Mineralization of Soil Organic Carbon and Its Control Mechanisms Under Different Tea Plantations in Southwest Yunnan, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Soil Sampling
2.2. Soil Properties Analysis
2.2.1. Basic Physical and Chemical Properties
2.2.2. Chemical Structure of SOC
2.2.3. Soil Microbial Analysis
2.3. SOC Mineralization
2.4. Statistical Analysis
3. Results
3.1. Soil Physicochemical and Microbial Properties
3.2. Chemical Composition of SOC Identified by 13C NMR
3.3. SOC Mineralization Under Different Tea Plantations
3.4. Key Factors Controlling SOC Mineralization
4. Discussion
4.1. Effects of Forest Conversion to Tea Plantation Methods on SOC Mineralization
4.2. Effect of Planting Time on SOC Mineralization
4.3. Control Mechanisms of SOC Mineralization
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SOC | Soil organic carbon |
C/N | Carbon-to-nitrogen |
TN | Total nitrogen content |
SSA | Specific surface area |
T.B. | Total biomass of the PLFAs |
G.B. | General bacteria |
G– | Gram-negative bacteria |
G+ | Gram-positive bacteria |
B/F | The ratio of bacteria to fungi |
A-C/O-C | The ratio of alkyl C to O-alkyl C |
References
- FAO; CAAS. Carbon Neutral Tea Production in China—Three Pilot Case Studies; FAO: Rome, Italy, 2021; ISBN 978-92-5-134373-9. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook 2024; China Statistics Press: Beijing, China, 2024; ISBN 978-7-5056-3527-2. [Google Scholar]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B.; et al. Carbon Pools in China’s Terrestrial Ecosystems: New Estimates Based on an Intensive Field Survey. Proc. Natl. Acad. Sci. USA 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Wu, B.S.; Li, F.; Li, X.; Wang, Z.; Hou, J.; Cao, R.; Yang, W. Soil Organic Carbon Stock in China’s Tea Plantations and Their Great Potential of Carbon Sequestration. J. Clean. Prod. 2023, 421, 138485. [Google Scholar] [CrossRef]
- Jia, J.; Yu, D.; Zhou, W.; Zhou, L.; Bao, Y.; Meng, Y.; Dai, L. Variations of Soil Aggregates and Soil Organic Carbon Mineralization across Forest Types on the Northern Slope of Changbai Mountain. Acta Ecol. Sin. 2015, 35, 1–7. [Google Scholar] [CrossRef]
- Zhu, R.; Zheng, Z.; Li, T.; Zhang, X.; He, S.; Wang, Y.; Liu, T.; Li, W. Dynamics of Soil Organic Carbon Mineralization in Tea Plantations Converted from Farmland at Western Sichuan, China. PLoS ONE 2017, 12, e0185271. [Google Scholar] [CrossRef]
- Li, W. Study on the Organic Carbon Dynamics and Its Mineralization Characteristics with Tea Plantations Soils. Master’s Thesis, Sichuan Agricultural University, Yaan, China, 2016. [Google Scholar]
- Tchienkoua, M.; Zech, W. Organic Carbon and Plant Nutrient Dynamics under Three Land Uses in the Highlands of West Cameroon. Agric. Ecosyst. Environ. 2004, 104, 673–679. [Google Scholar] [CrossRef]
- Zou, S.; Huang, C.; Feng, T.; Chen, Y.; Bai, X.; Li, W.; He, B. Effects of Woodland Conversion to Tea Plantations and Tea Planting Age on Soil Organic Carbon Accrual in Subtropical China. Forests 2024, 15, 1862. [Google Scholar] [CrossRef]
- Wang, H.; Jin, J.; Yu, P.; Fu, W.; Morrison, L.; Lin, H.; Meng, M.; Zhou, X.; Lv, Y.; Wu, J. Converting Evergreen Broad-Leaved Forests into Tea and Moso Bamboo Plantations Affects Labile Carbon Pools and the Chemical Composition of Soil Organic Carbon. Sci. Total Environ. 2020, 711, 135225. [Google Scholar] [CrossRef]
- Chen, D.; Wang, C.; Li, Y.; Liu, X.; Wang, Y.; Qin, J.; Wu, J. Effects of Land-Use Conversion from Masson Pine Forests to Tea Plantations on Net Ecosystem Carbon and Greenhouse Gas Budgets. Agric. Ecosyst. Environ. 2021, 320, 107578. [Google Scholar] [CrossRef]
- Zhang, S.; Lv, J.; Li, Y.; Zhang, L.; Hu, Q.; Li, Z.; Yang, X.; Li, J.; Wu, T.; Mao, Y.; et al. Changes in Soil Organic Carbon Stocks and Mineralization Following the Replacement of Secondary Evergreen Broadleaf Forests with Tea (Camellia Sinensis L.) Plantations. Soil Use Manag. 2024, 40, e13125. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. Analytical Approaches for Characterizing Soil Organic Matter. Org. Geochem. 2000, 31, 609–625. [Google Scholar] [CrossRef]
- Köster, K.; Aaltonen, H.; Berninger, F.; Heinonsalo, J.; Köster, E.; Ribeiro-Kumara, C.; Sun, H.; Tedersoo, L.; Zhou, X.; Pumpanen, J. Impacts of Wildfire on Soil Microbiome in Boreal Environments. Curr. Opin. Environ. Sci. Health 2021, 22, 100258. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Li, L.-J.; Yao, S.-H.; Mao, J.-D.; Schmidt-Rohr, K.; Olk, D.C.; Cao, X.-Y.; Cui, J.-F.; Zhang, B. Distinct Changes in Composition of Soil Organic Matter with Length of Cropping Time in Subsoils of a Phaeozem and Chernozem. Eur. J. Soil Sci. 2018, 69, 868–878. [Google Scholar] [CrossRef]
- Neff, J.C.; Harden, J.W.; Gleixner, G. Fire Effects on Soil Organic Matter Content, Composition, and Nutrients in Boreal Interior Alaska. Can. J. For. Res. 2005, 35, 2178–2187. [Google Scholar] [CrossRef]
- Certini, G.; Nocentini, C.; Knicker, H.; Arfaioli, P.; Rumpel, C. Wildfire Effects on Soil Organic Matter Quantity and Quality in Two Fire-Prone Mediterranean Pine Forests. Geoderma 2011, 167–168, 148–155. [Google Scholar] [CrossRef]
- Han, W.; Kemmitt, S.J.; Brookes, P.C. Soil Microbial Biomass and Activity in Chinese Tea Gardens of Varying Stand Age and Productivity. Soil Biol. Biochem. 2007, 39, 1468–1478. [Google Scholar] [CrossRef]
- He, S.; Zheng, Z.; Zhu, R. Long-Term Tea Plantation Effects on Composition and Stabilization of Soil Organic Matter in Southwest China. CATENA 2021, 199, 105132. [Google Scholar] [CrossRef]
- Lützow, M.V.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of Organic Matter in Temperate Soils: Mechanisms and Their Relevance under Different Soil Conditions—A Review. Eur. J. Soil Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Guenet, B.; Juarez, S.; Bardoux, G.; Abbadie, L.; Chenu, C. Evidence That Stable C Is as Vulnerable to Priming Effect as Is More Labile C in Soil. Soil Biol. Biochem. 2012, 52, 43–48. [Google Scholar] [CrossRef]
- Yin, X.; Yu, X.; Qin, L.; Jiang, M.; Lu, X.; Zou, Y. Reclamation Leads to Loss of Soil Organic Carbon and Molecular Complexity: Evidence from Natural to Reclaimed Wetlands. Soil Tillage Res. 2025, 248, 106436. [Google Scholar] [CrossRef]
- Liang, Y.; Fang, J.; Jia, W.; Wang, S.; Liu, H.; Liu, W.; Zhang, Q.; Yang, G.; Han, X.; Ren, G. Changes in Soil Aggregate Carbon Components and Responses to Plant Input during Vegetation Restoration in the Loess Plateau, China. Plants 2024, 13, 2455. [Google Scholar] [CrossRef]
- Díaz, E.; Jiménez, J.I.; Nogales, J. Aerobic Degradation of Aromatic Compounds. Curr. Opin. Biotechnol. 2013, 24, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, T.; Zheng, Z. Tea Plantation Age Effects on Soil Aggregate-Associated Carbon and Nitrogen in the Hilly Region of Western Sichuan, China. Soil Tillage Res. 2018, 180, 91–98. [Google Scholar] [CrossRef]
- Li, W.; Zheng, Z.; Li, T.; Zhang, X.; Wang, Y.; Yu, H.; He, S.; Liu, T. Effect of Tea Plantation Age on the Distribution of Soil Organic Carbon Fractions within Water-Stable Aggregates in the Hilly Region of Western Sichuan, China. CATENA 2015, 133, 198–205. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2022; ISBN 978-1998295005. [Google Scholar]
- Feng, W.; Plante, A.F.; Aufdenkampe, A.K.; Six, J. Soil Organic Matter Stability in Organo-Mineral Complexes as a Function of Increasing C Loading. Soil Biol. Biochem. 2014, 69, 398–405. [Google Scholar] [CrossRef]
- Klute, A. Methods of Soil Analysis. Part 1: Physical and Mineralogical Methods, 9th ed.; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1986; ISBN 978-0-89118-864-3. [Google Scholar]
- Parfitt, R.L.; Childs, C.W. Estimation of Forms of Fe and Al—A Review, and Analysis of Contrasting Soils by Dissolution and Mossbauer Methods. Soil Res. 1988, 26, 121–144. [Google Scholar] [CrossRef]
- Mathers, N.J.; Xu, Z. Solid-State 13C NMR Spectroscopy: Characterization of Soil Organic Matter under Two Contrasting Residue Management Regimes in a 2-Year-Old Pine Plantation of Subtropical Australia. Geoderma 2003, 114, 19–31. [Google Scholar] [CrossRef]
- Skjemstad, J.O.; Clarke, P.; Taylor, J.A.; Oades, J.M.; Newman, R.H. The Removal of Magnetic Materials from Surface Soils—A Solid State 13C CP/MAS NMR Study. Aust. J. Soil Res. 1994, 32, 1215–1229. [Google Scholar] [CrossRef]
- Zhang, Y.-L.; Yao, S.-H.; Cao, X.-Y.; Schmidt-Rohr, K.; Olk, D.C.; Mao, J.-D.; Zhang, B. Structural Evidence for Soil Organic Matter Turnover Following Glucose Addition and Microbial Controls over Soil Carbon Change at Different Horizons of a Mollisol. Soil Biol. Biochem. 2018, 119, 63–73. [Google Scholar] [CrossRef]
- Mao, J.; Cao, X.; Chen, N. Characterization of Biochars Using Advanced Solid-State 13C Nuclear Magnetic Resonance Spectroscopy. In Advanced Biofuels and Bioproducts; Springer: New York, NY, USA, 2013; pp. 47–55. ISBN 978-1-4614-3348-4. [Google Scholar]
- Baldock, J.; Oades, J.; Nelson, P.; Skene, T.; Golchin, A.; Clarke, P. Assessing the Extent of Decomposition of Natural Organic Materials Using Solid-State 13C NMR Spectroscopy. Aust. J. Soil Res. 1997, 35, 1061–1084. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, C.; Zhang, K.; Shi, S.; Guo, J.; Gao, F.; Liu, J.; Wang, J.; Liu, Y. The Influence of Tree Species on Soil Organic Carbon Stability under Three Temperate Forests in the Baihua Mountain Reserve, China. Global Ecol. Conserv. 2021, 26, e01454. [Google Scholar] [CrossRef]
- Zhang, J.; Dou, S.; Zhu, P.; Gao, H.; Song, X.; Wang, L. Effect of Long-Term Application of Organic Fertilizer on Structural Characteristics of Humin in BlackSoil—A Solid-State 13C NMR Study. Sci. Agric. Sin. 2009, 42, 2223–2228. [Google Scholar] [CrossRef]
- Bossio, D.A.; Scow, K.M.; Gunapala, N.; Graham, K.J. Determinants of Soil Microbial Communities: Effects of Agricultural Management, Season, and Soil Type on Phospholipid Fatty Acid Profiles. Microb. Ecol. 1998, 36, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, N.; Wang, J.; Yao, H.; Qiu, Q.; Chapman, S.J. High Turnover Rate of Free Phospholipids in Soil Confirms the Classic Hypothesis of PLFA Methodology. Soil Biol. Biochem. 2019, 135, 323–330. [Google Scholar] [CrossRef]
- Zhao, C.; Long, J.; Liao, H.; Zheng, C.; Li, J.; Liu, L.; Zhang, M. Dynamics of Soil Microbial Communities Following Vegetation Succession in a Karst Mountain Ecosystem, Southwest China. Sci Rep. 2019, 9, 2160. [Google Scholar] [CrossRef]
- Veum, K.S.; Lorenz, T.; Kremer, R.J. Phospholipid Fatty Acid Profiles of Soils under Variable Handling and Storage Conditions. Agron. J. 2019, 111, 1090–1096. [Google Scholar] [CrossRef]
- Ma, Q.; Kuzyakov, Y.; Pan, W.; Tang, S.; Chadwick, D.R.; Wen, Y.; Hill, P.W.; Macdonald, A.; Ge, T.; Si, L.; et al. Substrate Control of Sulphur Utilisation and Microbial Stoichiometry in Soil: Results of 13C, 15N, 14C, and 35S Quad Labelling. ISME J. 2021, 15, 3148–3158. [Google Scholar] [CrossRef]
- Joergensen, R. Phospholipid Fatty Acids in Soil—Drawbacks and Future Prospects. Biol. Fertil. Soils 2021, 58, 1–6. [Google Scholar] [CrossRef]
- Zelles, L. Fatty Acid Patterns of Phospholipids and Lipopolysaccharides in the Characterisation of Microbial Communities in Soil: A Review. Biol. Fertil. Soils 1999, 29, 111–129. [Google Scholar] [CrossRef]
- Weiglein, T.L.; Strahm, B.D.; Bowman, M.M.; Gallo, A.C.; Hatten, J.A.; Heckman, K.A.; Matosziuk, L.M.; Nave, L.E.; Possinger, A.R.; SanClements, M.D.; et al. Key Predictors of Soil Organic Matter Vulnerability to Mineralization Differ with Depth at a Continental Scale. Biogeochemistry 2022, 157, 87–107. [Google Scholar] [CrossRef]
- Bird, M.I.; Wynn, J.G.; Saiz, G.; Wurster, C.M.; McBeath, A. The Pyrogenic Carbon Cycle. Annu. Rev. Earth Planet. Sci. 2015, 43, 273–298. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Harden, J.; Georgiou, K.; Hemes, K.S.; Malhotra, A.; Nolan, C.J.; Jackson, R.B. Fire Effects on the Persistence of Soil Organic Matter and Long-Term Carbon Storage. Nat. Geosci. 2022, 15, 5–13. [Google Scholar] [CrossRef]
- González-Pérez, J.A.; González-Vila, F.J.; Almendros, G.; Knicker, H. The Effect of Fire on Soil Organic Matter—A Review. Environ. Int. 2004, 30, 855–870. [Google Scholar] [CrossRef]
- Kögel-Knabner, I. The Macromolecular Organic Composition of Plant and Microbial Residues as Inputs to Soil Organic Matter. Soil Biol. Biochem. 2002, 34, 139–162. [Google Scholar] [CrossRef]
- Witzgall, K.; Vidal, A.; Schubert, D.I.; Höschen, C.; Schweizer, S.A.; Buegger, F.; Pouteau, V.; Chenu, C.; Mueller, C.W. Particulate Organic Matter as a Functional Soil Component for Persistent Soil Organic Carbon. Nat. Commun. 2021, 12, 4115. [Google Scholar] [CrossRef]
- Fanin, N.; Kardol, P.; Farrell, M.; Nilsson, M.-C.; Gundale, M.J.; Wardle, D.A. The Ratio of Gram-Positive to Gram-Negative Bacterial PLFA Markers as an Indicator of Carbon Availability in Organic Soils. Soil Biol. Biochem. 2019, 128, 111–114. [Google Scholar] [CrossRef]
- Cotter, P.D.; Hill, C. Surviving the Acid Test: Responses of Gram-Positive Bacteria to Low pH. Microbiol. Mol. Biol. Rev. 2003, 67, 429–453. [Google Scholar] [CrossRef]
- Wang, S.; Yao, H.; Huang, X.; Yang, Y.; Zheng, B.; Lin, S.; Wang, W. Research Progress on Soil Organic Carbon Pools Components, Influencing Factors and Stability of Tea Plantation. Res. Environ. Sci. 2024, 37, 1104–1115. [Google Scholar] [CrossRef]
- Han, Z.; Wu, X.; Liang, A.; Li, S.; Gao, H.; Song, X.; Liu, X.; Jia, A.; Degré, A. Conservation Tillage Enhances the Sequestration and Iron-Mediated Stabilization of Aggregate-Associated Organic Carbon in Mollisols. CATENA 2024, 243, 108197. [Google Scholar] [CrossRef]
- Tian, Y.; Lu, S. Amorphous Iron Oxides Protect Aggregate-Associated Organic Carbon from Microbial Utilization and Decomposition Evidenced from the Natural Abundance of 13C. Soil Tillage Res. 2023, 227, 105623. [Google Scholar] [CrossRef]
- Hall, S.J.; Silver, W.L. Iron Oxidation Stimulates Organic Matter Decomposition in Humid Tropical Forest Soils. Glob. Change Biol. 2013, 19, 2804–2813. [Google Scholar] [CrossRef]
- Juang, K.-W.; Chen, C.-P. Changes in Soil Organic Carbon and Nitrogen Stocks in Organic Farming Practice and Abandoned Tea Plantation. Bot. Stud. 2023, 64, 28. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Z.; Wang, F.; You, Z.M.; Wu, Z.D.; Jiang, F.Y.; Zhang, W.J. Effect of Nitrogen Fertilization on Organic Carbon Mineralization in Soils at Tea Plantations. Fujian J. Agric. Sci. 2014, 29, 1092–1097. [Google Scholar]
- Kong, Z.; Zhang, L. Soil Carbon Sequestration Capacity and Accumulation Characteristics of Different Organic Carbon Fractions in Tea Gardens in Northwest Zhejiang. J. Zhejiang Univ. (Agric. Life Sci. Ed.) 2016, 42, 209–219. [Google Scholar]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of Soil Organic Matter as an Ecosystem Property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef]
Tea Plantation | pH | SOC (g kg−1) | TN (g kg−1) | C/N | δ13C | δ15N | SSA (m2 g−1) | Soil Particle Size Distribution (g kg−1) | ||
---|---|---|---|---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||||||
FMT4 | 4.81 ± 0.05 d | 27.1 ± 0.0 a | 2.2 ± 0.0 b | 12.1 ± 0.1 a | −20.6 ± 0.0 a | 8.2 ± 0.4 b | 28.3 ± 0.1 a | 308 ± 7 a | 287 ± 4 a | 405 ± 12 e |
MT3 | 5.01 ± 0.01 c | 13.5 ± 0.1 d | 1.3 ± 0.0 e | 10.5 ± 0.1 c | −24.3 ± 0.0 c | 11.8 ± 0.5 a | 16.1 ± 0.2 d | 241 ± 1 c | 200 ± 3 c | 559 ± 4 c |
MT30 | 5.04 ± 0.01 b | 23.1 ± 0.2 b | 2.0 ± 0.0 c | 11.4 ± 0.1 b | −24.6 ± 0.0 d | 7.9 ± 0.3 b | 16.8 ± 0.8 d | 210 ± 7 d | 178 ± 13 d | 612 ± 20 b |
MT150 | 4.40 ± 0.03 e | 27.0 ± 0.6 a | 2.8 ± 0.0 a | 9.6 ± 0.2 d | −23.4 ± 0.1 b | 8.4 ± 0.1 b | 22.2 ± 0.3 b | 185 ± 6 e | 120 ± 4 e | 694 ± 10 a |
MT200 | 5.73 ± 0.01 a | 18.6 ± 0.5 c | 1.7 ± 0.0 d | 11.1 ± 0.2 b | −24.2 ± 0.0 c | 9.2 ± 0.1 b | 20.7 ± 0.2 c | 278 ± 3 b | 243 ± 4 b | 479 ± 7 d |
Tea Plantation Type | Assignment at Different Chemical Shift Regions (ppm) and Their Relative Proportions (%) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0–46 | 46–63 | 63–110 | 110–142 | 142–161 | 161–188 | |||||||||
Nonpolar Alkyl C | N-Alkyl/ Methoxyl C | O-Alkyl C | Aromatics | COO/ N-C=O | Alkyl C/ O-Alkyl C | Hydrophobic C/Hydrophilic C | ||||||||
NCH | OCH3 a | Total | OCH | OCq a | Total | C-H | C-C a | C-O | Total | |||||
FMT 4 | 17.0 (0.8) | 7.7 (0.4) | 1.3 (0.2) | 9.0 (0.4) | 26.5 (1.3) | 6.3 (0.7) | 32.8 (1.6) | 8.5 (0.4) | 17.6 (2.1) | 7.3 (0.4) | 33.4 (1.6) | 7.8 (0.4) | 0.52 (1.1) | 1.24 (0.8) |
MT 3 | 27.0 (2.9) | 8.2 (0.9) | 2.9 (0.6) | 11.1 (1.2) | 33.4 (3.5) | 3.0 (0.6) | 36.4 (3.9) | 6.1 (0.7) | 9.1 (1.8) | 4.7 (0.5) | 19.9 (2.1) | 5.5 (0.6) | 0.74 (0.3) | 1.12 (0.0) |
MT 30 | 25.4 (1.6) | 9.3 (0.6) | 0.8 (0.1) | 10.1 (0.6) | 33.1 (2.1) | 4.1 (0.3) | 37.2 (2.3) | 8.6 (0.2) | 7.5 (0.6) | 5.2 (0.3) | 21.3 (1.3) | 6.0 (0.4) | 0.68 (0.5) | 1.08 (0.3) |
MT 150 | 25.1 (1.3) | 11.1 (0.6) | 2.0 (0.3) | 13.1 (0.7) | 37.8 (2.0) | 5.2 (0.9) | 43.1 (2.3) | 5.0 (0.3) | 6.2 (1.1) | 2.9 (0.2) | 14.0 (0.8) | 4.7 (0.3) | 0.58 (0.3) | 0.82 (0.5) |
MT 200 | 20.8 (1.0) | 9.7 (0.6) | 3.3 (0.1) | 13 (0.7) | 36.6 (1.8) | 5.8 (1.1) | 42.4 (2.1) | 6.5 (0.3) | 7.1 (1.4) | 4.7 (0.2) | 18.4 (0.9) | 5.5 (0.3) | 0.49 (1.5) | 0.82 (0.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Ndzelu, B.S.; Chen, X.; Yao, S.; Zhang, Y. Mineralization of Soil Organic Carbon and Its Control Mechanisms Under Different Tea Plantations in Southwest Yunnan, China. Agriculture 2025, 15, 999. https://doi.org/10.3390/agriculture15090999
Xiao D, Ndzelu BS, Chen X, Yao S, Zhang Y. Mineralization of Soil Organic Carbon and Its Control Mechanisms Under Different Tea Plantations in Southwest Yunnan, China. Agriculture. 2025; 15(9):999. https://doi.org/10.3390/agriculture15090999
Chicago/Turabian StyleXiao, Dongyu, Batande Sinovuyo Ndzelu, Xi Chen, Shuihong Yao, and Yueling Zhang. 2025. "Mineralization of Soil Organic Carbon and Its Control Mechanisms Under Different Tea Plantations in Southwest Yunnan, China" Agriculture 15, no. 9: 999. https://doi.org/10.3390/agriculture15090999
APA StyleXiao, D., Ndzelu, B. S., Chen, X., Yao, S., & Zhang, Y. (2025). Mineralization of Soil Organic Carbon and Its Control Mechanisms Under Different Tea Plantations in Southwest Yunnan, China. Agriculture, 15(9), 999. https://doi.org/10.3390/agriculture15090999