Bovine Respiratory Disease: Epidemiological Drivers, Transmission Dynamics, and Economic Implications in Beef Production Systems
Abstract
1. Introduction
2. Epidemiology of BRD
2.1. Etiology, Pathogens, and Risk Factors
2.2. Pathogenesis of BRD
2.3. Clinical Symptoms and Diagnosis
| Method | Principle/Target | Advantages | Limitations | Key References |
|---|---|---|---|---|
| DART Scoring | Subjective clinical signs: depression, appetite, respiration, temperature | Low-cost; easy to implement quickly in the field | Low sensitivity/specificity (<70%); high inter-observer variability. | [49,50,56] |
| Thoracic Auscultation | Detects abnormal lung sounds via a stethoscope | Simple, immediate insights | Requires expertise; limited sensitivity, especially for lower lung lesions | [50] |
| Thoracic Ultrasound | Visualizes lung consolidations and pleural lesions | High sensitivity (~85%); early lesion detection | Equipment cost, operator dependency, and animal handling are needed | [57] |
| Thoracic Radiography | X-ray imaging of lung structures | Can detect deep parenchymal lesions | Superimposition issues require anesthesia or restraint | [58] |
| Bacterial Culture & Serology | Identification of pathogen presence and immune response | Gold standard for pathogen ID; supports antimicrobial sensitivity testing | Takes days; may miss fastidious pathogens; serology may lack specificity | [59] |
| Multiplex PCR and qPCR | Detects DNA/RNA of multiple pathogens (viral & bacterial) | High sensitivity/specificity; can detect co-infections; quantitative | Infrastructure and cost barriers; positives may reflect colonization, not disease | [60] |
| Isothermal Amplification (LAMP, RPA) | Rapid on-site detection of specific pathogens | Field-friendly; colorimetric readout; ~1 h results | Requires primer design; possible false positives; early-stage tool | [61] |
| 1H NMR Metabolomics | Identifies systemic metabolic biomarkers in blood | High accuracy (~85%); reveals host response patterns | High cost; requires lab and ML models; less field-ready | [62] |
| Blood Transcriptomics | Uses gene-expression profiling to detect immune response | Early detection potential; highly specific insights | Requires RNA sequencing; high cost; technical demands | [63] |
| Near-Infrared Spectroscopy (NIRS) | Measures biochemical fingerprint in fluids/tissues | Non-invasive; potential rapid testing without a blood draw | Early research stage; needs standardization | [64] |
| Infrared Thermography | Measures surface temperature (eye/orbit) | Non-contact; early fever detection | Variable with ambient conditions; needs calibration | [65] |
| Accelerometers and Behavior Sensors | Detect changes in activity and rumination | Can detect illness ~3 days before clinical signs | Initial cost, data noise; requires algorithms | [66] |
| Acoustic Monitoring (Cough sensors) | Detects cough frequency in pens | Automated, non-invasive; early outbreak detection | Background noise interference | [67] |
| Breath Analysis | Measures volatile biomarkers linked to inflammation | Non-invasive; rapid results | Technical complexity; needs calibration | [68] |
| Metagenomic Sequencing & AI-based Pathogen Profiling | Deep sequencing with ML models for pathogen signature | Potential for high-throughput, sensitive detection | High cost; bioinformatics demands; emerging technology | [69] |
2.4. Herd-Level Dynamics of BRD
2.5. Current BRD Prevention and Management Strategies
2.5.1. Vaccination Programs
2.5.2. Preconditioning
2.5.3. Metaphylaxis
2.5.4. Comparative Risk Profiling & Segregation of Risk Factors
2.5.5. Nutritional Management
2.5.6. General Management Practices
3. Epidemiological Studies on BRD
3.1. BRD Incidence, Prevalence, and Epidemiological Patterns
| BRD Morbidity, % | BRD Mortality, % | Reference (Author, Year) |
|---|---|---|
| 75 | 50 | [108] |
| 75 * | 45 * | [107] |
| 20.60 | 5.90 | [113] |
| 10.52 * | 13.1 #* | [111] |
| 75 * | 30 * | [109] |
| 14.70 | 0.70 | [114] |
| 39 | 15.15 * | [115] |
| 100 ** | 31.9 ** | [96] |
| 21 | 46.4 # | [116] |
| 75 * | 45 * | [23] |
| 11.43 * | 3 | [117] |
| 22 | 3.50 | [118] |
| 35 * | 9 * | [70] |
| 87 | 33 | [119] |
| 61.90 | 12.90 | [37] |
| 33.90 | 5 | [120] |
| 18 | 2.10 | [15] |
| 12 | 5.60 | [121] |
| 67.2 ** | 4.83 ** | [110] |
| 75 | 60 * | [112] |
| 14.15 * | 2.73 * | [81] |
| 44.50 | 3.30 | [122] |
3.2. Selected Studies and Contributions to the Understanding of BRD Epidemiology
3.2.1. Temporal Disease Patterns and Treatment Outcomes in Feedlot Cattle (Case Study I)
3.2.2. Predictive Modeling for BRD Outcomes in Commercial Feedyards (Case Study II)
3.2.3. Economic Impacts and Performance Consequences of BRD (Case Study III)
4. Economic Impact of BRD
4.1. Financial Burden and Animal Performance Consequences
4.2. Economic Ramifications of Antimicrobial Usage and Stewardship in Managing BRD
4.3. Practical Implications for Farmers, Veterinarians and Policymakers
5. Recommendations
5.1. Areas Requiring Further Exploration and In-Depth Studies
5.2. Suggestions for Refining Preventive Measures and Management Strategies
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- USDA, ERS. Cattle & Beef—Sector at a Glance. 2025. Available online: https://www.ers.usda.gov/topics/animal-products/cattle-beef/sector-at-a-glance (accessed on 22 December 2025).
- USDA, ERS. Cattle/Calf Receipts Comprised the Largest Portion of U.S. Animal/Animal Product Receipts in 2024. 2025. Available online: https://www.ers.usda.gov/data-products/chart-gallery/chart-detail?chartId=76949&utm (accessed on 22 December 2025).
- Feedstuffs. Report Shows Immense Impact Agriculture Has on Economy; Fds: St Charles, IL, USA, 2025; Available online: https://www.feedstuffs.com/agribusiness-news/report-shows-immense-impact-agriculture-has-on-economy (accessed on 6 January 2026).
- USDAFAS Beef & Beef Products|USDA Foreign Agricultural Service 2025. Available online: https://www.fas.usda.gov/data/commodities/beef-beef-products (accessed on 6 January 2026).
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for predisposing factors? Can. Vet. J. 2010, 51, 1095–1102. [Google Scholar]
- Johnson, K.; Pendell, D. Market impacts of reducing the prevalence of bovine respiratory disease in United States beef cattle feedlots. Front. Vet. Sci. 2017, 4, 189. [Google Scholar] [CrossRef]
- Klima, C.L.; Zaheer, R.; Cook, S.R.; Booker, C.W.; Hendrick, S.; Alexander, T.W.; McAllister, T.A. Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J. Clin. Microbiol. 2014, 52, 438–448. [Google Scholar] [CrossRef]
- Lynsey, M. Combating BRD at intake. Angus Beef Bull. EXTRA 2025, 17, No. 1-A. Available online: https://www.angus.org/angus-media/angus-beef-bulletin/abb-extra/2025/01/hn_combatting-brd-at-intake (accessed on 22 December 2025).
- Baldwin, K.; Williams, B.; Turner, D.; Tsiboe, F.; Raszap Skorbiansky, S.; Sichko, C.; Jones, J.W.; Toossi, S.U.S. Agricultural Policy Review, 2023. 2024. Available online: https://ageconsearch.umn.edu/record/349026 (accessed on 27 October 2025).
- Smith, D.R. Risk factors for bovine respiratory disease in beef cattle. Anim. Health Res. Rev. 2020, 21, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Cirone, F.; Padalino, B.; Tullio, D.; Capozza, P.; Lo Surdo, M.; Lanave, G.; Pratelli, A. Prevalence of pathogens related to bovine respiratory disease before and after transportation in beef steers: Preliminary results. Animals 2019, 9, 1093. [Google Scholar] [CrossRef]
- Adekunle, A.J.; Kaniyamattam, K.; Cooke, R. Epidemiological risk factor dynamics of Bovine Respiratory Disease in U.S. beef production systems. J. Anim. Sci. 2025, 103, 47–48. [Google Scholar] [CrossRef]
- Brooks, K.R.; Raper, K.C.; Ward, C.E.; Holland, B.P.; Krehbiel, C.R.; Step, D.L. Economic effects of bovine respiratory disease on feedlot cattle during backgrounding and finishing phases1. Prof. Anim. Sci. 2011, 27, 195–203. [Google Scholar] [CrossRef]
- White, B.J.; Larson, B.L. Impact of bovine respiratory disease in U.S. beef cattle. Anim. Health Res. Rev. 2020, 21, 132–134. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; McMeniman, J.P.; González, L.A. An evaluation of the economic effects of bovine respiratory disease on animal performance, carcass traits, and economic outcomes in feedlot cattle defined using four BRD diagnosis methods. J. Anim. Sci. 2020, 98, skaa005. [Google Scholar] [CrossRef]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Aly, S.S.; Karle, B.M.; Rossitto, P.V.; Overton, M.W.; Lehenbauer, T.W.; Fadel, J.G. Preweaning cost of bovine respiratory disease (BRD) and cost-benefit of implementation of preventative measures in calves on California dairies: The BRD 10K study. J. Dairy Sci. 2020, 103, 1583–1597. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.M.; Hu, D.; Totton, S.C.; Scott, N.; Winder, C.B.; Wang, B.; Wang, C.; Glanville, J.; Wood, H.; White, B.; et al. A systematic review and network meta-analysis of bacterial and viral vaccines, administered at or near arrival at the feedlot, for control of bovine respiratory disease in beef cattle. Anim. Health Res. Rev. 2019, 20, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Wennekamp, T.R. Biosecurity and Bovine Respiratory Disease on Beef Operations in Western Canada. Doctoral Dissertation, University of Saskatchewan, Saskatoon, SK, Canada, 2020. Available online: https://harvest.usask.ca/server/api/core/bitstreams/ecd8d02c-419c-4e2f-a356-773ba323e2d5/content (accessed on 13 November 2025).
- Gorden, P.J.; Plummer, P. Control, Management, and Prevention of Bovine respiratory disease in Dairy Calves and Cows. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 243–259. [Google Scholar] [CrossRef]
- Pickett, A.T. Managerial and Nutritional Strategies to Modulate the Various Microbiota of Beef Cattle to Improve Efficiency of Beef Operations. 2025. Available online: https://oaktrust.library.tamu.edu/items/c6cbb44e-fa94-4316-bf00-1956b91412c5 (accessed on 16 October 2025).
- Carroll, J.A.; Forsberg, N.E. Influence of stress and nutrition on cattle immunity. Vet. Clin. N. Am. Food Anim. Pract. 2007, 23, 105–149. [Google Scholar] [CrossRef] [PubMed]
- USDA. Feedlot 2011 Part IV_Health and Health Mgt on US Feedlot with Capacity 1000 Above; USDA APHIS: Riverdale, MD, USA, 2013. Available online: https://www.aphis.usda.gov/animal_health/nahms/feedlot/downloads/feedlot2011/Feed11_dr_PartIV.pdf (accessed on 12 November 2025).
- Hilton, W.M. BRD in 2014: Where have we been, where are we now, and where do we want to go? Anim. Health Res. Rev. 2014, 15, 120–122. [Google Scholar] [CrossRef]
- Wilson, B.K.; Step, D.L.; Maxwell, C.L.; Gifford, C.A.; Richards, C.J.; Krehbiel, C.R. Effect of bovine respiratory disease during the receiving period on steer finishing performance, efficiency, carcass characteristics, and lung scores. Prof. Anim. Sci. 2017, 33, 24–36. [Google Scholar] [CrossRef]
- Kamel, M.S.; Davidson, J.L.; Verma, M.S. Strategies for bovine respiratory disease diagnosis and prognosis: A comprehensive overview. Animals 2024, 14, 627. [Google Scholar] [CrossRef]
- Cummings, D.B.; Groves, J.T.; Turner, B.L. Assessing the role of systems thinking for stocker cattle operations. Vet. Sci. 2023, 10, 69. [Google Scholar] [CrossRef]
- Kacheri-Moolan, L.; Kaniyamattam, K.; Tedeschi, L.O. 161 A System dynamics model of bovine respiratory disease epidemiology and prevention strategies in an integrated beef production system. J. Anim. Sci. 2023, 101, 58–59. [Google Scholar] [CrossRef]
- Dubrovsky, S.A.; Van Eenennaam, A.L.; Karle, B.M.; Rossitto, P.V.; Lehenbauer, T.W.; Aly, S.S. Epidemiology of bovine respiratory disease (BRD) in preweaned calves on California dairies: The BRD 10K study. J. Dairy Sci. 2019, 102, 7306–7319. [Google Scholar] [CrossRef]
- Brodersen, B.W. Bovine respiratory syncytial virus. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Capik, S.F.; Kegley, B.; Richeson, J.T.; Powell, J.G.; Zhao, J. Bovine respiratory microbiota of feedlot cattle and its association with disease. Vet. Res. 2022, 53, 4. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.A. Control methods for bovine respiratory disease for feedlot cattle. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D.; Chengappa, M.M.; Kuszak, J.; McVey, D.S. bacterial pathogens of the bovine respiratory disease complex. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 381–394. [Google Scholar] [CrossRef]
- Ng, T.F.F.; Kondov, N.O.; Deng, X.; Van Eenennaam, A.; Neibergs, H.L.; Delwart, E. A Metagenomics and case-control study to identify viruses associated with bovine respiratory disease. J. Virol. 2015, 89, 5340–5349. [Google Scholar] [CrossRef]
- Alvarez, I. Role of Influenza D Virus in Bovine Respiratory Disease. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2025. Available online: https://res.slu.se/id/publ/132984 (accessed on 6 January 2026). [CrossRef]
- Ohira, K.; Yokoe, K.; Li, K.; Katayama, M.; Ichikawa, A.; Takenaka-Uema, A.; Sekine, W.; Takashita, E.; Muraki, Y.; Murakami, S.; et al. Seroprevalence of influenza C and D virus infections among cattle in Japan. Vet. Anim. Sci. 2025, 29, 100468. [Google Scholar] [CrossRef]
- Smith, R.A.; Step, D.L.; Woolums, A.R. Bovine respiratory disease. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 239–251. [Google Scholar] [CrossRef]
- Hubbard, K.J.; Woolums, A.R.; Dvm; Karisch, B.B.; Blanton, J.R.; Epperson, W.B.; Dvm, D.R.; Smith, D.R. Case report: Analysis of risk factors and production effects following an outbreak of bovine respiratory disease in Stocker cattle. Bov. Pract. 2018, 52, 146–153. [Google Scholar] [CrossRef]
- Rojas, H.A.; White, B.J.; Amrine, D.E.; Larson, R.L. Predicting bovine respiratory disease risk in feedlot cattle in the first 45 days post arrival. Pathogens 2022, 11, 442. [Google Scholar] [CrossRef]
- Ellis, J.A. Update on viral pathogenesis in BRD. Anim. Health Res. Rev. 2009, 10, 149–153. [Google Scholar] [CrossRef]
- Munshi, S.; Loh, M.K.; Ferrara, N.; DeJoseph, M.R.; Ritger, A.; Padival, M.; Record, M.J.; Urban, J.H.; Rosenkranz, J.A. Repeated stress induces a pro-inflammatory state, increases amygdala neuronal and microglial activation, and causes anxiety in adult male rats. Brain Behav. Immun. 2020, 84, 180–199. [Google Scholar] [CrossRef]
- Rouault, M.; Assié, S.; Gausserès, B.; Meurens, F.; Foucras, G. Plasma cytokine and chemokine levels during natural outbreaks of bovine respiratory disease in young bulls on feedlots. Front. Vet. Sci. 2025, 12, 1617061. [Google Scholar] [CrossRef]
- Reynolds, C.J.; Quigley, K.; Cheng, X.; Suresh, A.; Tahir, S.; Ahmed-Jushuf, F.; Nawab, K.; Choy, K.; Walker, S.A.; Mathie, S.A.; et al. Lung defense through il-8 carries a cost of chronic lung remodeling and impaired function. Am. J. Respir. Cell Mol. Biol. 2018, 59, 557–571. [Google Scholar] [CrossRef]
- Manna, S.; Baindara, P.; Mandal, S.M. Molecular pathogenesis of secondary bacterial infection associated with viral infections, including SARS-CoV-2. J. Infect. Public Health 2020, 13, 1397–1404. [Google Scholar] [CrossRef]
- Muggli-Cockett, N.E.; Cundiff, L.V.; Gregory, K.E. Genetic analysis of bovine respiratory disease in beef calves during the first year of life. J. Anim. Sci. 1992, 70, 2013–2019. [Google Scholar] [CrossRef]
- Panciera, R.J.; Confer, A.W. Pathogenesis and pathology of bovine pneumonia. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 191–214. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.L.; Turkington, H.L.; Cosby, S.L. The bacterial and viral agents of brdc: Immune evasion and vaccine developments. Vaccines 2021, 9, 337. [Google Scholar] [CrossRef]
- Ruiz, M.; Puig, A.; Bassols, M.; Fraile, L.; Armengol, R. Influenza D Virus: A review and update of its role in bovine respiratory syndrome. Viruses 2022, 14, 2717. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, S.; Fecteau, G.; Dubuc, J.; Francoz, D.; Rousseau, M.; Roy, J.; Buczinski, S. Scoping review on clinical definition of bovine respiratory disease complex and related clinical signs in dairy cows. J. Dairy Sci. 2021, 104, 7095–7108. [Google Scholar] [CrossRef] [PubMed]
- Griffin, D. The monster we don’t see: Subclinical BRD in beef cattle. Anim. Health Res. Rev. 2014, 15, 138–141. [Google Scholar] [CrossRef]
- Buczinski, S.; Pardon, B. Bovine respiratory disease diagnosis. Vet. Clin. N. Am. Food Anim. Pract. 2020, 36, 399–423. [Google Scholar] [CrossRef] [PubMed]
- Timsit, E.; Dendukuri, N.; Schiller, I.; Buczinski, S. Diagnostic accuracy of clinical illness for bovine respiratory disease (BRD) diagnosis in beef cattle placed in feedlots: A systematic literature review and hierarchical Bayesian latent-class meta-analysis. Prev. Vet. Med. 2016, 135, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Centeno-Delphia, R.E.; Glidden, N.; Long, E.; Ellis, A.; Hoffman, S.; Mosier, K.; Ulloa, N.; Cheng, J.J.; Davidson, J.L.; Mohan, S.; et al. Nasal pathobiont abundance is a moderate feedlot-dependent indicator of bovine respiratory disease in beef cattle. Anim. Microbiome 2025, 7, 27. [Google Scholar] [CrossRef]
- Barnewall, R.J.; Marsh, I.B.; Williams, T.M.; Cusack, P.; Sales, N.; Galea, F.; Szentirmay, A.N.; Quinn, J.C. Efficiency-corrected PCR quantification for identification of prevalence and load of respiratory disease-causing agents in feedlot cattle. Aust. Vet. J. 2022, 100, 539–549. [Google Scholar] [CrossRef]
- Fergusson, M.; Maley, M.; Geraghty, T.; Albaladejo, J.P.; Mason, C.; Rocchi, M.S. Validation of a multiplex-tandem RT-PCR for the detection of bovine respiratory disease complex using Scottish bovine lung samples. Vet. J. 2024, 303, 106058. [Google Scholar] [CrossRef] [PubMed]
- Dutta, E.; Loy, J.D.; Deal, C.A.; Wynn, E.L.; Clawson, M.L.; Clarke, J.; Wang, B. Development of a multiplex real-time pcr assay for predicting macrolide and tetracycline resistance associated with bacterial pathogens of bovine respiratory disease. Pathogens 2021, 10, 64. [Google Scholar] [CrossRef]
- Berman, J.; Francoz, D.; Abdallah, A.; Dufour, S.; Buczinski, S. Evaluation of inter-rater agreement of the clinical signs used to diagnose bovine respiratory disease in individually housed veal calves. J. Dairy Sci. 2021, 104, 12053–12065. [Google Scholar] [CrossRef]
- Flöck, M. Diagnostic ultrasonography in cattle with thoracic disease. Vet. J. 2004, 167, 272–280. [Google Scholar] [CrossRef]
- Fowler, J.; Stieger-Vanegas, S.M.; Vanegas, J.A.; Bobe, G.; Poulsen, K.P. Comparison of thoracic radiography and computed tomography in calves with naturally occurring respiratory disease. Front. Vet. Sci. 2017, 4, 101. [Google Scholar] [CrossRef]
- Galland, J.C.; House, J.K.; Hyatt, D.R.; Hawkins, L.L.; Anderson, N.V.; Irwin, C.K.; Smith, B.P. Prevalence of Salmonella in beef feeder steers as determined by bacterial culture and ELISA serology. Vet. Microbiol. 2000, 76, 143–151. [Google Scholar] [CrossRef]
- Goto, Y.; Fukunari, K.; Suzuki, T. Multiplex RT-qPCR application in early detection of bovine respiratory disease in healthy calves. Viruses 2023, 15, 669. [Google Scholar] [CrossRef]
- Conrad, C.C.; Daher, R.K.; Stanford, K.; Amoako, K.K.; Boissinot, M.; Bergeron, M.G.; Alexander, T.; Cook, S.; Ralston, B.; Zaheer, R.; et al. A sensitive and accurate recombinase polymerase amplification assay for detection of the primary bacterial pathogens causing bovine respiratory disease. Front. Vet. Sci. 2020, 7, 208. [Google Scholar] [CrossRef]
- Blakebrough-Hall, C.; Dona, A.; D’occhio, M.J.; McMeniman, J.; González, L.A. Diagnosis of Bovine respiratory disease in feedlot cattle using blood 1H NMR metabolomics. Sci. Rep. 2020, 10, 115. [Google Scholar] [CrossRef]
- Jiminez, J.; Timsit, E.; Orsel, K.; van der Meer, F.; Guan, L.L.; Plastow, G. Whole-blood transcriptome analysis of feedlot cattle with and without bovine respiratory disease. Front. Genet. 2021, 12, 627623. [Google Scholar] [CrossRef]
- Fox, J.T.; Spire, M.F. Near infrared spectroscopy as a potential method to detect bovine respiratory disease. Kans. Agric. Exp. Stn. Res. Rep. 2004, 97–99. [Google Scholar] [CrossRef]
- Schaefer, A.L.; Cook, N.J.; Church, J.S.; Basarab, J.; Perry, B.; Miller, C.; Tong, A.K.W. The use of infrared thermography as an early indicator of bovine respiratory disease complex in calves. Res. Vet. Sci. 2007, 83, 376–384. [Google Scholar] [CrossRef]
- Cantor, M.C.; Casella, E.; Silvestri, S.; Renaud, D.L.; Costa, J.H.C. Using machine learning and behavioral patterns observed by automated feeders and accelerometers for the early indication of clinical bovine respiratory disease status in preweaned dairy calves. Front. Anim. Sci. 2022, 3, 852359. [Google Scholar] [CrossRef]
- Carpentier, L.; Berckmans, D.; Youssef, A.; Berckmans, D.; van Waterschoot, T.; Johnston, D.; Ferguson, N.; Earley, B.; Fontana, I.; Tullo, E.; et al. Automatic cough detection for bovine respiratory disease in a calf house. Biosyst. Eng. 2018, 173, 45–56. [Google Scholar] [CrossRef]
- Haddadi, S.; Koziel, J.A.; Engelken, T.J. Analytical approaches for detection of breath VOC biomarkers of cattle diseases—A review. Anal. Chim. Acta 2022, 1206, 339565. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Liu, M. Application of machine learning based genome sequence analysis in pathogen identification. Front. Microbiol. 2024, 15, 1474078. [Google Scholar] [CrossRef]
- DeDonder, K.D.; Apley, M.D. A review of the expected effects of antimicrobials in bovine respiratory disease treatment and control using outcomes from published randomized clinical trials with negative controls. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 97–111. [Google Scholar] [CrossRef] [PubMed]
- Lindley, G.; Blackie, N.; Wathes, D.C.; Booth, R.E. Development and progression of bovine respiratory disease measured using clinical respiratory scoring and thoracic ultrasonography in preweaned calves on dairy farms in the united kingdom: A prospective cohort study. Animals 2025, 15, 360. [Google Scholar] [CrossRef] [PubMed]
- Adekunle, A.J.; Rahimifar, A.; Kaniyamattam, K. 48. An agent-based modeling framework for bovine respiratory disease management in integrated beef supply chains. Anim. Sci. Proc. 2025, 16, 579–581. [Google Scholar] [CrossRef]
- Kniffen, E.; Adekunle, A.; Agnoor, P.; Akpenyi, O.; Bose, S. Stochastic Modeling of Bovine Respiratory Disease Using Agent-Based Modeling. In Proceedings of the 2026 Joint Mathematics Meetings, Washington, DC, USA, 4–7 January 2026; Available online: https://meetings.ams.org/math/jmm2026/meetingapp.cgi/Paper/57977 (accessed on 27 November 2025).
- Prosser, H.M.; Bortoluzzi, E.M.; Valeris-Chacin, R.J.; Baker, E.C.; Scott, M.A. Application of artificial intelligence and machine learning in bovine respiratory disease prevention, diagnosis, and classification. Am. J. Vet. Res. 2025, 86, S22–S26. [Google Scholar] [CrossRef] [PubMed]
- Puig, A.; Ruiz, M.; Bassols, M.; Fraile, L.; Armengol, R. Technological tools for the early detection of bovine respiratory disease in farms. Animals 2022, 12, 2623. [Google Scholar] [CrossRef]
- Sanguinetti, V. Disease Control Practices Used to Prevent Morbidity and Mortality in Preweaned Beef Calves. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2025. Available online: https://ucalgary.scholaris.ca/items/a4f2958f-2de9-49ba-9b03-e6a7e49015bb (accessed on 9 October 2025).
- Antonopoulos, A.; Ciria, N.; Regan, Á.; Tubay, J.; Ciaravino, G.; Hayes, B.; Lambert, S.; Vergne, T.; Velkers, F.; Biebaut, E.; et al. PARAMETRA: A transmission modelling database for livestock diseases. Prev. Vet. Med. 2025, 245, 106668. [Google Scholar] [CrossRef]
- Bassett, G. Computational and Analytical Approaches Towards Epidemic Spread Containment of Temporal Animal Trade Networks. Ph.D. Thesis, Technische Universitat Berlin, Berlin, Germany, 2019. Available online: https://depositonce.tu-berlin.de/items/47032cf8-513b-4114-933b-83ce611128af (accessed on 27 October 2025).
- O’Neill, X.; White, A.; Northrup, G.R.; Saad-Roy, C.M.; White, P.S.; Boots, M. Superspreading and the evolution of virulence. PLoS Comput. Biol. 2025, 21, e1013517. [Google Scholar] [CrossRef]
- Fielding, H.R.; McKinley, T.J.; Delahay, R.J.; Silk, M.J.; McDonald, R.A. Characterization of potential superspreader farms for bovine tuberculosis: A review. Vet. Med. Sci. 2021, 7, 310–321. [Google Scholar] [CrossRef]
- Smith, K.J.; Amrine, D.E.; Larson, R.L.; Theurer, M.E.; White, B.J. Determining relevant risk factors associated with mid- and late-feeding-stage bovine respiratory disease morbidity in cohorts of beef feedlot cattle. Appl. Anim. Sci. 2022, 38, 373–379. [Google Scholar] [CrossRef]
- Biesheuvel, M.M.; Ward, C.; Penterman, P.; van Engelen, E.; van Schaik, G.; Deardon, R.; Barkema, H.W. Within-herd transmission of Mycoplasma bovis infections after initial detection in dairy cows. J. Dairy Sci. 2024, 107, 516–529. [Google Scholar] [CrossRef]
- Isoda, N.; Sekiguchi, S.; Ryu, C.; Notsu, K.; Kobayashi, M.; Hamaguchi, K.; Hiono, T.; Ushitani, Y.; Sakoda, Y. Serosurvey of bovine viral diarrhea virus in cattle in southern japan and estimation of its transmissibility by transient infection in nonvaccinated cattle. Viruses 2025, 17, 61. [Google Scholar] [CrossRef]
- Rossi, G.; Smith, R.L.; Pongolini, S.; Bolzoni, L. Modelling farm-to-farm disease transmission through personnel movements: From visits to contacts, and back. Sci. Rep. 2017, 7, 2375. [Google Scholar] [CrossRef]
- Hill, E.M.; Prosser, N.S.; Ferguson, E.; Kaler, J.; Green, M.J.; Keeling, M.J.; Tildesley, M.J. Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour. PLoS Comput. Biol. 2022, 18, e1010235. [Google Scholar] [CrossRef]
- Chumachenko, D. A theoretical framework for agent-based modelling of infectious disease dynamics under misinformation and vaccine hesitancy. Radioelectron. Comput. Syst. 2025, 2025, 6–28. [Google Scholar] [CrossRef]
- Lalman, D.; Ward, C.E. Effects of preconditioning on health, performance and prices of weaned calves. In American Association of Bovine Practitioners Conference Proceedings; AABP: Montgomery, AL, USA, 2005; pp. 44–50. Available online: https://search.proquest.com/docview/231680875 (accessed on 10 November 2025). [CrossRef]
- Taylor, J.D.; Fulton, R.W.; Lehenbauer, T.W.; Step, D.L.; Confer, A.W. The epidemiology of bovine respiratory disease: What is the evidence for preventive measures? Can. Vet. J. 2010, 51, 1351–1359. [Google Scholar]
- Schunicht, O.C. Preconditioning beef calves is an economic no-brainer. In American Association of Bovine Practitioners Conference Proceedings; AABP: Montgomery, AL, USA, 2017; pp. 59–62. Available online: https://search.proquest.com/docview/2035773876 (accessed on 10 November 2025). [CrossRef]
- Hodder, A. Impact on Feeding Behavior of Beef Calves Preconditioning on Rach and Commingling. Master’s Thesis, University of Calgary, Calgary, AB, Canada, 2022. Available online: https://ucalgary.scholaris.ca/items/37261718-dc1f-4dab-b1be-af1372eba5af (accessed on 27 October 2025).
- Nickell, J.S.; White, B.J. Metaphylactic antimicrobial therapy for bovine respiratory disease in stocker and feedlot cattle. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 285–301. [Google Scholar] [CrossRef]
- Abell, K.M.; Theurer, M.E.; Larson, R.L.; White, B.J.; Apley, M. A mixed treatment comparison meta-analysis of metaphylaxis treatments for bovine respiratory disease in beef cattle. J. Anim. Sci. 2017, 95, 626–635. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, A.M.; Hu, D.; Totton, S.C.; Scott, N.; Winder, C.B.; Wang, B.; Wang, C.; Glanville, J.; Wood, H.; White, B.; et al. A systematic review and network meta-analysis of injectable antibiotic options for the control of bovine respiratory disease in the first 45 days post arrival at the feedlot. Anim. Health Res. Rev. 2019, 20, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Horton, L.M.; Depenbusch, B.E.; Dewsbury, D.M.; McAtee, T.B.; Betts, N.B.; Renter, D.G. Comprehensive outcomes affected by antimicrobial metaphylaxis of feedlot calves at medium-risk for bovine respiratory disease from a randomized controlled trial. Vet. Sci. 2023, 10, 67. [Google Scholar] [CrossRef]
- Maier, G.U.; Love, W.J.; Karle, B.M.; Dubrovsky, S.A.; Williams, D.R.; Champagne, J.D.; Anderson, R.J.; Rowe, J.D.; Lehenbauer, T.W.; Van Eenennaam, A.L.; et al. A novel risk assessment tool for bovine respiratory disease in preweaned dairy calves. J. Dairy Sci. 2020, 103, 9301–9317. [Google Scholar] [CrossRef] [PubMed]
- Babcock, A.H.; Cernicchiaro, N.; White, B.J.; Dubnicka, S.R.; Thomson, D.U.; Ives, S.E.; Scott, H.M.; Milliken, G.A.; Renter, D.G. A multivariable assessment quantifying effects of cohort-level factors associated with combined mortality and culling risk in cohorts of U.S. commercial feedlot cattle. Prev. Vet. Med. 2013, 108, 38–46. [Google Scholar] [CrossRef]
- Lehtoranta, L.; Latvala, S.; Lehtinen, M.J. Role of probiotics in stimulating the immune system in viral respiratory tract infections: A narrative review. Nutrients 2020, 12, 3163. [Google Scholar] [CrossRef]
- Palomares, R.A. Trace Minerals Supplementation with Great Impact on Beef Cattle Immunity and Health. Animals 2022, 12, 2839. [Google Scholar] [CrossRef]
- Markey, J. Evaluation of NutraGen®, an Immunomodulatory Feed Additive, in Calves Subjected to a Combination Viral and Bacterial Bovine Respiratory Disease Challenge. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 2024. Available online: https://openresearch.okstate.edu/entities/publication/af6699ff-edb8-41d4-97e5-f33833df713b (accessed on 16 June 2025).
- Voland, L.; Ortiz-Chura, A.; Tournayre, J.; Martin, B.; Bouchon, M.; Nicolao, A.; Pomiès, D.; Morgavi, D.P.; Popova, M. Duration of dam contact had a long effect on calf rumen microbiota without affecting growth. Front. Vet. Sci. 2025, 12, 1548892. [Google Scholar] [CrossRef]
- Sweiger, S.H.; Nichols, M.D. Control methods for bovine respiratory disease in stocker cattle. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 261–271. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Ferreira, J.C.P.; Kastelic, J.; Kasimanickam, V. application of genomic selection in beef cattle disease prevention. Animals 2025, 15, 277. [Google Scholar] [CrossRef] [PubMed]
- Herrick, A.L.; Kiser, J.N.; White, S.N.; Neibergs, H.L. Genomic regions associated with bovine respiratory disease in pacific northwest Holstein cattle. Front. Vet. Sci. 2025, 12i, 1637087. [Google Scholar] [CrossRef] [PubMed]
- Strillacci, M.G.; Ferrulli, V.; Bernini, F.; Pravettoni, D.; Bagnato, A.; Martucci, I.; Boccardo, A. Genomic analysis of bovine respiratory disease resistance in preweaned dairy calves diagnosed by a combination of clinical signs and thoracic ultrasonography. PLoS ONE 2025, 20, e0318520. [Google Scholar] [CrossRef]
- Laghouaouta, H.; Fraile, L.J.; Pena, R.N. selection for resilience in livestock production systems. Int. J. Mol. Sci. 2024, 25, 13109. [Google Scholar] [CrossRef] [PubMed]
- Neibergs, H.L.; Seabury, C.M.; Wojtowicz, A.J.; Wang, Z.; Scraggs, E.; Kiser, J.N.; Neupane, M.; Womack, J.E.; Eenennaam, A.V.; Hagevoort, G.R.; et al. Susceptibility loci revealed for bovine respiratory disease complex in pre-weaned holstein calves. BMC Genom. 2014, 15, 1164. [Google Scholar] [CrossRef]
- Smith, R.A. Impact of disease on feedlot performance: A review. J. Anim. Sci. 1998, 76, 272. [Google Scholar] [CrossRef]
- Edwards, A. Respiratory diseases of feedlot cattle in central USA. Bov. Pract. 1996, 30, 5–7. [Google Scholar] [CrossRef]
- Sanderson, M.W.; Wagner, B.A.; Dargatz, D.A. Risk factors for initial respiratory disease in United States’ feedlots based on producer-collected daily morbidity counts. Can. Vet. J. 2008, 49, 373–378. [Google Scholar] [PubMed]
- Theurer, M.E.; Johnson, M.D.; Fox, T.; McCarty, T.M.; McCollum, R.M.; Jones, T.M.; Alkire, D.O. Bovine respiratory disease during the mid-portion of the feeding period: Observations of frequency, timing, and population from the field. Appl. Anim. Sci. 2021, 37, 52–58. [Google Scholar] [CrossRef]
- Snowder, G.; Van Vleck, L.D.; Cundiff, L.V.; Bennett, G.L. Bovine respiratory disease in feedlot cattle: Environmental, genetic, and economic factors. Am. Soc. Anim. Sci. 2005, 84, 1999–2008. [Google Scholar] [CrossRef] [PubMed]
- Hicks, B. Beef Cattle Research Update. In Oklahoma State University Beef Extension; Oklahoma State University: Stillwater, OK, USA, 2021; Available online: http://dasnr54.dasnr.okstate.edu:8080/beefextension2018/pages/beef-cattle-research-updates/2021-beef-cattle-reseach-updates/Beef%20Cattle%20Research%20Update%20August%202021.pdf/view (accessed on 27 October 2025).
- Faber, R.; Hartwig, N.; Busby, D.; BreDahl, R. The Costs and Predictive Factors of Bovine Respiratory Disease in Standardized Steer Tests; Iowa State University Animal Industry Report; Iowa State University Digital Press: Ames, IA, USA, 2000; Available online: https://www.iastatedigitalpress.com/air/article/id/7342/ (accessed on 27 October 2025).
- Fulton, R.W. Bovine respiratory disease research (1983-2009). Anim. Health Res. Rev. 2009, 2, 131–139. [Google Scholar] [CrossRef]
- Stokka, G.L. Prevention of respiratory disease in cow/calf operations. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 229–241. [Google Scholar] [CrossRef]
- Woolums, A.R.; Berghaus, R.D.; Smith, D.R.; White, B.J.; Engelken, T.J.; Irsik, M.B.; Matlick, D.K.; Jones, A.L.; Ellis, R.W.; Smith, I.J.; et al. Producer survey of herd-level risk factors for nursing beef calf respiratory disease. J. Am. Vet. Med. Assoc. 2013, 243, 538–547. [Google Scholar] [CrossRef]
- Guterbock, W.M. The impact of BRD: The current dairy experience. Anim. Health Res. Rev. 2014, 15, 130–134. [Google Scholar] [CrossRef]
- Windeyer, M.C.; Leslie, K.E.; Godden, S.M.; Hodgins, D.C.; Lissemore, K.D.; LeBlanc, S.J. Factors associated with morbidity, mortality, and growth of dairy heifer calves up to 3 months of age. Prev. Vet. Med. 2014, 113, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Baptista, A.L.; Rezende, A.L.; Fonseca, P.d.A.; Massi, R.P.; Nogueira, G.M.; Magalhães, L.Q.; Headley, S.A.; Menezes, G.L.; Alfieri, A.A.; Saut, J.P.E. Bovine respiratory disease complex associated mortality and morbidity rates in feedlot cattle from southeastern Brazil. J. Infect. Dev. Ctries 2017, 11, 791–799. [Google Scholar] [CrossRef]
- Urie, N.J.; Lombard, J.E.; Shivley, C.B.; Kopral, C.A.; Adams, A.E.; Earleywine, T.J.; Olson, J.D.; Garry, F.B. Preweaned heifer management on US dairy operations: Part V. Factors associated with morbidity and mortality in preweaned dairy heifer calves. J. Dairy Sci. 2018, 101, 9229–9244. [Google Scholar] [CrossRef]
- Andrés-Lasheras, S.; Ha, R.; Zaheer, R.; Lee, C.; Booker, C.W.; Dorin, C.; Van Donkersgoed, J.; Deardon, R.; Gow, S.; Hannon, S.J.; et al. Prevalence and risk factors associated with antimicrobial resistance in bacteria related to bovine respiratory disease—A broad cross-sectional study of beef cattle at entry into Canadian feedlots. Front. Vet. Sci. 2021, 8, 692646. [Google Scholar] [CrossRef]
- Smith, D.R.; Wills, R.W.; Woodruff, K.A. Epidemiology’s adoption of system dynamics is a natural extension of population thinking. Vet. Clin. N. Am. Food Anim. Pract. 2022, 38, 245–259. [Google Scholar] [CrossRef]
- Smith, K.J.; White, B.J.; Amrine, D.E.; Larson, R.L.; Theurer, M.E.; Szasz, J.I.; Bryant, T.C.; Waggoner, J.W. Evaluation of first treatment timing, fatal disease onset, and days from first treatment to death associated with bovine respiratory disease in feedlot cattle. Vet. Sci. 2023, 10, 204. [Google Scholar] [CrossRef]
- Heinen, L.; White, B.J.; Amrine, D.E.; Larson, R.L. Evaluation of predictive models to determine final outcome for feedlot cattle based on information available at first treatment for bovine respiratory disease. Am. J. Vet. Res. 2023, 84, 1–8. [Google Scholar] [CrossRef]
- Watts, J.L.; Sweeney, M.T. Antimicrobial resistance in bovine respiratory disease pathogens: Measures, trends, and impact on efficacy. Vet. Clin. N. Am. Food Anim. Pract. 2010, 26, 79–88. [Google Scholar] [CrossRef]
- Overton, M.W. Economics of respiratory disease in dairy replacement heifers. Anim. Health Res. Rev. 2020, 21, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.J.; Tait, R.G.; Busby, W.D.; Reecy, J.M. An evaluation of bovine respiratory disease complex in feedlot cattle: Impact on performance and carcass traits using treatment records and lung lesion scores. J. Anim. Sci. 2009, 87, 1821–1827. [Google Scholar] [CrossRef] [PubMed]
- Roeber, D.L.; Speer, N.C.; Gentry, J.G.; Tatum, J.D.; Smith, C.D.; Whittier, J.C.; Jones, G.F.; Belk, K.E.; Smith, G.C. Feeder cattle health management: Effects on morbidity rates, feedlot performance, carcass characteristics, and beef palatability. Prof. Anim. Sci. 2001, 17, 39–44. [Google Scholar] [CrossRef]
- Heinen, L.; White, B.J.; Larson, R.L.; Kopp, D.; Pendell, D.L. Economic impact of mortality prediction by predictive model at first and second treatment for bovine respiratory disease. Am. J. Vet. Res. 2024, 85, ajvr.24.06.0169. [Google Scholar] [CrossRef]
- De Koster, J.; Tena, J.; Stegemann, M.R. Treatment of bovine respiratory disease with a single administration of tulathromycin and ketoprofen. Vet. Rec. 2022, 190, e834. [Google Scholar] [CrossRef]
- Magouras, I.; Dürr, S.; Martínez-López, B.; Brookes, V.J. Editorial: Insights in veterinary epidemiology and economics: 2023. Front. Vet. Sci. 2025, 12, 1564068. [Google Scholar] [CrossRef]
- Soares Filipe, J.F.; Ciliberti, M.G.; Attard, G.; Ratti, G.; Rocchi, M.S.L. Editorial: Biosecurity of infectious diseases in veterinary medicine. Front. Vet. Sci. 2025, 12, 1665683. [Google Scholar] [CrossRef]
- Cazer, C.L.; Basran, P.; Ivanek-Miojevic, R. From bark to bytes: Artificial intelligence transforming veterinary medicine. Am. J. Vet. Res. 2025, 86, S4–S5. [Google Scholar] [CrossRef] [PubMed]
- WOAH. Antimicrobial resistance. In World Organisation for Animal Health, Animal Diseases; WOAH: Paris, France, 2024; Available online: https://www.woah.org/en/what-we-do/global-initiatives/antimicrobial-resistance/ (accessed on 1 January 2026).
- FDA. CVM GFI #263 Recommendations for Sponsors of Medically Important Antimicrobial Drugs Approved for Use in Animals to Voluntarily Bring Under Veterinary Oversight all Products that Continue to be Available Over-The-Counter; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2021. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/cvm-gfi-263-recommendations-sponsors-medically-important-antimicrobial-drugs-approved-use-animals (accessed on 7 January 2026).
- Lhermie, G.; Verteramo Chiu, L.; Kaniyamattam, K.; Tauer, L.W.; Scott, H.M.; Gröhn, Y.T. Antimicrobial policies in united states beef production: Choosing the right instruments to reduce antimicrobial use and resistance under structural and market constraints. Front. Vet. Sci. 2019, 6, 245. [Google Scholar] [CrossRef]
- Lhermie, G.; Sauvage, P.; Tauer, L.W.; Chiu, L.V.; Kanyiamattam, K.; Ferchiou, A.; Raboisson, D.; Scott, H.M.; Smith, D.R.; Grohn, Y.T. Economic effects of policy options restricting antimicrobial use for high risk cattle placed in U.S. feedlots. PLoS ONE 2020, 15, e0239135. [Google Scholar] [CrossRef] [PubMed]
- Kaniyamattam, K.; Tauer, L.W.; Gröhn, Y.T. System economic costs of antibiotic use elimination in the us beef supply chain. Front. Vet. Sci. 2021, 8, 606810. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.J.; Wellington, M.; Shah, R.M.; Ferreira, M.J. Antibiotic stewardship in food-producing animals: Challenges, progress, and opportunities. Clin. Ther. 2020, 42, 1649–1658. [Google Scholar] [CrossRef]
- Adekunle, A.J.; Kaniyamattam, K. Feedlot economic visualization decision support tool for sustainable beef production. J. Anim. Sci. 2025, 103, 246–247. [Google Scholar] [CrossRef]
- O’Donoghue, S.; Waters, S.M.; Morris, D.W.; Earley, B. A comprehensive review: Molecular diagnostics and multi-omics approaches to understanding bovine respiratory disease. Vet. Sci. 2025, 12, 1095. [Google Scholar] [CrossRef]
- Alexander, T.W.; Timsit, E.; Amat, S. The role of the bovine respiratory bacterial microbiota in health and disease. Anim. Health Res. Rev. 2020, 21, 168–171. [Google Scholar] [CrossRef]
- Centeno-Martinez, R.E.; Klopp, R.N.; Koziol, J.; Boerman, J.P.; Johnson, T.A. Dynamics of the nasopharyngeal microbiome of apparently healthy calves and those with clinical symptoms of bovine respiratory disease from disease diagnosis to recovery. Front. Vet. Sci. 2023, 10, 1297158. [Google Scholar] [CrossRef]
- Munir, S.; Ashfaq, U.A.; Qasim, M.; Fatima, T.; Aslam, S.; Sarfraz, M.H.; Kober, A.K.M.H.; Khurshid, M. Chapter 4—Molecular omics: A promising systems biology approach to unravel host-pathogen interactions. In Systems Biology Approaches for Host-Pathogen Interaction Analysis; Ashraf, M.T., Khan, A.A., Aldakheel, F.M., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 81–102. [Google Scholar]
- Kaniyamattam, K.; Adekunle, A.; Vettil, V.K.; Rejimon, S.P.; Pi, Y.; Tao, J.; Mendes, E.D.M.; Tedeschi, L.O. Design and development of artificial intelligence driven decision support systems for sustainable livestock systems in United States. J. Anim. Sci. 2025, 103, 109–110. [Google Scholar] [CrossRef]
- Fang, L.; Teng, J.; Lin, Q.; Bai, Z.; Liu, S.; Guan, D.; Li, B.; Gao, Y.; Hou, Y.; Gong, M.; et al. The farm animal genotype–tissue expression (FarmGTEx) project. Nat. Genet. 2025, 57, 786–796. [Google Scholar] [CrossRef]
- Rexroad, C.; Vallet, J.; Matukumalli, L.K.; Reecy, J.; Bickhart, D.; Blackburn, H.; Boggess, M.; Cheng, H.; Clutter, A.; Cockett, N.; et al. Genome to Phenome: Improving Animal Health, Production, and Well-Being—A new USDA blueprint for animal genome research 2018–2027. Front. Genet. 2019, 10, 327. [Google Scholar] [CrossRef]
- Antonopoulos, A.; Charlier, J.; Biebaut, E.; Dewulf, J. Biosecurity for Livestock Diseases in Europe: Transmission, Risk Factors, and Modelling; CABI: Wallingford, UK, 2025; Available online: https://www.cabidigitallibrary.org/doi/book/10.1079/9781800629837.0000 (accessed on 28 October 2025).
- Theurer, M.E.; White, B.J.; Renter, D.G. Optimizing feedlot diagnostic testing strategies using test characteristics, disease prevalence, and relative costs of misdiagnosis. Vet. Clin. N. Am. Food Anim. Pract. 2015, 31, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Vysyaraju, U.S.R.; Moon, S.; Mendes, E.D.M.; Adekunle, A.J.; Kaniyamattam, K.; Pi, Y. 47. Activity recognition in beef cattle Calan gate using CLIP and YOLO v11. Anim. Sci. Proc. 2025, 16, 578–579. [Google Scholar] [CrossRef]







Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Adekunle, A.; Kaniyamattam, K. Bovine Respiratory Disease: Epidemiological Drivers, Transmission Dynamics, and Economic Implications in Beef Production Systems. Agriculture 2026, 16, 311. https://doi.org/10.3390/agriculture16030311
Adekunle A, Kaniyamattam K. Bovine Respiratory Disease: Epidemiological Drivers, Transmission Dynamics, and Economic Implications in Beef Production Systems. Agriculture. 2026; 16(3):311. https://doi.org/10.3390/agriculture16030311
Chicago/Turabian StyleAdekunle, Adeolu, and Karun Kaniyamattam. 2026. "Bovine Respiratory Disease: Epidemiological Drivers, Transmission Dynamics, and Economic Implications in Beef Production Systems" Agriculture 16, no. 3: 311. https://doi.org/10.3390/agriculture16030311
APA StyleAdekunle, A., & Kaniyamattam, K. (2026). Bovine Respiratory Disease: Epidemiological Drivers, Transmission Dynamics, and Economic Implications in Beef Production Systems. Agriculture, 16(3), 311. https://doi.org/10.3390/agriculture16030311

