, M.L.; Read, R.B. An assessment of some public health problems resulting from feeding poultry litter to animals. Poult. Sci. 1971, 50, 874–881. [Google Scholar] [CrossRef]
- Chen, Z.; Diao, J.; Dharmasena, M.; Ionita, C.; Jiang, X.; Rieck, J. Thermal inactivation of desiccation-adapted Salmonella spp. in aged chicken litter. Appl. Environ. Microbiol. 2013, 79, 7013–7020. [Google Scholar] [CrossRef]
- National Organic Standards Board. Crops Committee Recommendation for Guidance Use of Compost, Vermicompost, Processed Manure, and Compost Teas; National Organic Standards Board: Washington, DC, USA, 2006.
- Commission Regulation (EC) No 208/2006 of 7 February 2006: Amending Annexes VI and VIII to Regulation (EC) No 1774/2002 of the European Parliament and of the Council as Regards Processing Standards for Biogas and Composting Plants and Requirements for Manure. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:036:0025:0031:EN:PDF (accessed on 8 January 2014).
- California Leafy Green Products Handler Marketing Agreement. Commodity Specific Food Safety Guidelines for the Production and Harvest of Lettuce and Leafy Greens; California Leafy Green Products Handler Marketing Agreement: Sacramento, CA, USA, 2010.
- Barbour, E.K.; Husseini, S.A.; Farran, M.T.; Itani, D.A.; Houalla, R.H.; Hamadeh, S.K. Soil solarization: A sustainable agriculture approach to reduce microorganisms in chicken manure-treated soil. J. Sustain. Agric. 2002, 19, 95–104. [Google Scholar]
- Oni, R.; Sharma, M.; Micallef, S.; Buchanan, R. The effect of UV radiation on survival of Salmonella enterica in dried manure dust. In Proceedings of the International Association for Food Protection Annual Meeting, Charlotte, NC, USA, 30 July 2013.
- Rothrock, M.J.; Cook, K.L.; Warren, J.G.; Sistani, K. The effect of alum addition on microbial communities in poultry Litter. Poult. Sci. 2008, 87, 1493–1503. [Google Scholar] [CrossRef]
- Gandhapudi, S.K.; Coyne, M.S.; D’Angelo, E.M.; Matocha, C. Potential nitrification in alum-treated soil slurries amended with poultry manure. Bioresour. Technol. 2006, 97, 664–670. [Google Scholar] [CrossRef]
- Scantling, M.; Waldroup, A.; Mary, J.; Moore, P. Microbiological effects of treating poultry litter with aluminum sulfate. Poult. Sci. (Abstr.) 1995, 74, 216. [Google Scholar]
- Line, J.E. Aluminum sulfate treatment of poultry litter to reduce Salmonella and Campylobacter populations. Poult. Sci. (Abstr.) 1998, 77, S364. [Google Scholar]
- Line, J.E. Campylobacter and Salmonella populations associated with chicken raised on acidified litter. Poult. Sci. 2002, 81, 1473–1477. [Google Scholar]
- U. S. Environmental Protection Agency (USEPA). Biosolids Generation, Use, and Disposal in the United States; U. S. Environmental Protection Agency (USEPA): Cincinnati, OH, USA, 1999.
- Stringfellow, K.; Caldwell, D.; Lee, J.; Byrd, A.; Carey, J.; Kessler, K.; Farnell, M. Pasteurization of chicken litter with steam and quicklime to reduce Salmonella Typhimurium. J. Appl. Poult. Res. 2010, 19, 380–386. [Google Scholar] [CrossRef]
- Hills, B.P.; Manning, C.E.; Ridge, Y.; Brocklehurst, T. Water availability and the survival of Salmonella typhimurium in porous systems. Int. J. Food Microbiol. 1997, 36, 187–198. [Google Scholar] [CrossRef]
- Maguire, R.O.; Hesterberg, D.; Gernat, A.; Anderson, K.; Wineland, M.; Grimes, J. Liming poultry manures to decrease soluble phosphorus and suppress the bacteria population. J. Environ. Qual. 2006, 35, 849–857. [Google Scholar] [CrossRef]
- Bennett, D.S.; Higgins, S.E.; Moore, R.; Beltran, R.; Caldwell, D.; Byrd, J.A.; Hargis, B.M. Effects of lime on Salmonella enteritidis survival in vitro. J. Appl. Poult. Res. 2003, 12, 65–68. [Google Scholar]
- Bennett, D.S.; Higgins, S.E.; Moore, R.; Byrd, J.A.; Beltran, R.; Corsiglia, C.; Caldwell, D.; Hargis, B.M. Effect of addition of hydrated lime to litter on recovery of selected bacteria and poult performance. J. Appl. Poult. Res. 2005, 14, 721–727. [Google Scholar]
- Turnbull, P.C.; Snoeyenbos, G.H. The roles of ammonia, water activity, and pH in the salmonellacidal effect of long-used poultry litter. Avian Dis. 1973, 17, 72–86. [Google Scholar] [CrossRef]
- Wang, G.; Zhao, T.; Doyle, M.P. Fate of enterohemorrhagic Escherichia coli O157:H7 in bovine feces. Appl. Environ. Microbiol. 1996, 62, 2567–2570. [Google Scholar]
- Ferguson, N.S.; Gates, R.S.; Taraba, J.L.; Cantor, A.H.; Pescatore, A.J.; Straw, M.L.; Ford, M.J.; Burnham, D.J. The effect of dietary protein and phosphorus on ammonia concentration and litter composition in broilers. Poult. Sci. 1998, 77, 1085–1093. [Google Scholar]
- Fontenot, J.P.; Webb, K.E.; Harmon, B.W.; Tucker, R.E.; Moore, W.E.C. Studies of processing nutritional value and palatability of broiler litter for ruminants. In Proceedings of the International Symposium on Livestock Wastes, Columbus, OH, USA, 19–22 April 1971.
- Caswell, L.F.; Fontenot, J.P.; Webb, K.E. Effect of processing treatment on pasteurization and nitrogen components of broiler litter and on nitrogen utilization by sheep. J. Anim. Sci. 1975, 4, 750–758. [Google Scholar]
- Seltzer, W.; Moum, S.G.; Goldhart, T.M. A method for the treatment of animal wastes to control ammonia and other odors. Poult. Sci. 1969, 48, 1912–1918. [Google Scholar] [CrossRef]
- Murray, G.E.; Tobin, R.S.; Junkins, B.; Kushner, D.J. Effect of chlorination on antibiotic resistance profiles of sewage-related bacteria. Appl. Environ. Microbiol. 1984, 48, 173–177. [Google Scholar]
- Munir, M.; Wong, K.; Xagoraraki, I. Release of antibiotic resistant bacteria and genes in the effluent and biosolids of five wastewater utilities in Michigan. Water Res. 2011, 45, 681–693. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, C.; Han, Z. Effects of aqueous chlorine dioxide treatment on nutritional components and shelf-life of mulberry fruit (Morus alba L.). J. Biosci. Bioeng. 2011, 111, 675–681. [Google Scholar] [CrossRef]
- Erickson, M.C.; Islam, M.; Sheppard, C.; Liao, J.; Doyle, M.P. Reduction of Escherichia coli O157:H7 and Salmonella enterica serovar Enteritidis in chicken manure by larvae of the black soldier fly. J. Food Protect. 2004, 67, 685–690. [Google Scholar]
- Yongabi, K.A.; Harris, P.L.; Lewis, D.M. Poultry faeces management with a simple low cost plastic digester. Afr. J. Biotechnol. 2009, 8, 1560–1566. [Google Scholar]
- Krylova, N.I.; Khabiboulline, R.E.; Naumova, R.P.; Nagle, M. The influence of ammonium and methods for removal during theanaerobic treatment of poultry manure. J. Chem. Technol. Biotechnol. 1997, 70, 99–105. [Google Scholar] [CrossRef]
- Heringa, S.D.; Kim, J.; Jiang, X.; Doyle, M.P.; Erickson, M.C. Use of a mixture of bacteriophages for biological control of Salmonella enteric strains in compost. Appl. Environ. Microbiol. 2010, 76, 5327–5332. [Google Scholar] [CrossRef]
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Chen, Z.; Jiang, X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture 2014, 4, 1-29. https://doi.org/10.3390/agriculture4010001
Chen Z, Jiang X. Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review. Agriculture. 2014; 4(1):1-29. https://doi.org/10.3390/agriculture4010001
Chicago/Turabian StyleChen, Zhao, and Xiuping Jiang. 2014. "Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: A Review" Agriculture 4, no. 1: 1-29. https://doi.org/10.3390/agriculture4010001