Role of Arthropods in Maintaining Soil Fertility
Abstract
:1. Introduction
2. Soil Arthropods
2.1. Microarthropods
2.1.1. Acari
2.1.2. Collembola
2.2. Myriapoda
2.3. Isopoda
2.4. Termites
2.5. Ants
3. Functional Roles of Arthropods in Maintaining Soil Fertility
3.1. Influence of Arthropods on Nutrient Cycling
3.1.1. Litter Feeding and Comminution
3.1.2. Mineralization of Nutrient Elements
3.2. Influence of Arthropods on Soil Structure
3.2.1. Soil Mixing and the Development of Pores and Voids
3.2.2. Formation of Soil Aggregates
Body-Size Group [5] | Soil Type | ||||||
---|---|---|---|---|---|---|---|
Taxon | Tundra (arctic alpine) | Mor (boreal forest) | Mull (warm temperate forest) | Temperate Grassland (prairie) | Tropical Savanna | Tropical Forest | |
Microarthropoda | 100,000 | 400,000 | 40,000 | 25,000 | 2000 | 15,000 | |
Symphyla | 0 | 3000 | 600 | 1000 | 2000 | 800 | |
Macrofauna | Diplopoda/Isopoda | 0 | 500 | 1000 | 500 | <1 | 400 |
Formicidae | 0 | 50 | 3000 | 1000 | 2000 | 800 | |
Isoptera | 0 | 0 | 1000 | 1000 | 4000 | 5000 |
4. Conclusions
Acknowledgments
Conflicts of Interest
References
- Jenny, H. The Soil Resource: Origin and Behavior; Springer-Verlag: New York, NY, USA, 1980; p. 377. [Google Scholar]
- White, R.E. Principles and Practice of Soil Science: The Soil as a Natural Resource, 3rd ed.; Blackwell Science Ltd.: Oxford, UK, 1997; p. 348. [Google Scholar]
- Whittaker, R.H. Communities and Ecosystems, 2nd ed.; Macmillan Publishing Co., Inc.: New York, NY, USA, 1975; p. 385. [Google Scholar]
- Walker, L.R.; del Moral, R. Primary Succession and Ecosystem Rehabilitation; Cambridge University Press: New York, NY, USA, 2003; p. 442. [Google Scholar]
- Coleman, D.C.; Crossley, D.A., Jr.; Hendrix, P.F. Fundamentals of Soil Ecology, 2nd ed.; Elsevier Academic Press: Burlington, MA, USA, 2004; p. 386. [Google Scholar]
- Bardgett, R.D. The Biology of Soil: A Community and Ecosystem Approach; Oxford University Press: Oxford, UK, 2005; p. 242. [Google Scholar]
- Richter, D.D.; Markewitz, D. How deep is soil? BioScience 1995, 45, 600–609. [Google Scholar] [CrossRef]
- Hole, F.D. Effects of animals on soil. Geoderma 1981, 25, 75–112. [Google Scholar] [CrossRef]
- Giller, P.S. The diversity of soil communities, the ‘poorman’s tropical rainforest’. Biodivers. Conserv. 1996, 5, 135–168. [Google Scholar] [CrossRef]
- Wardle, D.A. Communities and Ecosystems: Linking the Aboveground and Belowground Components; Princeton University Press: Princeton, NJ, USA, 2002; p. 392. [Google Scholar]
- Swift, M.J.; Heal, O.W.; Anderson, J.M. Decomposition in Terrestrial Ecosystems; University of California Press: Berkeley and Los Angeles, CA, USA, 1979; p. 372. [Google Scholar]
- Pimentel, D.; Petrova, T.; Riley, M.; Jacquet, J.; Ng, V.; Honigman, J.; Valero, E. Conservation of Biological Diversity in Agricultural, Forestry, and Marine Systems. In Food, Energy, and Society, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2008; pp. 221–243. [Google Scholar]
- Edwards, C.A. The Importance of Earthworms as Key Representatives of the Soil Fauna. In Earthworm Ecology, 2nd ed.; Edwards, C.A., Ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 3–11. [Google Scholar]
- Doeksen, J.; van der Drift, J. Soil Organisms; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; p. 453. [Google Scholar]
- Burges, A.; Raw, F. Soil Biology; Academic Press: London, UK, 1967; p. 532. [Google Scholar]
- Lebrun, P.; André, H.M.; de Medts, A.; Grégoire-Wibo, C.; Wauthy, G. New Trends in Soil Biology; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; p. 709. [Google Scholar]
- Hallsworth, E.G.; Crawford, D.V. Experimental Pedology; Butterworth & Co.: London, UK, 1965; p. 413. [Google Scholar]
- Graff, O.; Satchell, J.E. Progress in Soil Biology; Verlag Vieweg & Sohn GmbH: Braunschweig, Germany, 1967; p. 664. [Google Scholar]
- Vaněk, J. Progress in Soil Zoology; Academia: Prague, Czechoslovakia, 1975; p. 630. [Google Scholar]
- Dickinson, C.H.; Pugh, G.J.F. Biology of Plant Litter Decomposition; Academic Press: London, UK, 1974; Volume 2, pp. 245–775. [Google Scholar]
- Wallwork, J.A. Ecology of Soil Animals; McGraw-Hill Publishing Company Ltd.: London, UK, 1970; p. 283. [Google Scholar]
- Wallwork, J.A. The Distribution and Diversity of Soil Fauna; Academic Press: London, UK, 1976; p. 355. [Google Scholar]
- Kühnelt, W. Soil Biology with Special Reference to the Animal Kingdom, 2nd ed.; Faber and Faber Limited: London, UK, 1976; p. 483. [Google Scholar]
- Kevan, D.K.McE. Soil Zoology; Butterworths Scientific Publications: London, UK, 1955; p. 512. [Google Scholar]
- Kevan, D.K.McE. Soil Animals; H.F. & G. Witherby Ltd.: London, UK, 1962; p. 244. [Google Scholar]
- André, H.M.; Noti, M.-I.; Lebrun, P. The soil fauna: The other last biotic frontier. Biodivers. Conserv. 1994, 3, 45–56. [Google Scholar] [CrossRef]
- Decaëns, T.; Jiménez, J.J.; Gioia, C.; Measey, G.J.; Lavelle, P. The values of soil animals for conservation biology. Eur. J. Soil Biol. 2006, 42, S23–S38. [Google Scholar] [CrossRef]
- Stork, N.E.; Eggleton, P. Invertebrates as determinants and indicators of soil quality. Am. J. Alternative Agr. 1992, 7, 38–47. [Google Scholar] [CrossRef]
- André, H.M.; Ducarme, X.; Lebrun, P. Soil biodiversity: Myth, reality or conning? Oikos 2002, 96, 3–24. [Google Scholar] [CrossRef]
- Van der Drift, J. Analysis of the animal community in a beech forest floor. Tijdschr. Entomol. 1951, 94, 1–168. [Google Scholar]
- Fenton, G.R. The soil fauna: With special reference to the ecosystem of forest soil. J. Anim. Ecol. 1947, 16, 76–93. [Google Scholar] [CrossRef]
- Eisenbeis, G.; Wichard, W. Atlas on the Biology of Soil Arthropods; Springer-Verlag: Berlin, Germany, 1987; p. 437. [Google Scholar]
- Copeland, T.P.; Imadaté, G. Insecta: Protura. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 911–933. [Google Scholar]
- Petersen, H.; Luxton, M. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 1982, 39, 288–388. [Google Scholar] [CrossRef]
- Scheller, U. Pauropoda. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 861–890. [Google Scholar]
- Wallwork, J.A. Acari. In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 363–395. [Google Scholar]
- Hale, W.G. Collembola. In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 397–411. [Google Scholar]
- Behan-Pelletier, V.M. Oribatid mite biodiversity in agroecosystems: Role for bioindication. Agr. Ecosyst. Environ. 1999, 74, 411–423. [Google Scholar] [CrossRef]
- Behan-Pelletier, V.M. Acari and Collembola biodiversity in Canadian agricultural soils. Can. J. Soil Sci. 2003, 83, 279–288. [Google Scholar] [CrossRef]
- Gressitt, J.L. Problems in the zoogeography of Pacific and Antarctic insects. Pac. Insects Monogr. 1961, 2, 1–94. [Google Scholar]
- Wallwork, J.A. Desert Soil Fauna; Praeger Publishers: New York, NY, USA, 1982; p. 296. [Google Scholar]
- Curry, J.P. Grassland Invertebrates: Ecology, Influence on Soil Fertility and Effects on Plant Growth; Chapman & Hall: London, UK, 1994; p. 437. [Google Scholar]
- Bandeira, A.G.; Torres, M.F.P. Considerações sobre densidade, abundância e variedade de invertebrados terrestres em áreas florestais de Carajás, Sudeste da Amazônia. Bol. Mus. Para. Emílio Goeldi Sér. Zool. 1988, 4, 191–199. [Google Scholar]
- Wallwork, J.A. Oribatids in forest ecosystems. Annu. Rev. Entomol. 1983, 28, 109–130. [Google Scholar] [CrossRef]
- Lindquist, E.E. Acari. In Canada and Its Insect Fauna; Danks, H.V., Ed.; Entomological Society of Canada: Ottawa, Canada, 1979; pp. 252–290. [Google Scholar]
- Whitford, W.G.; Freckman, D.W.; Parker, L.W.; Schaefer, D.; Santos, P.F.; Steinberger, Y. The Contributions of Soil Fauna to Nutrient Cycles in Desert Systems. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 49–59. [Google Scholar]
- Mitchell, M.J. Effects of Physical Parameters and Food Resources on Oribatid Mites in Forest Soils. In Recent Advances in Acarology; Rodriguez, J.G., Ed.; Academic Press: New York, NY, USA, 1979; Volume 1, pp. 585–592. [Google Scholar]
- Norton, R.A.; Behan-Pelletier, V.M. Suborder Oribatida. In A Manual of Acarology, 3rd ed.; Krantz, G.W., Walter, D.E., Eds.; Texas Tech University Press: Lubbock, TX, USA, 2009; pp. 430–564. [Google Scholar]
- Mitchell, M.J. Life History Strategies of Oribatid Mites. In Biology of Oribatid Mites; Dindal, D.L., Ed.; State University of New York College of Environmental Science and Forestry: Syracuse, NY, USA, 1977; pp. 65–69. [Google Scholar]
- Norton, R.A. Evolutionary Aspects of Oribatid Mite Life Histories and Consequences for the Origin of the Astigmata. In Mites: Ecological and Evolutionary Analyses of Life-History Patterns; Houck, M.A., Ed.; Chapman & Hall: New York, NY, USA, 1994; pp. 99–135. [Google Scholar]
- Butcher, J.W.; Snider, R.; Snider, R.J. Bioecology of edaphic Collembola and Acarina. Annu. Rev. Entomol. 1971, 16, 249–288. [Google Scholar] [CrossRef]
- Luxton, M. Studies on the oribatid mites of a Danish beech wood soil. IV. Developmental biology. Pedobiologia 1981, 21, 312–340. [Google Scholar]
- Cannon, R.J.C.; Block, W. Cold tolerance of microarthropods. Biol. Rev. 1988, 63, 23–77. [Google Scholar] [CrossRef]
- Schuster, R. Der Anteil der Oribatiden an den Zersetzungsvorgängen im Boden. Z. Morph. Ökol. Tiere 1956, 45, 1–33. [Google Scholar] [CrossRef]
- Luxton, M. Studies on the oribatid mites of a Danish beech wood soil. I. Nutritional biology. Pedobiologia 1972, 12, 434–463. [Google Scholar]
- Anderson, J.M. Succession, diversity and trophic relationships of some soil animals in decomposing leaf litter. J. Anim. Ecol. 1975, 44, 475–495. [Google Scholar] [CrossRef]
- Labandeira, C.C.; Phillips, T.L.; Norton, R.A. Oribatid mites and the decomposition of plant tissues in Paleozoic coal-swamp forests. Palaios 1997, 12, 319–353. [Google Scholar] [CrossRef]
- Boudreaux, H.B. Arthropod Phylogeny with Special Reference to Insects; John Wiley & Sons: New York, NY, USA, 1979; p. 320. [Google Scholar]
- Giribet, G.; Edgecombe, G.D. Reevaluating the arthropod tree of life. Annu. Rev. Entomol. 2012, 57, 167–186. [Google Scholar] [CrossRef]
- Hopkin, S.P. Biology of the Springtails (Insecta: Collembola); Oxford University Press: Oxford, UK, 1997; p. 330. [Google Scholar]
- Macfadyen, A. The Contribution of the Microfauna to Total Soil Metabolism. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 3–17. [Google Scholar]
- Christiansen, K. Bionomics of Collembola. Annu. Rev. Entomol. 1964, 9, 147–178. [Google Scholar] [CrossRef]
- Poole, T.B. Studies on the food of Collembola in a Douglas fir plantation. Proc. Zool. Soc. Lond. 1959, 132, 71–82. [Google Scholar]
- Macnamara, C. The food of Collembola. Can. Entomol. 1924, 56, 99–105. [Google Scholar] [CrossRef]
- Sierwald, P.; Bond, J.E. Current status of the myriapod class Diplopoda (millipedes): Taxonomic diversity and phylogeny. Annu. Rev. Entomol. 2007, 52, 401–420. [Google Scholar] [CrossRef]
- Raw, F. Arthropoda (Except Acari and Collembola). In Soil Biology; Burges, A., Raw, F., Eds.; Academic Press: London, UK, 1967; pp. 323–362. [Google Scholar]
- Hoffman, R.L. Diplopoda. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 835–860. [Google Scholar]
- Hopkin, S.P.; Read, H.J. The Biology of Millipedes; Oxford University Press: Oxford, UK, 1992; p. 233. [Google Scholar]
- Blower, J.G. Millipedes: Keys and Notes for the Identification of the Species; E.J. Brill-Dr. W. Backhuys: London, UK, 1985; p. 242. [Google Scholar]
- Retallack, G.J.; Feakes, C.R. Trace fossil evidence for Late Ordovician animals on land. Science 1987, 235, 61–63. [Google Scholar]
- Chapman, A.D. Numbers of Living Species in Australia and the World, 2nd ed.; Australian Government Department of the Environment, Water, Heritage and the Arts: Canberra, Australia, 2009; p. 80. [Google Scholar]
- Szucsich, N.; Scheller, U. Symphyla. In Treatise on Zoology—Anatomy, Taxonomy, Biology: The Myriapoda, Volume 1; Minelli, A., Ed.; Koninklijke Brill NV: Leiden, the Netherlands, 2011; pp. 445–466. [Google Scholar]
- Edwards, C.A. The ecology of Symphyla. Part I. Populations. Entomol. Exp. Appl. 1958, 1, 308–319. [Google Scholar] [CrossRef]
- Thompson, M. The soil population. An investigation of the biology of the soil in certain districts of Aberystwyth. Ann. Appl. Biol. 1924, 11, 349–394. [Google Scholar] [CrossRef]
- Edwards, C.A.T. Soil Sampling for Symphylids and a Note on Populations. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 152–156. [Google Scholar]
- Michelbacher, A.E. The ecology of Symphyla. Pan-Pac. Entomol. 1949, 25, 1–12. [Google Scholar]
- Edwards, C.A. The ecology of Symphyla. Part III. Factors controlling soil distributions. Entomol. Exp. Appl. 1961, 4, 239–256. [Google Scholar] [CrossRef]
- Edwards, C.A. Symphyla. In Soil Biology Guide; Dindal, D.L., Ed.; John Wiley & Sons: New York, NY, USA, 1990; pp. 891–910. [Google Scholar]
- Schmalfuss, H. World catalog of terrestrial isopods (Isopoda: Oniscidea). Stuttgarter Beitr. Naturk. Ser. A (Biol.) 2003, 654, 1–341. [Google Scholar]
- Edney, E.B. Woodlice and the land habitat. Biol. Rev. 1954, 29, 185–219. [Google Scholar] [CrossRef]
- Sutton, S. Woodlice; Pergamon Press: Oxford, UK, 1980; p. 144. [Google Scholar]
- Warburg, M.R. Isopods and their terrestrial environment. Adv. Ecol. Res. 1987, 17, 187–242. [Google Scholar] [CrossRef]
- Zimmer, M. Habitat and Resource Use by Terrestrial Isopods (Isopoda, Oniscidea). In Oniscidea Rolling into the New Millenium: Proceedings of the 5th International Symposium on the Biology of Terrestrial Isopods; Sfenthourakis, S., de Araujo, P.B., Hornung, E., Schmalfuss, H., Taiti, S., Szlávecz, K., Eds.; Koninklijke Brill NV: Leiden, the Netherlands, 2003; pp. 243–261. [Google Scholar]
- Kambhampati, S.; Eggleton, P. Taxonomy and Phylogeny of Termites. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 1–23. [Google Scholar]
- Schuurman, G.W. Ecosystem Influences of Fungus-Growing Termites in the Dry Paleotropics. In Soil Ecology and Ecosystem Services; Wall, D.H., Bardgett, R.D., Behan-Pelletier, V., Herrick, J.E., Jones, T.H., Ritz, K., Six, J., Strong, D.R., van der Putten, W.H., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 173–188. [Google Scholar]
- Bignell, D.E.; Eggleton, P. Termites in Ecosystems. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 363–387. [Google Scholar]
- Weesner, F.M. Evolution and biology of the termites. Annu. Rev. Entomol. 1960, 5, 153–170. [Google Scholar] [CrossRef]
- Lee, K.E.; Wood, T.G. Termites and Soils; Academic Press: London, UK, 1971; p. 251. [Google Scholar]
- Thorne, B.L. Evolution of eusociality in termites. Annu. Rev. Ecol. Syst. 1997, 28, 27–54. [Google Scholar] [CrossRef]
- Hölldobler, B.; Wilson, E.O. The Ants; Belknap Press of Harvard University Press: Cambridge, MA, USA, 1990; p. 732. [Google Scholar]
- Ward, P.S. Phylogeny, classification, and species-level taxonomy of ants (Hymenoptera: Formicidae). Zootaxa 2007, 1668, 549–563. [Google Scholar]
- Traniello, J.F.A. Foraging strategies of ants. Annu. Rev. Entomol. 1989, 34, 191–210. [Google Scholar] [CrossRef]
- Del Toro, I.; Ribbons, R.R.; Pelini, S.L. The little things that run the world revisited: A review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 2012, 17, 133–146. [Google Scholar]
- Lavelle, P.; Lattaud, C.; Trigo, D.; Barois, I. Mutualism and biodiversity in soils. Plant Soil 1995, 170, 23–33. [Google Scholar] [CrossRef]
- Jones, C.G.; Lawton, J.H.; Shachak, M. Organisms as ecosystem engineers. Oikos 1994, 69, 373–386. [Google Scholar] [CrossRef]
- Lobry de Bruyn, L.A.; Conacher, A.J. The role of termites and ants in soil modification: A review. Aust. J. Soil Res. 1990, 28, 55–93. [Google Scholar]
- Polis, G.A.; Strong, D.R. Food web complexity and community dynamics. Am. Nat. 1996, 147, 813–846. [Google Scholar]
- Witkamp, M.; Ausmus, B.S. Processes in Decomposition and Nutrient Transfer in Forest Systems. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 375–396. [Google Scholar]
- Crossley, D.A., Jr. The Roles of Terrestrial Saprophagous Arthropods in Forest Soils: Current Status of Concepts. In the Role of Arthropods in Forest Ecosystems; Mattson, W.J., Ed.; Springer-Verlag: New York, NY, USA, 1977; pp. 49–56. [Google Scholar]
- Harley, J.L. Fungi in ecosystems. J. Ecol. 1971, 59, 653–668. [Google Scholar] [CrossRef]
- Burges, N.A. Biological Processes in the Decomposition of Organic Matter. In Experimental Pedology; Hallsworth, E.G., Crawford, D.V., Eds.; Butterworth & Co.: London, UK, 1965; pp. 189–198. [Google Scholar]
- Lavelle, P. Faunal activities and soil processes: Adaptive strategies that determine ecosystem function. Adv. Ecol. Res. 1997, 27, 93–132. [Google Scholar] [CrossRef]
- Wood, T.G. The Role of Termites (Isoptera) in Decomposition Processes. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 145–168. [Google Scholar]
- Berthet, P. The Metabolic Activity of Oribatid Mites (Acarina) in Different Forest Floors. In Secondary Productivity of Terrestrial Ecosystems (Principles and Methods); Petrusewicz, K., Ed.; Państwowe Wydawnictwo Naukowe: Warsaw, Poland, 1967; Volume II, pp. 709–725. [Google Scholar]
- Van der Drift, J. The Effects of Animal Activity in the Litter Layer. In Experimental Pedology; Hallsworth, E.G., Crawford, D.V., Eds.; Butterworth & Co.: London, UK, 1965; pp. 227–235. [Google Scholar]
- Chew, R.M. Consumers as regulators of ecosystems: An alternative to energetics. Ohio J. Sci. 1974, 74, 359–370. [Google Scholar]
- Witkamp, M. Soils as components of ecosystems. Annu. Rev. Ecol. Syst. 1971, 2, 85–110. [Google Scholar]
- Madge, D.S. Leaf fall and litter disappearance in a tropical forest. Pedobiologia 1965, 5, 273–288. [Google Scholar]
- Reddy, M.V. Litter Arthropods. In Soil Organisms and Litter Decomposition in the Tropics; Reddy, M.V., Ed.; Westview Press: Boulder, CO, USA, 1995; pp. 113–140. [Google Scholar]
- Lavelle, P.; Blanchart, E.; Martin, A.; Martin, S.; Spain, A.; Toutain, F.; Barois, I.; Schaefer, R. A hierarchical model for decomposition in terrestrial ecosystems: Application to soils of the humid tropics. Biotropica 1993, 25, 130–150. [Google Scholar] [CrossRef]
- Lal, R. Tropical Ecology and Physical Edaphology; John Wiley & Sons: Chichester, UK, 1987; p. 732. [Google Scholar]
- Seastedt, T.R. The role of microarthropods in decomposition and mineralization processes. Annu. Rev. Entomol. 1984, 29, 25–46. [Google Scholar] [CrossRef]
- Nye, P.H. Organic matter and nutrient cycles under moist tropical forest. Plant Soil 1961, 13, 333–346. [Google Scholar] [CrossRef]
- Edwards, C.A. Macroarthropods. In Biology of Plant Litter Decomposition; Dickinson, C.H., Pugh, G.J.F., Eds.; Academic Press: London, UK, 1974; Volume 2, pp. 533–554. [Google Scholar]
- Zimmer, M. Nutrition in terrestrial isopods (Isopoda: Oniscidea): An evolutionary-ecological approach. Biol. Rev. 2002, 77, 455–493. [Google Scholar] [CrossRef]
- Petersen, H. A review of collembolan ecology in ecosystem context. Acta Zool. Fenn. 1994, 195, 111–118. [Google Scholar]
- Hassall, M. Consumption of Leaf Litter by the Terrestrial Isopod Philoscia muscorum in Relation to Food Availability in a Dune Grassland Ecosystem. In Soil Organisms as Components of Ecosystems; Lohm, U., Persson, T., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1977; pp. 550–553. [Google Scholar]
- Gere, G. Über einige Faktoren des Streuabbaues. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 67–75. [Google Scholar]
- Van der Drift, J. The Significance of the Millipede Glomeris marginata (Villers) for Oak-Litter Decomposition and an Approach of its Part in Energy Flow. In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 293–298. [Google Scholar]
- Collins, N.M. The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 1981, 51, 389–399. [Google Scholar] [CrossRef]
- Collins, N.M. Termite Populations and Their Role in Litter Removal in Malaysian Rain Forests. In Tropical Rain Forest: Ecology and Management; Sutton, S.L., Whitmore, T.C., Chadwick, A.C., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 311–325. [Google Scholar]
- Soma, K.; Saitô, T. Ecological studies of soil organisms with references to the decomposition of pine needles. II. Litter feeding and breakdown by the woodlouse, Porcellio Scaber. Plant Soil 1983, 75, 139–151. [Google Scholar] [CrossRef]
- Striganova, B.R. Dispersion Patterns of Diplopods and Their Activity in the Litter Decomposition in the Carpathian Foothills. In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 167–173. [Google Scholar]
- McBrayer, J.F. Exploitation of deciduous leaf litter by Apheloria montana (Diplopoda: Eurydesmidae). Pedobiologia 1973, 13, 90–98. [Google Scholar]
- Stebaeva, S.K. Role of Collembola in Organic Matter Decomposition in Technogenic Siberian Landscapes. In 3rd International Seminar on Apterygota; Dallai, R., Ed.; University of Siena: Siena, Italy, 1989; pp. 299–306. [Google Scholar]
- Ausmus, B.S.; Edwards, N.T.; Witkamp, M. Microbial Immobilization of Carbon, Nitrogen, Phosphorus and Potassium: Implications for Forest Ecosystem Processes. In the Role of Terrestrial and Aquatic Organisms in Decomposition Processes; Anderson, J.M., Macfadyen, A., Eds.; Blackwell Scientific Publications: Oxford, UK, 1976; pp. 397–416. [Google Scholar]
- McBrayer, J.F.; Reichle, D.E.; Witkamp, M. Energy Flow and Nutrient Cycling in a Cryptozoan Food-Web. In Oak Ridge National Laboratory Technical Report; EDFB-IBP-73-8; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1974; pp. 1–78. [Google Scholar]
- Filser, J. The role of Collembola in carbon and nitrogen cycling in soil. Pedobiologia 2002, 46, 234–245. [Google Scholar]
- Hanlon, R.D.G.; Anderson, J.M. The effects of Collembola grazing on microbial activity in decomposing leaf litter. Oecologia 1979, 38, 93–99. [Google Scholar] [CrossRef]
- Hanlon, R.D.G.; Anderson, J.M. Influence of macroarthropod feeding activities on microflora in decomposing oak leaves. Soil Biol. Biochem. 1980, 12, 255–261. [Google Scholar] [CrossRef]
- Ineson, P.; Leonard, M.A.; Anderson, J.M. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol. Biochem. 1982, 14, 601–605. [Google Scholar] [CrossRef]
- Kautz, G.; Topp, W. Acquisition of microbial communities and enhanced availability of soil nutrients by the isopod Porcellio scaber (Latr.) (Isopoda: Oniscidea). Biol. Fert. Soils 2000, 31, 102–107. [Google Scholar] [CrossRef]
- Ausmus, B.S.; Witkamp, M. Litter and Soil Microbial Dynamics in a Deciduous Forest Stand. In Oak Ridge National Laboratory Technical Report; EDFB-IBP-73-10; Oak Ridge National Laboratory: Oak Ridge, TN, USA, 1974; pp. 1–183. [Google Scholar]
- Reichle, D.E. The Role of Soil Invertebrates in Nutrient Cycling. In Soil Organisms as Components of Ecosystems; Lohm, U., Persson, T., Eds.; Swedish Natural Science Research Council: Stockholm, Sweden, 1977; pp. 145–156. [Google Scholar]
- Szabó, I.M.; Jáger, K.; Contreras, E.; Márialigeti, K.; Dzingov, A.; Barabás, G.; Pobozsny, M. Composition and Properties of the External and Internal Microflora of Millipedes (Diplopoda). In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 197–206. [Google Scholar]
- Hassall, M.; Turner, J.G.; Rands, M.R.W. Effects of terrestrial isopods on the decomposition of woodland leaf litter. Oecologia 1987, 72, 597–604. [Google Scholar] [CrossRef]
- Cornaby, B.W.; Gist, C.S.; Crossley, D.A., Jr. Resource Partitioning in Leaf-Litter Faunas from Hardwood and Hardwood-Converted-to-Pine Forests. In Mineral Cycling in Southeastern Ecosystems; Howell, F.G., Gentry, J.B., Smith, M.H., Eds.; Technical Information Center, Office of Public Affairs, U.S. Energy Research and Development Administration: Washington DC, USA, 1975; pp. 588–597. [Google Scholar]
- Teuben, A.; Verhoef, H.A. Direct contribution by soil arthropods to nutrient availability through body and faecal nutrient content. Biol. Fert. Soils 1992, 14, 71–75. [Google Scholar] [CrossRef]
- Seastedt, T.R.; Tate, C.M. Decomposition rates and nutrient contents of arthropod remains in forest litter. Ecology 1981, 62, 13–19. [Google Scholar] [CrossRef]
- Bocock, K.L. The Digestion and Assimilation of Food by Glomeris. In Soil Organisms; Doeksen, J., van der Drift, J., Eds.; North-Holland Publishing Company: Amsterdam, the Netherlands, 1963; pp. 85–91. [Google Scholar]
- Marcuzzi, G. Experimental observations on the rôle of Glomeris spp. (Myriapoda Diplopoda) in the process of humification of litter. Pedobiologia 1970, 10, 401–406. [Google Scholar]
- Mitchell, M.J.; David, M.B.; Morgan, C.R. Importance of Organic Sulfur Constituents of Forest Soils and the Role of the Soil Macrofauna in Affecting Sulfur Flux and Transformation. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 75–85. [Google Scholar]
- Zaady, E.; Groffman, P.M.; Shachak, M.; Wilby, A. Consumption and release of nitrogen by the harvester termite Anacanthotermes ubachi Navas in the northern Negev desert, Israel. Soil Biol. Biochem. 2003, 35, 1299–1303. [Google Scholar] [CrossRef]
- Buxton, R.D. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 1981, 51, 379–384. [Google Scholar] [CrossRef]
- Varma, A.; Krishna Kolli, B.; Paul, J.; Saxena, S.; König, H. Lignocellulose degradation by microorganisms from termite hills and termite guts: A survey on the present state of art. FEMS Microbiol. Rev. 1994, 15, 9–28. [Google Scholar] [CrossRef]
- Cornwell, W.K.; Cornelissen, J.H.C.; Allison, S.D.; Bauhus, J.; Eggleton, P.; Preston, C.M.; Scarff, F.; Weedon, J.T.; Wirth, C.; Zanne, A.E. Plant traits and wood fates across the globe: Rotted, burned, or consumed? Glo. Change Biol. 2009, 15, 2431–2449. [Google Scholar] [CrossRef]
- Boddy, L.; Jones, T.H. Interactions Between Basidiomycota and Invertebrates. In Ecology of Saprotrophic Basidiomycetes; Boddy, L., Frankland, J.C., van West, P., Eds.; Academic Press: London, UK, 2008; pp. 155–179. [Google Scholar]
- Traniello, J.F.A.; Leuthold, R.H. Behavior and Ecology of Foraging in Termites. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 141–168. [Google Scholar]
- Rohrmann, G.F.; Rossman, A.Y. Nutrient strategies of Macrotermes ukuzii (Isoptera: Termitidae). Pedobiologia 1980, 20, 61–73. [Google Scholar]
- Sidde Gowda, D.K.; Rajagopal, D. Association of Termitomyces spp. with fungus growing termites. Proc. Indian Acad. Sci. (Anim. Sci.) 1990, 99, 311–315. [Google Scholar] [CrossRef]
- Lee, K.E. The Influence of Earthworms and Termites on Soil Nitrogen Cycling. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 35–48. [Google Scholar]
- Bentley, B.L. Nitrogen fixation in termites: Fate of newly fixed nitrogen. J. Insect Physiol. 1984, 30, 653–655. [Google Scholar] [CrossRef]
- Collins, N.M. The Utilization of Nitrogen Resources by Termites (Isoptera). In Nitrogen as an Ecological Factor; Lee, J.A., McNeill, S., Rorison, I.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1983; pp. 381–412. [Google Scholar]
- Prestwich, G.D.; Bentley, B.L.; Carpenter, E.J. Nitrogen sources for neotropical nasute termites: Fixation and selective foraging. Oecologia 1980, 46, 397–401. [Google Scholar]
- Martius, C. Diversity and ecology of termites in Amazonian forests. Pedobiologia 1994, 38, 407–428. [Google Scholar]
- Wood, T.G. The agricultural importance of termites in the tropics. Agric. Zool. Rev. 1996, 7, 117–155. [Google Scholar]
- Holt, J.A.; Lepage, M. Termites and Soil Properties. In Termites: Evolution, Sociality, Symbioses, Ecology; Abe, T., Bignell, D.E., Higashi, M., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2000; pp. 389–407. [Google Scholar]
- Yamada, A.; Inoue, T.; Wiwatwitaya, D.; Ohkuma, M.; Kudo, T.; Abe, T.; Sugimoto, A. Carbon mineralization by termites in tropical forests, with emphasis on fungus combs. Ecol. Res. 2005, 20, 453–460. [Google Scholar] [CrossRef]
- Holt, J.A. Carbon mineralization in semi-arid northeastern Australia: The role of termites. J. Trop. Ecol. 1987, 3, 255–263. [Google Scholar] [CrossRef]
- Wood, T.G. Termites and the soil environment. Biol. Fert. Soils 1988, 6, 228–236. [Google Scholar]
- MacKay, W.P.; Whitford, W.G. Spatial variability of termite gallery production in Chihuahuan Desert plant communities. Sociobiology 1988, 14, 281–289. [Google Scholar]
- Gupta, S.R.; Rajvanshi, R.; Singh, J.S. The role of the termite Odontotermes gurdaspurensis (Isoptera: Termitidae) in plant decomposition in a tropical grassland. Pedobiologia 1981, 22, 254–261. [Google Scholar]
- Ndiaye, D.; Lepage, M.; Sall, C.E.; Brauman, A. Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant Soil 2004, 265, 189–196. [Google Scholar] [CrossRef]
- Ji, R.; Brune, A. Nitrogen mineralization, ammonia accumulation, and emission of gaseous NH3 by soil-feeding termites. Biogeochemistry 2006, 78, 267–283. [Google Scholar] [CrossRef]
- Ngugi, D.K.; Brune, A. Nitrate reduction, nitrous oxide formation, and anaerobic ammonia oxidation to nitrite in the gut of soil-feeding termites (Cubitermes and Ophiotermes spp.). Environ. Microbiol. 2012, 14, 860–871. [Google Scholar] [CrossRef]
- López-Hernández, D. Nutrient dynamics (C, N and P) in termite mounds of Nasutitermes ephratae from savannas of the Orinoco Llanos (Venezuela). Soil Biol. Biochem. 2001, 33, 747–753. [Google Scholar] [CrossRef]
- Abbadie, L.; Lepage, M. The role of subterranean fungus comb chambers (Isoptera, Macrotermitinae) in soil nitrogen cycling in a preforest savanna (Côte d’Ivoire). Soil Biol. Biochem. 1989, 21, 1067–1071. [Google Scholar] [CrossRef]
- Spain, A.V.; John, R.D.; Okello-Oloya, T. Some Pedological Effects of Selected Termite Species at Three Locations in North-Eastern Australia. In New Trends in Soil Biology; Lebrun, P., André, H.M., de Medts, A., Grégoire-Wibo, C., Wauthy, G., Eds.; Imprimerie J. Dieu-Brichart: Ottignies-Louvain-la-Neuve, Belgium, 1983; pp. 143–149. [Google Scholar]
- Bagine, R.K.N. Soil translocation by termites of the genus Odontotermes (Holmgren) (Isoptera: Macrotermitinae) in an arid area of northern Kenya. Oecologia 1984, 64, 263–266. [Google Scholar] [CrossRef]
- Nutting, W.L.; Haverty, M.I.; LaFage, J.P. Physical and chemical alteration of soil by two subterranean termite species in Sonoran Desert grassland. J. Arid Environ. 1987, 12, 233–239. [Google Scholar]
- Congdon, R.A.; Holt, J.A.; Hicks, W.S. The Role of Mound-Building Termites in the Nitrogen Economy of Semi-Arid Ecosystems. In Proceedings of the 6th Australasian Conference on Grassland Invertebrate Ecology; Prestidge, R.A., Ed.; AgResearch: Hamilton, New Zealand, 1993; pp. 100–106. [Google Scholar]
- Jiménez, J.J.; Decaëns, T. Chemical variations in the biostructures produced by soil ecosystem engineers. Examples from the neotropical savannas. Eur. J. Soil Biol. 2006, 42, S92–S102. [Google Scholar] [CrossRef]
- Arshad, M.A. Influence of the termite Macrotermes michaelseni (Sjöst) on soil fertility and vegetation in a semi-arid savannah ecosystem. Agro-Ecosystems 1982, 8, 47–58. [Google Scholar] [CrossRef]
- Anderson, J.M.; Wood, T.G. Mound composition and soil modification by two soil-feeding termites (Termitinae, Termitidae) in a riparian Nigerian forest. Pedobiologia 1984, 26, 77–82. [Google Scholar]
- Wood, T.G.; Johnson, R.A.; Anderson, J.M. Modification of soils in Nigerian savanna by soil-feeding Cubitermes (Isoptera, Termitidae). Soil Biol. Biochem. 1983, 15, 575–579. [Google Scholar] [CrossRef]
- Coventry, R.J.; Holt, J.A.; Sinclair, D.F. Nutrient cycling by mound-building termites in low-fertility soils of semi-arid tropical Australia. Aust. J. Soil Res. 1988, 26, 375–390. [Google Scholar] [CrossRef]
- Badawi, A.; Faragalla, A.A.; Dabbour, A. The role of termites in changing certain chemical characteristics of the soil. Sociobiology 1982, 7, 135–144. [Google Scholar]
- Darlington, J.P.E.C. The underground passages and storage pits used in foraging by a nest of the termite Macrotermes michaelseni in Kajiado, Kenya. J. Zool. 1982, 198, 237–247. [Google Scholar] [CrossRef]
- Lavelle, P.; Blanchart, E.; Martin, A.; Spain, A.V.; Martin, S. Impact of Soil Fauna on the Properties of Soils in the Humid Tropics. In Myths and Science of Soils of the Tropics; Lal, R., Sanchez, P.A., Eds.; Soil Science Society of America, Inc./American Society of Agronomy, Inc.: Madison, WI, USA, 1992; pp. 157–185. [Google Scholar]
- Bonell, M.; Coventry, R.J.; Holt, J.A. Erosion of termite mounds under natural rainfall in semiarid tropical northeastern Australia. Catena 1986, 13, 11–28. [Google Scholar] [CrossRef]
- Aloni, K.; Soyer, J. Cycle des matériaux de construction des termitières d’humivores en savane au Shaba méridional (Zaïre). Rev. Zool. Afr. 1987, 101, 329–357. [Google Scholar]
- Pomeroy, D.E. Some effects of mound-building termites on soils in Uganda. J. Soil Sci. 1976, 27, 377–394. [Google Scholar] [CrossRef]
- Wood, T.G.; Sands, W.A. The Role of Termites in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge University Press: Cambridge, UK, 1978; pp. 245–292. [Google Scholar]
- Salick, J.; Herrera, R.; Jordan, C.F. Termitaria: Nutrient patchiness in nutrient-deficient rain forests. Biotropica 1983, 15, 1–7. [Google Scholar] [CrossRef]
- Watson, J.P. The use of mounds of the termite Macrotermes falciger (Gerstäcker) as a soil amendment. J. Soil Sci. 1977, 28, 664–672. [Google Scholar] [CrossRef]
- Pętal, J. The Role of Ants in Ecosystems. In Production Ecology of Ants and Termites; Brian, M.V., Ed.; Cambridge University Press: Cambridge, UK, 1978; pp. 293–325. [Google Scholar]
- Wali, M.K.; Kannowski, P.B. Prairie Ant Mound Ecology: Interrelationships of Microclimate, Soils and Vegetation. In Prairie: A Multiple View; Wali, M.K., Ed.; University of North Dakota Press: Grand Forks, ND, USA, 1975; pp. 155–169. [Google Scholar]
- Czerwiński, Z.; Jakubczyk, H.; Pętal, J. Influence of ant hills on the meadow soils. Pedobiologia 1971, 11, 277–285. [Google Scholar]
- Lockaby, B.G.; Adams, J.C. Pedoturbation of a forest soil by fire ants. Soil Sci. Soc. Am. J. 1985, 49, 220–223. [Google Scholar] [CrossRef]
- Baxter, F.P.; Hole, F.D. Ant (Formica cinerea) pedoturbation in a prairie soil. Soil Sci. Soc. Am. Proc. 1967, 31, 425–428. [Google Scholar] [CrossRef]
- Beattie, A.J.; Culver, D.C. The nest chemistry of two seed-dispersing ant species. Oecologia 1983, 56, 99–103. [Google Scholar] [CrossRef]
- Culver, D.C.; Beattie, A.J. Effects of ant mounds on soil chemistry and vegetation patterns in a Colorado montane meadow. Ecology 1983, 64, 485–492. [Google Scholar] [CrossRef]
- Amador, J.A.; Görres, J.H. Microbiological characterization of the structures built by earthworms and ants in an agricultural field. Soil Biol. Biochem. 2007, 39, 2070–2077. [Google Scholar] [CrossRef]
- Wagner, D.; Jones, J.B.; Gordon, D.M. Development of harvester ant colonies alters soil chemistry. Soil Biol. Biochem. 2004, 36, 797–804. [Google Scholar] [CrossRef]
- Wu, H.; Lu, X.; Wu, D.; Yin, X. Biogenic structures of two ant species Formica sanguinea and Lasius flavus altered soil C, N and P distribution in a meadow wetland of the Sanjiang Plain, China. Appl. Soil Ecol. 2010, 46, 321–328. [Google Scholar] [CrossRef]
- Shrikhande, J.G.; Pathak, A.N. Earthworms and insects in relation to soil fertility. Curr. Sci. 1948, 17, 327–328. [Google Scholar]
- Frouz, J.; Jilková, V. The effect of ants on soil properties and processes (Hymenoptera: Formicidae). Myrmecol. News 2008, 11, 191–199. [Google Scholar]
- Wheeler, W.M. Ants: Their Structure, Development and Behavior; Columbia University Press: New York, NY, USA, 1910; p. 663. [Google Scholar]
- Weber, N.A. Fungus-growing ants. Science 1966, 153, 587–604. [Google Scholar]
- Jonkman, J.C.M. Nests of the leaf-cutting ant Atta vollenweideri as accelerators of succession in pastures. Z. Angew. Entomol. 1978, 86, 25–34. [Google Scholar] [CrossRef]
- Farji-Brener, A.G.; Tadey, M. Contributions of Leaf-Cutting Ants to Soil Fertility: Causes and Consequences. In Soil Fertility; Lucero, D.P., Boggs, J.E., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2009; pp. 81–91. [Google Scholar]
- Oades, J.M. The role of biology in the formation, stabilization and degradation of soil structure. Geoderma 1993, 56, 377–400. [Google Scholar] [CrossRef]
- Abbott, I. The Influence of Fauna on Soil Structure. In Animals in Primary Succession: The Role of Fauna in Reclaimed Lands; Majer, J.D., Ed.; Cambridge University Press: Cambridge, UK, 1989; pp. 39–50. [Google Scholar]
- Wilkinson, M.T.; Richards, P.J.; Humphreys, G.S. Breaking ground: Pedological, geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 2009, 97, 257–272. [Google Scholar] [CrossRef]
- Rusek, J. Soil microstructures—Contributions on specific soil organisms. Quaest. Entomol. 1985, 21, 497–514. [Google Scholar]
- Lepage, M.; Morel, G.; Resplendino, C. Découverte de galeries de termites atteignant la nappe phréatique profonde dans le Nord du Sénégal. C. R. Acad. Sci. Sér. D 1974, 278, 1855–1858. [Google Scholar]
- Martius, C. The Influence of Geophagous Termites on Soils of Inundation Forests in Amazonia—First Results. In Social Insects and the Environment; Veeresh, G.K., Mallik, B., Viraktamath, C.A., Eds.; E. J. Brill: Leiden, the Netherlands, 1990; pp. 209–210. [Google Scholar]
- Elkins, N.Z.; Sabol, G.V.; Ward, T.J.; Whitford, W.G. The influence of subterranean termites on the hydrological characteristics of a Chihuahuan desert ecosystem. Oecologia 1986, 68, 521–528. [Google Scholar] [CrossRef]
- Whitford, W.G. Subterranean termites and long-term productivity of desert rangelands. Sociobiology 1991, 19, 235–243. [Google Scholar]
- Mando, A.; Stroosnijder, L.; Brussaard, L. Effects of termites on infiltration into crusted soil. Geoderma 1996, 74, 107–113. [Google Scholar] [CrossRef]
- Mando, A.; Miedema, R. Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Appl. Soil Ecol. 1997, 6, 241–249. [Google Scholar] [CrossRef]
- Mando, A. The impact of termites and mulch on the water balance of crusted Sahelian soil. Soil Technol. 1997, 11, 121–138. [Google Scholar] [CrossRef]
- Léonard, J.; Rajot, J.L. Influence of termites on runoff and infiltration: Quantification and analysis. Geoderma 2001, 104, 17–40. [Google Scholar] [CrossRef]
- Majer, J.D.; Walker, T.C.; Berlandier, F. The role of ants in degraded soils within Dryandra State Forest. Mulga Res. Cent. J. 1987, 9, 15–16. [Google Scholar]
- Richards, P.J. Aphaenogaster ants as bioturbators: Impacts on soil and slope processes. Earth-Sci. Rev. 2009, 96, 92–106. [Google Scholar] [CrossRef]
- Evans, T.A.; Dawes, T.Z.; Ward, P.R.; Lo, N. Ants and termites increase crop yield in a dry climate. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef]
- Gillman, L.R.; Jefferies, M.K.; Richards, G.N. Non-soil constituents of termite (Coptotermes acinaciformis) mounds. Aust. J. Biol. Sci. 1972, 25, 1005–1013. [Google Scholar]
- Rogers, L.E. The Ecological Effects of the Western Harvester Ant (Pogonomyrmex occidentalis) in the Shortgrass Plains Ecosystem; Grassland Biome, U.S. International Biological Program, Technical Report No. 263; U.S. International Biological Program: Fort Collins, CO, USA, 1972; pp. 1–110. [Google Scholar]
- Robinson, J.B.D. Some chemical characteristics of “termite soils” in Kenya coffee fields. J. Soil Sci. 1958, 9, 58–65. [Google Scholar] [CrossRef]
- Blower, J.G. Millipedes and Centipedes as Soil Animals. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 138–151. [Google Scholar]
- Jacot, A.P. The fauna of the soil. Q. Rev. Biol. 1940, 15, 28–58. [Google Scholar]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Bartlett, M.; Ritz, K. The Zoological Generation of Soil Structure. In the Architecture and Biology of Soils: Life in Inner Space; Ritz, K., Young, I., Eds.; CAB International: Wallingford, UK, 2011; pp. 71–85. [Google Scholar]
- Shaler, N.S. The Origin and Nature of Soils. In Twelfth Annual Report of the Director, U.S. Geological Survey, 1890-’91; Powell, J.W., Ed.; Government Printing Office: Washington, DC, USA, 1892; pp. 219–345. [Google Scholar]
- Paton, T.R.; Humphreys, G.S.; Mitchell, P.B. Soils: A New Global View; Yale University Press: London, UK, 1995; p. 213. [Google Scholar]
- Sudd, J.H. The excavation of soil by ants. Z. Tierpsychol. 1969, 26, 257–276. [Google Scholar] [CrossRef]
- Lyford, W.H. Importance of Ants to Brown Podzolic Soil Genesis in New England. In Harvard Forest Paper 7; Harvard University: Petersham, MA, USA, 1963; pp. 1–18. [Google Scholar]
- Alvarado, A.; Berish, C.W.; Peralta, F. Leaf-cutter ant (Atta cephalotes) influence on the morphology of andepts in Costa Rica. Soil Sci. Soc. Am. J. 1981, 45, 790–794. [Google Scholar] [CrossRef]
- Béique, R.; Francœur, A. Les fourmis de la pessière à Cladonia. II.—Étude quantitative d’une pessière naturelle. Rev. Écol. Biol. Sol 1968, 5, 523–531. [Google Scholar]
- Nye, P.H. Some soil-forming processes in the humid tropics. IV. The action of the soil fauna. J. Soil Sci. 1955, 6, 73–83. [Google Scholar] [CrossRef]
- Dimo, N.A. Hemilepistus (Percellio [sic]) and their rôle in soil formation in deserts. Pochvovedenie 1945, 2, 115–121. [Google Scholar]
- Lynch, J.M.; Bragg, E. Microorganisms and soil aggregate stability. Adv. Soil Sci. 1985, 2, 133–171. [Google Scholar] [CrossRef]
- Pawluk, S. Soil micromorphology and soil fauna: Problems and importance. Quaest. Entomol. 1985, 21, 473–496. [Google Scholar]
- Harris, R.F.; Chesters, G.; Allen, O.N. Dynamics of soil aggregation. Adv. Agron. 1966, 18, 107–169. [Google Scholar] [CrossRef]
- Ciarkowska, K.; Niemyska-Łukaszuk, J. Microstructure of humus horizons of gypsic soils from the Niecka Nidziańska area (South Poland). Geoderma 2002, 106, 319–329. [Google Scholar] [CrossRef]
- Loranger, G.; Ponge, J.F.; Lavelle, P. Humus forms in two secondary semi-evergreen tropical forests. Eur. J. Soil Sci. 2003, 54, 17–24. [Google Scholar] [CrossRef]
- Pawluk, S. Faunal micromorphological features in moder humus of some western Canadian soils. Geoderma 1987, 40, 3–16. [Google Scholar] [CrossRef]
- Kubiena, W.L. Animal Activity in Soils as a Decisive Factor in Establishment of Humus Forms. In Soil Zoology; Kevan, D.K.McE., Ed.; Butterworths Scientific Publications: London, UK, 1955; pp. 73–82. [Google Scholar]
- Jackson, R.M.; Raw, F. Life in the Soil; St. Martin’s Press: New York, NY, USA, 1966; p. 59. [Google Scholar]
- Schaller, F. Biologische Beobachtungen an humusbildenden Bodentieren, insbesondere an Collembolen. Zool. Jahrb. Abt. Syst. Ökol. Geogr. Tiere 1950, 78, 506–525. [Google Scholar]
- Dunger, W. Über die Veränderung des Fallaubes im Darm von Bodentieren. Z. Pflanzenernähr. Düng. Bodenkd. 1958, 82, 174–193. [Google Scholar] [CrossRef]
- Weetman, G.F.; Webber, B. The influence of wood harvesting on the nutrient status of two spruce stands. Can. J. For. Res. 1972, 2, 351–369. [Google Scholar] [CrossRef]
- Burns, R.G.; Martin, J.P. Biodegradation of Organic Residues in Soil. In Microfloral and Faunal Interactions in Natural and Agro-ecosystems; Mitchell, M.J., Nakas, J.P., Eds.; Martinus Nijhoff/Dr W. Junk Publishers: Dordrecht, the Netherlands, 1986; pp. 137–202. [Google Scholar]
- Siddiky, M.R.K.; Schaller, J.; Caruso, T.; Rillig, M.C. Arbuscular mycorrhizal fungi and Collembola non-additively increase soil aggregation. Soil Biol. Biochem. 2012, 47, 93–99. [Google Scholar] [CrossRef]
- Webb, D.P. Regulation of Deciduous Forest Litter Decomposition by Soil Arthropod Feces. In the Role of Arthropods in Forest Ecosystems; Mattson, W.J., Ed.; Springer-Verlag: New York, NY, USA, 1977; pp. 57–69. [Google Scholar]
- Barratt, B.C. Soil organic regime of coastal sand dunes. Nature 1962, 196, 835–837. [Google Scholar] [CrossRef]
- Van Vliet, P.C.J.; Hendrix, P.F. Role of Fauna in Soil Physical Processes. In Soil Biological Fertility: A Key to Sustainable Land Use in Agriculture; Abbott, L.K., Murphy, D.V., Eds.; Kluwer Academic Publishers: Dordrecht, the Netherlands, 2003; pp. 61–80. [Google Scholar]
- Garnier-Sillam, E.; Harry, M. Distribution of humic compounds in mounds of some soil-feeding termite species of tropical rainforests: Its influence on soil structure stability. Insect. Soc. 1995, 42, 167–185. [Google Scholar] [CrossRef]
- Eschenbrenner, V. Contribution des termites à la micro-agrégation des sols tropicaux. Cah. ORSTOM Sér. Pédol. 1986, 22, 397–408. [Google Scholar]
- Kooyman, C.; Onck, R.F.M. The Interactions Between Termite Activity, Agricultural Practices and Soil Characteristics in Kisii District, Kenya. In Agricultural University Wageningen Papers87-3; Agricultural University Wageningen: Wageningen, the Netherlands, 1987; pp. 1–120. [Google Scholar]
- Rusek, J. Die bodenbildende Funktion von Collembolen und Acarina. Pedobiologia 1975, 15, 299–308. [Google Scholar]
- Romell, L.G. An example of myriapods as mull formers. Ecology 1935, 16, 67–71. [Google Scholar] [CrossRef]
- Eaton, T.H., Jr. Biology of a mull-forming millipede, Apheloria coriacea (Koch). Am. Midl. Nat. 1943, 29, 713–723. [Google Scholar]
- Schaller, F. Die Collembolen in der Ökologie. Naturwissenschaften 1949, 36, 296–299. [Google Scholar]
- Cragg, J.B. Some aspects of the ecology of moorland animals. J. Ecol. 1961, 49, 477–506. [Google Scholar]
- Yair, A.; Rutin, J. Some aspects of the regional variation in the amount of available sediment produced by isopods and porcupines, northern Negev, Israel. Earth Surf. Proc. Land. 1981, 6, 221–234. [Google Scholar] [CrossRef]
- Striganova, B.R. Vozrastnyye izmeneniya aktivnosti pitaniya u kivsyakov (Juloidea). Zoolohichnyi Zhurnal Ukrayiny 1971, 50, 1472–1476. [Google Scholar]
- Athias, F.; Josens, G.; Lavelle, P. Traits généraux du peuplement animal endogé de la savane de Lamto (Côte d’Ivoire). In Progress in Soil Zoology; Vaněk, J., Ed.; Academia: Prague, Czechoslovakia, 1975; pp. 375–388. [Google Scholar]
- Tanaka, M.; Sugi, Y.; Tanaka, S.; Mishima, Y.; Hamada, R. Soil Invertebrates. In Biological Production in a Warm-Temperate Evergreen Oak Forest of Japan; Kira, T., Ono, Y., Hosokawa, T., Eds.; University of Tokyo Press: Tokyo, Japan, 1978; pp. 147–163. [Google Scholar]
- Francœur, A. The Ant Fauna Near the Tree-Line in Northern Québec (Formicidae, Hymenoptera). In Tree-Line Ecology: Proceedings of the Northern Québec Tree-Line Conference; Morisset, P., Payette, S., Eds.; Centre d’Études Nordiques, Université Laval: Québec, Canada, 1983; pp. 177–180. [Google Scholar]
- Hågvar, S. Protura, Pauropoda and Symphyla in Norwegian coniferous forest soils: Abundance and vertical distribution. Pedobiologia 1997, 41, 56–61. [Google Scholar]
- Olechowicz, E. Soil-litter macrofauna in the mixed forest and midfield shelterbelts of different age (Turew area, West Poland). Pol. J. Ecol. 2004, 52, 405–419. [Google Scholar]
- Kevan, P. Invertebrates, Terrestrial. In Encyclopedia of the Arctic; Nuttall, M., Ed.; Routledge: New York, NY, USA, 2005; Volume 2, pp. 1018–1021. [Google Scholar]
- De Morais, J.W.; da Silva, E.P. Occurrence of Symphyla (Myriapoda) in the region of the Upper Solimões River, Amazonas, Brazil. Pesq. Agropec. Bras. 2009, 44, 981–983. [Google Scholar] [CrossRef]
- Finér, L.; Jurgensen, M.F.; Domisch, T.; Kilpeläinen, J.; Neuvonen, S.; Punttila, P.; Risch, A.C.; Ohashi, M.; Niemelä, P. The role of wood ants (Formica rufa group) in carbon and nutrient dynamics of a boreal Norway spruce forest ecosystem. Ecosystems 2013, 16, 196–208. [Google Scholar] [CrossRef]
© 2013 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Culliney, T.W. Role of Arthropods in Maintaining Soil Fertility. Agriculture 2013, 3, 629-659. https://doi.org/10.3390/agriculture3040629
Culliney TW. Role of Arthropods in Maintaining Soil Fertility. Agriculture. 2013; 3(4):629-659. https://doi.org/10.3390/agriculture3040629
Chicago/Turabian StyleCulliney, Thomas W. 2013. "Role of Arthropods in Maintaining Soil Fertility" Agriculture 3, no. 4: 629-659. https://doi.org/10.3390/agriculture3040629
APA StyleCulliney, T. W. (2013). Role of Arthropods in Maintaining Soil Fertility. Agriculture, 3(4), 629-659. https://doi.org/10.3390/agriculture3040629