Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review
Abstract
:1. Introduction
2. Methodology
3. Soil Health and Other Concepts
Assessment of Soil Health
4. Global Farming Practice Overview
5. Sustainable Soil Management Practices for Improving Soil Health
5.1. Conservative Tillage Practices
- A reduction in soil erosion: Conservation tillage significantly reduces soil erosion by wind and water by enhancing the ground cover, which decreases the soil erodibility. The retained crop residues act as a protective layer, limiting the direct impact of raindrops and wind, which helps in maintaining the soil structure and minimizing particle detachment and displacement.
- An increase in the SOC: A core principle of conservation tillage is maintaining at least 30% surface cover with crop residues, which facilitates the accumulation of organic carbon in the soil. This organic carbon is a crucial measure of soil health, enhancing the soil structure, fertility, and tolerance to environmental stressors while functioning as a carbon sink to alleviate climate change.
- Enhanced microbial health: The practice promotes microbial diversity and biomass by providing an ample supply of organic matter, which serves as a food source for soil microorganisms. Increased microbial activity supports nutrient cycling, enhances nitrogen fixation, and improves soil enzymatic functions, all of which contribute to plant health and soil resilience.
- Enhanced physical soil characteristics: Conservation tillage improves essential physical characteristics, including the water-holding capacity, soil aggregation, infiltration rate, porosity, bulk density, and soil strength. These improvements promote root growth, increase the water availability, and decrease the risk of soil compaction, resulting in more robust crop performance and resilience.
- Nutrient supply from crop residues: Crop residues contribute essential nutrients like nitrogen, phosphorus, and potassium as they decompose, which enhances the chemical health of the soil. This natural nutrient recycling reduces the dependency on synthetic fertilizers, supports sustainable nutrient management, and promotes a balanced soil ecosystem.
- Enhanced chemical soil properties: Conservation tillage positively impacts the soil’s chemical properties, such as its temperature moderation, pH buffering, nutrient retention, and ion exchange capacity. These benefits contribute to a stable environment for root development, improve the nutrient availability, and increase the soil’s resilience to acidification or salinization.
- The control of soil salinity: Preserving crop remains on the soil surface diminishes evaporation, hence aiding in the regulation of root zone salinity. Minimized evaporation restricts the ascension of salts, which may concentrate near the soil surface and impede plant growth, therefore promoting enhanced crop vitality in saline-affected soils [18,88].
5.2. Carbon Farming and Soil Organic Carbon (SOC)
5.3. Crop Rotation
5.4. Cover Crops and Mulching Management
5.5. Organic Amendments
5.6. Crop Waste and Agro-Industrial By-Products
5.7. Soil Amendments
5.8. Integrated Pest Management (IPM)
5.9. Integrated Nutrient Management (INM)
5.10. Integrated Farming Systems (IFSs)
5.11. Agroforestry
5.12. Precision Agriculture Technologies
6. Future Directions and Challenges in Soil Health Research
7. Conclusions and Practical Solutions for Scaling up Sustainable Practices
- Policies and Regulations: Governments can establish frameworks that incentivize sustainable practices, such as carbon taxes, renewable energy subsidies, or strict pollution controls.
- Innovation and Technology: Investing in cutting-edge solutions like clean energy, waste-to-resource technologies, and water conservation systems can make sustainability more feasible and attractive.
- Corporate Responsibility: Organizations can adopt circular economy models, enhance supply chain transparency, and integrate sustainability goals into their main activities.
- Community Involvement: Technical training programs and the mobilization of local communities will ensure support and implementation, making practices more effective on a larger scale.
- Global Collaboration: Partnerships across borders can allow for exchanging knowledge, pooling resources, and fostering innovation.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foley, J.A.; Ramankutty, N.; Brauman, K.A.; Cassidy, E.S.; Gerber, J.S.; Johnston, M.; Mueller, N.D.; O’Connell, C.; Ray, D.K.; West, P.C.; et al. Solutions for a Cultivated Planet. Nature 2011, 478, 337–342. [Google Scholar] [CrossRef] [PubMed]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil Health in Agricultural Systems. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef] [PubMed]
- Oliver, M.A.; Gregory, P.J. Soil, Food Security and Human Health: A Review: Soil, Food Security and Human Health. Eur. J. Soil Sci. 2015, 66, 257–276. [Google Scholar] [CrossRef]
- Gomiero, T. Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef]
- Panagos, P.; Broothaerts, N.; Ballabio, C.; Orgiazzi, A.; De Rosa, D.; Borrelli, P.; Liakos, L.; Vieira, D.; Van Eynde, E.; Arias Navarro, C.; et al. How the EU Soil Observatory Is Providing Solid Science for Healthy Soils. Eur. J. Soil Sci. 2024, 75, e13507. [Google Scholar] [CrossRef]
- Chandra, N. Agricultural Development And Environmental Sustainability. Planta 2023, 7, 1374–1386. [Google Scholar]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.M.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J.; et al. Cost-Effective Mitigation of Nitrogen Pollution from Global Croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef]
- Estrada-Carmona, N.; S’anchez, A.C.; Remans, R.; Jones, S.K. Complex Agricultural Landscapes Host More Biodiversity than Simple Ones: A Global Meta-Analysis. Proc. Natl. Acad. Sci. USA 2022, 119, E2203385119. [Google Scholar] [CrossRef]
- Lal, R. Soil Organic Matter and Water Retention. Agron. J. 2020, 112, 3265–3277. [Google Scholar] [CrossRef]
- Kim, N.D.; Taylor, M.D.; Caldwell, J.; Rumsby, A.; Champeau, O.; Tremblay, L.A. Development and Deployment of a Framework to Prioritize Environmental Contamination Issues. Sustainability 2020, 12, 9393. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Global Predictions of Primary Soil Salinization under Changing Climate in the 21st Century. Nat. Commun. 2021, 12, 6663. [Google Scholar] [CrossRef]
- Pierce, F.J.; Lal, R. Monitoring the impact of soil erosion on crop productivity. In Soil Erosion Research Methods; Routledge: London, UK, 2017; pp. 235–263. [Google Scholar]
- Wiebe, K. Linking Land Quality, Agricultural Productivity and Food Security. Resource Economics Division, Economic Research Service, Agricultural Economic Report No. 823. Washington, DC: U.S. Department of Agriculture; 2003; p. 60+iii. Available online: http://www.ers.usda.gov (accessed on 30 June 2024).
- Rickson, R.J.; Deeks, L.K.; Graves, A.; Harris, J.A.H.; Kibblewhite, M.G.; Sakrabani, R. Input Constraints to Food Production: The Impact of Soil Degradation. Food Secur. 2015, 7, 351–364. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Panhwar, Q.A.; Shazana, M.A.R.S.; Elisa, A.A.; Fauziah, C.I.; Naher, U.A. Improving the productivity of acid sulfate soils for rice cultivation using limestone, basalt, organic fertilizer and/or their combinations. Sains Malays. 2016, 45, 383–392. [Google Scholar]
- Song, G.; Li, S.; Hui, R. Effect of Biological Soil Crusts on Seed Germination and Growth of an Exotic and Two Native Plant Species in an Arid Ecosystem. PLoS ONE 2017, 12, E0185839. [Google Scholar] [CrossRef] [PubMed]
- Tahat, M.M.; Alananbeh, K.M.; Othman, Y.A.; Leskovar, D.I. Soil Health and Sustainable Agriculture. Sustainability 2020, 12, 4859. [Google Scholar] [CrossRef]
- Gao, B.; Huang, T.; Ju, X.; Gu, B.; Huang, W.; Xu, L.; Rees, R.M.; Powlson, D.S.; Smith, P.; Cui, S. Chinese Cropping Systems Are a Net Source of Greenhouse Gases despite Soil Carbon Sequestration. Glob. Change Biol. 2018, 24, 5590–5606. [Google Scholar] [CrossRef]
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in Drinking Water—A Review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef]
- Yadav, A.N.; Kour, D.; Kaur, T.; Devi, R.; Yadav, A.; Dikilitas, M.; Abdel-Azeem, A.M.; Ahluwalia, A.S.; Saxena, A.K. Biodiversity, and Biotechnological Contribution of Beneficial Soil Microbiomes for Nutrient Cycling, Plant Growth Improvement and Nutrient Uptake. Biocatal. Agric. Biotechnol. 2021, 33, 102009. [Google Scholar] [CrossRef]
- Voroney, R.P. The soil habitat. In Soil Microbiology; Paul, E.A., Ed.; Academic Press: San Diego, CA, USA, 2007; pp. 25–49. [Google Scholar]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil Health and Sustainability: Managing the Biotic Component of Soil Quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Cárceles Rodríguez, B.; Durán-Zuazo, V.H.; Soriano Rodríguez, M.; García-Tejero, I.F.; Gálvez Ruiz, B.; Cuadros Tavira, S. Conservation Agriculture as a Sustainable System for Soil Health: A Review. Soil Syst. 2022, 6, 87. [Google Scholar] [CrossRef]
- Bonfante, A.; Basile, A.; Bouma, J. Targeting the Soil Quality and Soil Health Concepts When Aiming for the United Nations Sustainable Development Goals and the EU Green Deal. Soil 2020, 6, 453–466. [Google Scholar] [CrossRef]
- Doran, J.W.; Parkin, T.B. Defining and assessing soil quality. In Defining Soil Quality for a Sustainable Environment; Doran, J.W., Coleman, D.C., Bezdicek, D.F., Stewart, B.A., Eds.; SSSA: Madison, WI, USA, 1994; pp. 3–21. [Google Scholar]
- Stockdale, E.; Shepherd, A.; Fortune, M.A.; Cuttle, S. Soil Fertility in Organic Farming Systems—Fundamentally Different? Soil Use Manag. 2002, 18, 301–308. [Google Scholar] [CrossRef]
- Vanlauwe, B.; Bationo, A.; Chianu, J.; Giller, K.E.; Merckx, R.; Mokwunye, U.; Ohiokpehai, O.; Pypers, P.; Tabo, R.; Shepherd, K.D.; et al. Integrated Soil Fertility Management: Operational Definition and Consequences for Implementation and Dissemination. Outlook Agric. 2010, 39, 17–24. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers; Pearson Education India: Chennai, India, 2016. [Google Scholar]
- Silveira, M.L.A. Dissolved Organic Carbon and Bioavailability of N and P as Indicators of Soil Quality. Sci. Agric. 2005, 62, 502–508. [Google Scholar] [CrossRef]
- Cardoso, E.J.B.N.; Vasconcellos, R.L.F.; Bini, D.; Miyauchi, M.Y.H.; Santos, C.A.; Alves, P.R.L. Soil Health: Looking for Suitable Indicators. What Should Be Considered to Assess the Effects of Use and Management on Soil Health? Sci. Agric. 2013, 70, 274–289. [Google Scholar] [CrossRef]
- Yang, T.; Siddique, K.H.M.; Liu, K. Cropping Systems in Agriculture and Their Impact on Soil Health—A Review. Glob. Ecol. Conserv. 2020, 23, E01118. [Google Scholar] [CrossRef]
- Hartati, S.; Rosariastuti, R.; Prinandhika, G.M.; Aryani, W. Status of Soil Quality in Various Agroforestry Systems in Banyurip Village Jenar District Sragen Regency. IOP Conf. Ser. Earth Environ. Sci. 2024, 1362, 012025. [Google Scholar] [CrossRef]
- Shahane, A.A.; Shivay, Y.S. Soil Health and Its Improvement through Novel Agronomic and Innovative Approaches. Front. Agron. 2021, 3, 680456. [Google Scholar] [CrossRef]
- Zhang, J.K.; Hao, Q.J.; Jiang, C.S.; Wu, Y. Effect of Tillage Systems on Soil Organic Carbon and Soil Quality in a Purple Paddy Soil. Adv. Mat. Res. 2011, 183–185, 1190–1194. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Bongiorno, G.; Bai, Z.; Creamer, R.E.; De Deyn, G.; De Goede, R.; Fleskens, L.; Geissen, V.; Kuyper, T.W.; Mäder, P. Soil Quality—A Critical Review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Shukla, M.K.; Lal, R.; Ebinger, M. Determining Soil Quality Indicators by Factor Analysis. Soil Tillage Res. 2006, 87, 194–204. [Google Scholar] [CrossRef]
- Abdu, A.; Laekemariam, F.; Gidago, G.; Getaneh, L. Explaining the Soil Quality Using Different Assessment Techniques. Appl. Environ. Soil Sci. 2023, 3, 680456. [Google Scholar] [CrossRef]
- Tesfahunegn, G.B. Soil Quality Assessment Strategies for Evaluating Soil Degradation in Northern Ethiopia. Appl. Environ. Soil Sci. 2014, 2014, 1–14. [Google Scholar] [CrossRef]
- Futa, B.; Gmitrowicz-Iwan, J.; Skersiene, A.; Slepetiene, A.; Parasotas, I. Innovative Soil Management Strategies for Sustainable Agriculture. Sustainability 2024, 16, 9481. [Google Scholar] [CrossRef]
- Lal, R. Soil Health and Carbon Management. Food Energy Secur. 2016, 5, 212–222. [Google Scholar] [CrossRef]
- Lehmann, J.; Bossio, D.A.; Kögel-Knabner, I.; Rillig, M.C. The Concept and Future Prospects of Soil Health. Nat. Rev. Earth Environ. 2020, 1, 544–553. [Google Scholar] [CrossRef]
- Rinot, O.; Levy, G.J.; Steinberger, Y.; Svoray, T.; Eshel, G. Soil Health Assessment: A Critical Review of Current Methodologies and a Proposed New Approach. Sci. Total Environ. 2019, 648, 1484–1491. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Cherubin, M.R.; Karlen, D.L.; Cerri, C.E.P.; Franco, A.L.C.; Tormena, C.A.; Davies, C.A.; Cerri, C.C. Soil Quality Indexing Strategies for Evaluating Sugarcane Expansion in Brazil. PLoS ONE 2016, 11, E0150860. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.S.; Karlen, D.L.; Mitchell, J.P. A Comparison of Soil Quality Indexing Methods for Vegetable Production Systems in Northern California. Agric. Ecosyst. Environ. 2002, 90, 25–45. [Google Scholar] [CrossRef]
- Morrow, J.G.; Huggins, D.R.; Carpenter-Boggs, L.A.; Reganold, J.P. Evaluating Measures to Assess Soil Health in Long-term Agroecosystem Trials. Soil Sci. Soc. Am. J. 2016, 80, 450–462. [Google Scholar] [CrossRef]
- USDA. 2021. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/ (accessed on 25 October 2024).
- Qi, Y.; Darilek, J.L.; Huang, B.; Zhao, Y.; Sun, W.; Gu, Z. Evaluating Soil Quality Indices in an Agricultural Region of Jiangsu Province, China. Geoderma 2009, 149, 325–334. [Google Scholar] [CrossRef]
- Stevens, A.W. Review: The Economics of Soil Health. Food Policy 2018, 80, 1–9. [Google Scholar] [CrossRef]
- Yang, Y.-Y.; Goldsmith, A.; Herold, I.; Lecha, S.; Toor, G.S. Assessing Soil Organic Carbon in Soils to Enhance and Track Future Carbon Stocks. Agronomy 2020, 10, 1139. [Google Scholar] [CrossRef]
- Gupta, R.P. Particle size analysis by Pipette method. In Theory and Practices in Agrophysics Measurements; Gupta, R.P., Ed.; Allied Publishers Ltd.: Mumbai, India, 1998; pp. 45–49. [Google Scholar]
- Al-Shammary, A.A.G.; Kouzani, A.Z.; Kaynak, A.; Khoo, S.Y.; Norton, M.; Gates, W. Soil Bulk Density Estimation Methods: A Review. Pedosphere 2018, 28, 581–596. [Google Scholar] [CrossRef]
- Richards, L.A.; Fireman, M. Pressure-Plate Apparatus for Measuring Moisture Sorption and Transmission by Soils. Soil Sci. 1943, 56, 395–404. [Google Scholar] [CrossRef]
- Herrick, J.E.; Jones, T.L. A Dynamic Cone Penetrometer for Measuring Soil Penetration Resistance. Soil Sci. Soc. Am. J. 2002, 66, 1320–1324. [Google Scholar] [CrossRef]
- Das, D.K. Particle size distribution analysis of soil and textural classification. In Theory and Practices in Agrophysics Measurements; Gupta, R.P., Ed.; Ghildyal Allied Ltd.: Mumbai, India, 1998; pp. 31–44. [Google Scholar]
- Sur, H.S.; Gupta, R.P. Infiltration rate measurements. In Theory and Practices in Agrophysics Measurements; Gupta, R.P., Ed.; Allied Publishers Ltd.: Mumbai, India, 1998; pp. 191–194. [Google Scholar]
- Batey, T. Soil Compaction and Soil Management a Review. Soil Use Manag. 2009, 25, 335–345. [Google Scholar] [CrossRef]
- Rao, Y.N. Pore space analysis by using mercury intrusion porosimetry. In Theory and Practices in Agrophysics Measurements; Gupta, R.P., Ed.; Allied Publishers Ltd.: Mumbai, India, 1998; pp. 117–126. [Google Scholar]
- Prasad, R.; Shivay, Y.S.; Kumar, D.; Sharma, S.N. Learning by Doing Exercises in Soil Fertility (A Practical Manual for Soil Fertility); Division of Agronomy, Indian Agricultural Research Institute: New Delhi, India, 2006. [Google Scholar]
- Rao, A.S.; Reddy, K.S. Analysis of soils for pH, EC and available major nutrients. In Methods of Analysis of Soils, Plants, Waters Fertilizers and Organic Manures; Tandon, H.L.S., Ed.; Fertilizer Development and Consultation Organization: New Delhi, India, 2013. [Google Scholar]
- Tandon, H.L.S. Methods of Analysis of Soils, Plants, Waters, Fertilizers and Organic Manures; Fertilizer Development and Consultation Organization: New Delhi, India, 2013. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total Nitrogen Analysis of Soil and Plant Tissues. J. Assoc. Off. Anal. Chem. 1980, 63, 770–778. [Google Scholar] [CrossRef]
- Gillman, G.P.; Sumpter, E.A. Modification to the Compulsive Exchange Method for Measuring Exchange Characteristics of Soils. Soil Res. 1986, 24, 61. [Google Scholar] [CrossRef]
- Nunan, N.; Morgan, M.A.; Herlihy, M. Ultraviolet Absorbance (280 nm) of Compounds Released from Soil during Chloroform Fumigation as an Estimate of the Microbial Biomass. Soil Biol. Biochem. 1998, 30, 1599–1603. [Google Scholar] [CrossRef]
- Davidson, E.A.; Savage, K.; Verchot, L.V.; Navarro, R. Minimizing Artifacts and Biases in Chamber-Based Measurements of Soil Respiration. Agric. For. Meteorol. 2002, 113, 21–37. [Google Scholar] [CrossRef]
- Stewart, W.D.; Fitzgerald, G.P.; Burris, R.H. In Situ Studies on N2 Fixation Using the Acetylene Reduction Technique. Proc. Natl. Acad. Sci. USA 1967, 58, 2071–2078. [Google Scholar] [CrossRef]
- Sahoo, U.K.; Singh, S.L.; Gogoi, A.; Kenye, A.; Sahoo, S.S. Active and Passive Soil Organic Carbon Pools as Affected by Different Land Use Types in Mizoram, Northeast India. PLoS ONE 2019, 14, e0219969. [Google Scholar] [CrossRef]
- Gerke, J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst. 2022, 6, 33. [Google Scholar] [CrossRef]
- Anderson, T.H. Microbial eco-physiological indicators to assess soil quality. Agr. Ecosyst. Environ. 2003, 98, 285–293. [Google Scholar] [CrossRef]
- Toor, G.S.; Yang, Y.Y.; Das, S.; Dorsey, S.; Felton, G. Chapter Four—Soil health in agricultural ecosystems: Current status and future perspective. Adv. Agron. 2021, 168, 157–201. [Google Scholar] [CrossRef]
- Lei, X.; Shen, Y.; Zhao, J.; Huang, J.; Wang, H.; Yu, Y.; Xiao, C. Root Exudates Mediate the Processes of Soil Organic Carbon Input and Efflux. Plants 2023, 12, 630. [Google Scholar] [CrossRef]
- Wei, L.; Vosátka, M.; Cai, B.; Ding, J.; Lu, C.; Xu, J.; Yan, W.; Li, Y.; Liu, C. The Role of Arbuscular Mycorrhiza Fungi in the Decomposition of Fresh Residue and Soil Organic Carbon: A Mini-Review. Soil Sci. Soc. Am. J. 2019, 83, 511–517. [Google Scholar] [CrossRef]
- Omer, E.; Omer, E.; Szlatenyi, D.; Csenki, S.; Alrwashdeh, J.; Czako, I.; Láng, V. Farming Practice Variability and Its Implications for Soil Health in Agriculture: A Review. Agriculture 2024, 14, 2114. [Google Scholar] [CrossRef]
- Samberg, J.S.; Gerber, L.H.; Ramankutty, N.; Herrero, M.; West, P.C. Subnational distribution of average farm size and smallholder contributions to global food production. Environ. Res. Lett. 2016, 11, 124010. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Waha, K.; Dietrich, J.P.; Portmann, F.T.; Siebert, S.; Thornton, P.K.; Bondeau, A.; Herrero, M. Multiple cropping systems of the world and the potential for increasing cropping intensity. Glob. Environ. Change 2020, 64, 102131. [Google Scholar] [CrossRef]
- Giller, K.E.; Delaune, T.; Silva, J.V.; van Wijk, M.; Hammond, J.; Descheemaeker, K.; van de Ven, G.; Schut, A.G.T.; Taulya, G.; Chikowo, R.; et al. Small farms and development in sub-Saharan Africa: Farming for food, for income or for lack of better options? Food Sec. 2021, 13, 1431–1454. [Google Scholar] [CrossRef]
- Sharma, P.; Sharma, P.; Thakur, N. Sustainable farming practices and soil health: A pathway to achieving SDGs and future prospects. Discov. Sustain. 2024, 5, 250. [Google Scholar] [CrossRef]
- Busari, M.A.; Kukal, S.S.; Kaur, A.; Bhatt, R.; Dulazi, A.A. Conservation Tillage Impacts on Soil, Crop and the Environment. Int. Soil Water Conserv. Res. 2015, 3, 119–129. [Google Scholar] [CrossRef]
- MacRae, R.J.; Hill, S.B.; Mehuys, G.R.; Henning, J. Farm-scale agronomic and economic conversion from conventional to sustainable agriculture. Adv. Agron. 1990, 43, 155–198. [Google Scholar]
- Schmidt, O.; Padel, S.; Levidow, L. The Bio-Economy Concept and Knowledge Base in a Public Goods and Farmer Perspective. Bio-Based Appl. Econ. 2012, 1, 47–63. [Google Scholar]
- Reddy, P.P. Agro-Ecological Approaches to Pest Management for Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Chang, T.; Feng, G.; Paul, V.; Adeli, A.; Brooks, J.P.; Jenkins, J.N. Soil health assessment for different tillage and cropping systems to determine sustainable management practices in a humid region. Soil Tillage Res. 2023, 233, 105796. [Google Scholar] [CrossRef]
- Kassam, A.; Friedrich, T.; Derpsch, R. Global Spread of Conservation Agriculture. Int. J. Environ. Stud. 2019, 76, 29–51. [Google Scholar] [CrossRef]
- Bista, P.; Machado, S.; Ghimire, R.; Yorgey, G.; Wysocki, D. Conservation tillage systems. In Advances in Dryland Farming in the Inland Pacific Northwest; Washington State Univerity: Pullman, WA, USA, 2017; pp. 99–124. [Google Scholar]
- Ogieriakhi, M.O.; Woodward, R.T. Understanding Why Farmers Adopt Soil Conservation Tillage: A Systematic Review. Soil Secur. 2022, 9, 100077. [Google Scholar] [CrossRef]
- Toth, M.; Stumpp, C.; Klik, A.; Strauss, P.; Mehdi-Schulz, B.; Liebhard, G.; Strohmeier, S. Long-Term Effects of Tillage Systems on Soil Health of a Silt Loam in Lower Austria. Soil Tillage Res. 2024, 241, 106120. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Wortmann, C.S. Does Occasional Tillage Undo the Ecosystem Services Gained with No-till? A Review. Soil Tillage Res. 2020, 198, 104534. [Google Scholar] [CrossRef]
- Juhos, K.; Nugroho, P.A.; Jakab, G.; Prettl, N.; Kotroczó, Z.; Szigeti, N.; Szalai, Z.; Madarász, B. A Comprehensive Analysis of Soil Health Indicators in a Long-term Conservation Tillage Experiment. Soil Use Manag. 2024, 40, e12942. [Google Scholar] [CrossRef]
- Khakbazan, M.; Carew, R.; Crittenden, S.; Mohr, R.M.; Biswas, D.K. An Economic Review of Conservation Tillage Practices: Select Case Studies from the Eastern Prairies of Canada. Can. J. Soil Sci. 2024, 104, 11–21. [Google Scholar] [CrossRef]
- Awe, G.O.; Fontanela, E.; Reichert, J.M. Degree of Compaction, Aeration, and Soil Water Retention Indices of a Sugarcane Field without Soil Disturbance after Initial Tillage. Can. J. Soil Sci. 2024, 104, 91–107. [Google Scholar] [CrossRef]
- Rocco, S.; Munkholm, L.J.; Jensen, J.L. Long-Term Soil Quality and C Stock Effects of Tillage and Cover Cropping in a Conservation Agriculture System. Soil Tillage Res. 2024, 241, 106129. [Google Scholar] [CrossRef]
- Mafongoya, P.; Rusinamhodzi, L.; Siziba, S.; Thierfelder, C.; Mvumi, B.M.; Nhau, B.; Hove, L.; Chivenge, P. Maize Productivity and Profitability in Conservation Agriculture Systems across Agroecological Regions in Zimbabwe: A Review of Knowledge and Practice. Agric. Ecosyst. Environ. 2016, 220, 211–225. [Google Scholar] [CrossRef]
- Mathew, R.P.; Feng, Y.; Githinji, L.; Ankumah, R.; Balkcom, K.S. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities. Appl. Environ. Soil Sci. 2012, 2012, 548620. [Google Scholar] [CrossRef]
- Babu, S.; Singh, R.; Avasthe, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Ansari, M.A.; Valente, D.; Petrosillo, I. Soil Carbon Dynamics under Organic Farming: Impact of Tillage and Cropping Diversity. Ecol. Indic 2023, 147, 109940. [Google Scholar] [CrossRef]
- Tian, J.; Dungait, J.A.J.; Hou, R.; Deng, Y.; Hartley, I.P.; Yang, Y.; Kuzyakov, Y.; Zhang, F.; Cotrufo, M.F.; Zhou, J. Microbially Mediated Mechanisms Underlie Soil Carbon Accrual by Conservation Agriculture under Decade-Long Warming. Nat. Commun. 2024, 15, 377. [Google Scholar] [CrossRef] [PubMed]
- Petersson, T.; Antoniella, G.; Perugini, L.; Chiriaco, M.V.; Chiti, T. Carbon farming practices for European cropland: A review on the effect on soil organic carbon. Soil Tillage Res. 2025, 247, 106353. [Google Scholar] [CrossRef]
- Chen, Y.; Sun, Z.; Zhou, Y.; Yang, W.; Ma, Y. The future of sustainable farming: An evolutionary game framework for the promotion of agricultural green production technologies. J. Clean Prod. 2024, 17, 142606. [Google Scholar] [CrossRef]
- Han, L.; Sun, K.; Jin, J.; Xing, B. Some Concepts of Soil Organic Carbon Characteristics and Mineral Interaction from a Review of Literature. Soil Biol. Biochem. 2016, 94, 107–121. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, A.; Kahlon, C.S.; Brar, A.S.; Grover, K.K.; Dia, M.; Steiner, R.L. The Role of Cover Crops towards Sustainable Soil Health and Agriculture—A Review Paper. Am. J. Plant Sci. 2018, 09, 1935–1951. [Google Scholar] [CrossRef]
- Leifeld, J. Carbon farming: Climate change mitigation via nonpermanent carbon sink. J. Environ. Manag. 2023, 339, 117893. [Google Scholar] [CrossRef]
- Birsan, A.; Sprincean, V.; Ganea, I. Opportunities for Use in Practice of Intelligent Technologies in the Evaluation of Some Biological Variables. Stud. Univ. Mold. Ştiinţe Nat. 2023, 1, 53–64. [Google Scholar] [CrossRef]
- Ioniță, M. Impactul Agriculturii Conservatoare Asupra Stocării Carbonului În Sol. Rev. Agron. 2020, 45, 123–130. [Google Scholar]
- Ceobanu, I.; Georgescu, L.; Matei, S. Barometrul de Consum Cultural 2023. Comunități de Consum În Contextul Schimbărilor Societale; Editura Universul Academic: Bucuresti, Romania, 2024. [Google Scholar] [CrossRef]
- Popescu, A. Agroforesteria ca Soluție Pentru Sechestrarea Carbonului În România. Stud. De Mediu 2021, 12, 45–58. [Google Scholar]
- Toma, A. Involving Pharmacies in Pharmacovigilance—A Comparison between France and Romania. Farmacia 2023, 71, 648–654. [Google Scholar] [CrossRef]
- Barbu, C.; Scriban, R.-E.; Horodnic, S.-A. Percepții Ale Studenților Din Anul I Din Domeniul Silvicultură Privind Gestionarea Pădurilor. Bucov. For. 2023, 23, 97–109. [Google Scholar] [CrossRef]
- Rusu, M.; Cara, I.-G.; Stoica, F.; Țopa, D.; Jităreanu, G. Quality Parameters of Plum Orchard Subjected to Conventional and Ecological Management Systems in Temperate Production Area. Horticulturae 2024, 10, 907. [Google Scholar] [CrossRef]
- Rusu, M.; Motrescu, I.; Cara, I.G.; Topa, D.; Jitareanu, G. Variability of soil health status using X-Ray fluorescence spectroscopy (XRF) and Fourier Transformed Infrared Spectroscopy (FTIR). In Recent Advances in Technology Research and Education; Springer: Cham, Switzerland, 2024; pp. 151–163. [Google Scholar]
- Morya, R.; Bhargava, A.; Lalitha, G.; Vamshi, M.; Verma, S.; Rastogi, M.; Raj, S. Soil Management Practices to Enhance Carbon Sequestration Rates- A Review. Int. J. Environ. Clim. Change 2023, 11, 3762–3776. [Google Scholar] [CrossRef]
- Cara, I.G.; Țopa, D.; Puiu, I.; Jităreanu, G. Biochar a Promising Strategy for Pesticide-Contaminated Soils. Agriculture 2022, 12, 1579. [Google Scholar] [CrossRef]
- Țopa, D.; Cara, I.G.; Jităreanu, G. Long term Impact of Different Tillage Systems on Carbon Pools and Stocks, Soil Bulk density, Aggregation and Nutrients: A field Meta-Analysis. Catena 2021, 199, 105102. [Google Scholar] [CrossRef]
- Lin, H.; Zhou, M.; Zeng, F.; Xu, P.; Ma, S.; Zhang, B.; Li, Z.; Wang, Y.; Zhu, B. How Do Soil Organic Carbon Pool, Stock and Their Stability Respond to Crop Residue Incorporation in Subtropical Calcareous Agricultural Soils? Agric. Ecosyst. Environ. 2022, 332, 107927. [Google Scholar] [CrossRef]
- Poblete-Grant, P.; Cartes, P.; Pontigo, S.; Biron, P.; de La Luz Mora, M.; Rumpel, C. Phosphorus Fertiliser Source Determines the Allocation of Root-Derived Organic Carbon to Soil Organic Matter Fractions. Soil Biol. Biochem. 2022, 167, 108614. [Google Scholar] [CrossRef]
- Singh, P.; Benbi, D.K. Physical and Chemical Stabilization of Soil Organic Matter in Cropland Ecosystems under Rice–Wheat, Maize–Wheat and Cotton–Wheat Cropping Systems in Northwestern India. Carbon Manag. 2021, 12, 603–621. [Google Scholar] [CrossRef]
- Vives-Peris, V.; de Ollas, C.; Gómez-Cadenas, A.; Pérez-Clemente, R.M. Root Exudates: From Plant to Rhizosphere and Beyond. Plant Cell Rep. 2020, 39, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Palmero, F.; Fernandez, J.A.; Garcia, F.O.; Haro, R.J.; Prasad, P.V.V.; Salvagiotti, F.; Ciampitti, I.A. A Quantitative Review into the Contributions of Biological Nitrogen Fixation to Agricultural Systems by Grain Legumes. Eur. J. Agron. 2022, 136, 126514. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Ruis, S.J. Cover Crop Impacts on Soil Physical Properties: A Review. Soil Sci. Soc. Am. J. 2020, 84, 1527–1576. [Google Scholar] [CrossRef]
- Kan, Z.-R.; Liu, W.-X.; Liu, W.-S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.-L. Mechanisms of Soil Organic Carbon Stability and Its Response to No-till: A Global Synthesis and Perspective. Glob. Change Biol. 2022, 28, 693–710. [Google Scholar] [CrossRef]
- Schillinger, W.F.; Wuest, S.B. Wheat Stubble Height Effects on Soil Water Capture and Retention during Long Fallow. Agric. Water Manag. 2021, 256, 107117. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine Learning Applications for Precision Agriculture: A Comprehensive Review. IEEE Access 2021, 9, 4843–4873. [Google Scholar] [CrossRef]
- Bamdad, H.; Papari, S.; Lazarovits, G.; Berruti, F. Soil Amendments for Sustainable Agriculture: Microbial Organic Fertilizers. Soil Use Manag. 2022, 38, 94–120. [Google Scholar] [CrossRef]
- Cui, Y.; Wang, X.; Wang, X.; Zhang, X.; Fang, L. Evaluation Methods of Heavy Metal Pollution in Soils Based on Enzyme Activities: A Review. Soil Ecol. Lett. 2021, 3, 169–177. [Google Scholar] [CrossRef]
- Tian, K.; Wu, Q.; Liu, P.; Hu, W.; Huang, B.; Shi, B.; Zhou, Y.; Kwon, B.-O.; Choi, K.; Ryu, J.; et al. Ecological Risk Assessment of Heavy Metals in Sediments and Water from the Coastal Areas of the Bohai Sea and the Yellow Sea. Environ. Int. 2020, 136, 105512. [Google Scholar] [CrossRef]
- Liu, W.-X.; Wei, Y.-X.; Li, R.-C.; Chen, Z.; Wang, H.-D.; Virk, A.L.; Lal, R.; Zhao, X.; Zhang, H.-L. Improving Soil Aggregates Stability and Soil Organic Carbon Sequestration by No-till and Legume-Based Crop Rotations in the North China Plain. Sci. Total Environ. 2022, 847, 157518. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; Borggaard, O.K.; Ye, M.; Tian, K.; Zhang, H.; Holm, P.E. Soil Threshold Values for Cadmium Based on Paired Soil-Vegetable Content Analyses of Greenhouse Vegetable Production Systems in China: Implications for Safe Food Production. Environ. Pollut. 2018, 241, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, P.; Pellerin, S.; Seufert, V.; Nesme, T. Changes in Crop Rotations Would Impact Food Production in an Organically Farmed World. Nat. Sustain. 2019, 2, 378–385. [Google Scholar] [CrossRef]
- Mooleki, S.P.; Gan, Y.; Lemke, R.L.; Zentner, R.P.; Hamel, C. Effect of Green Manure Crops, Termination Method, Stubble Crops, and Fallow on Soil Water, Available N, and Exchangeable P. Can. J. Plant Sci. 2016, 96, 867–886. [Google Scholar] [CrossRef]
- Gan, Y.T.; Mooleki, S.P.; Lemke, R.L.; Zentner, R.P.; Ruan, Y.F. Durum Wheat Productivity in Response to Soil Water and Soil Residual Nitrogen Associated with Previous Crop Management. Agron. J. 2016, 108, 1468–1478. [Google Scholar] [CrossRef]
- San Martín, C.; Long, D.S.; Gourlie, J.A.; Barroso, J. Weed Responses to Fallow Management in Pacific Northwest Dryland Cropping Systems. PLoS ONE 2018, 13, e0204200. [Google Scholar] [CrossRef]
- Zentner, R.P.; Campbell, C.A.; Biederbeck, V.O.; Selles, F.; Lemke, R.; Jefferson, P.G.; Gan, Y. Long-Term Assessment of Management of an Annual Legume Green Manure Crop for Fallow Replacement in the Brown Soil Zone. Can. J. Plant Sci. 2004, 84, 11–22. [Google Scholar] [CrossRef]
- Xue, J.-F.; Yuan, Y.-Q.; Zhang, H.-L.; Ren, A.-X.; Lin, W.; Sun, M.; Gao, Z.-Q.; Sun, D.-S. Carbon Footprint of Dryland Winter Wheat under Film Mulching during Summer-Fallow Season and Sowing Method on the Loess Plateau. Ecol. Indic. 2018, 95, 12–20. [Google Scholar] [CrossRef]
- St Luce, M.; Lemke, R.; Gan, Y.; McConkey, B.; May, W.; Campbell, C.; Zentner, R.; Wang, H.; Kroebel, R.; Fernandez, M.; et al. Diversifying Cropping Systems Enhances Productivity, Stability, and Nitrogen Use Efficiency. Agron. J. 2020, 112, 1517–1536. [Google Scholar] [CrossRef]
- Almagro, M.; Díaz-Pereira, E.; Boix-Fayos, C.; Zornoza, R.; Sánchez-Navarro, V.; Re, P.; Fernández, C.; Martínez-Mena, M. The Combination of Crop Diversification and No Tillage Enhances Key Soil Quality Parameters Related to Soil Functioning without Compromising Crop Yields in a Low-Input Rainfed Almond Orchard under Semiarid Mediterranean Conditions. Agric. Ecosyst. Environ. 2023, 345, 108320. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Xi, X.; Cong, W.-F. Crop Diversification Reinforces Soil Microbiome Functions and Soil Health. Plant Soil 2022, 476, 375–383. [Google Scholar] [CrossRef]
- Kumar, N.; Nath, C.P.; Hazra, K.K.; Das, K.; Venkatesh, M.S.; Singh, M.K.; Singh, S.S.; Praharaj, C.S.; Singh, N.P. Impact of Zero-till Residue Management and Crop Diversification with Legumes on Soil Aggregation and Carbon Sequestration. Soil Tillage Res. 2019, 189, 158–167. [Google Scholar] [CrossRef]
- Bonnet, C.; Gaudio, N.; Alletto, L.; Raffaillac, D.; Bergez, J.E.; Debaeke, P.; Gavaland, A.; Willaume, M.; Bedoussac, L.; Justes, E. Design and Multicriteria Assessment of Low-Input Cropping Systems Based on Plant Diversification in Southwestern France. Agron. Sustain. Dev. 2021, 41, 65. [Google Scholar] [CrossRef]
- Meena, O.P.; Sammauria, R.; Gupta, A.K.; Gupta, K.C.; Behera, B.; Saxena, R.; Yadav, M.R.; Singh, P.; Meena, R.K.; Raza, M.B.; et al. Energy-Carbon Footprint Vis-à-Vis System Productivity and Profitability of Diversified Crop Rotations in Semi-Arid Plains of North-West India. J. Soil Sci. Plant Nutr. 2022, 22, 2026–2041. [Google Scholar] [CrossRef]
- Iheshiulo, E.M.; Larney, F.J.; Hernandez-Ramirez, G.; Luce, M.S.; Liu, K.; Chau, H.W. Do Diversified Crop Rotations Influence Soil Physical Health? A Meta-Analysis. Soil Tillage Res. 2023, 233, 105781. [Google Scholar] [CrossRef]
- Li, M.; Guo, J.; Ren, T.; Luo, G.; Shen, Q.; Lu, J.; Guo, S.; Ling, N. Crop Rotation History Constrains Soil Biodiversity and Multifunctionality Relationships. Agric. Ecosyst. Environ. 2021, 319, 107550. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acosta-Martínez, V.; DeBruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long Term Tillage, Cover Crop, and Fertilization Effects on Microbial Community Structure, Activity: Implications for Soil Quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Saxton, A.M. Thirty-Four Years of No-Tillage and Cover Crops Improve Soil Quality and Increase Cotton Yield in Alfisols, Southeastern USA. Geoderma 2019, 337, 998–1008. [Google Scholar] [CrossRef]
- Aziz, I.; Mahmood, T.; Islam, K.R. Effect of Long Term No-till and Conventional Tillage Practices on Soil Quality. Soil Tillage Res. 2013, 131, 28–35. [Google Scholar] [CrossRef]
- Haruna, S.; Ward, Z.; Cartwright, A.; Wunner, A. Influence of No-till Cover Crops on the Physical and Hydraulic Properties of a Paleudult. Int. Agrophysics 2023, 37, 189–199. [Google Scholar] [CrossRef]
- Dhakal, M.; Locke, M.A.; Reddy, K.N.; Moore, M.T.; Steinriede, R.W.; Krutz, L.J. Improving Soil Water Storage with No-till Cover Cropping in the Mississippi River Alluvial Basin. Soil Sci. Soc. Am. J. 2024, 88, 540–556. [Google Scholar] [CrossRef]
- Joyce, B.A.; Wallender, W.W.; Mitchell, J.P.; Huyck, L.M.; Temple, S.R.; Brostrom, P.N.; Hsiao, T.C. Infiltration and Soil Water Storage under Winter Cover Cropping in California’s Sacramento Valley. Trans. ASAE 2002, 45, 315–326. [Google Scholar] [CrossRef]
- Vukicevich, E.; Lowery, T.; Bowen, P.; Úrbez-Torres, J.R.; Hart, M. Cover Crops to Increase Soil Microbial Diversity and Mitigate Decline in Perennial Agriculture. A Review. Agron. Sust. Dev. 2016, 36, 48. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Alletto, L. Ecosystem Services of Cover Crops: A Research Roadmap. Trends Plant Sci. 2022, 27, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Biddoccu, M.; Guzmán, G.; Capello, G.; Thielke, T.; Strauss, P.; Winter, S.; Zaller, J.G.; Nicolai, A.; Cluzeau, D.; Popescu, D.; et al. Evaluation of Soil Erosion Risk and Identification of Soil Cover and Management Factor (C) for RUSLE in European Vineyards with Different Soil Management. Int. Soil Water Conserv. Res. 2020, 8, 337–353. [Google Scholar] [CrossRef]
- Price, A.J.; Monks, C.D.; Culpepper, A.S.; Duzy, L.M.; Kelton, J.A.; Marshall, M.W.; Steckel, L.E.; Sosnoskie, L.M.; Nichols, R.L. High-Residue Cover Crops Alone or with Strategic Tillage to Manage Glyphosate-Resistant Palmer Amaranth (Amaranthus Palmeri) in Southeastern Cotton (Gossypium Hirsutum). J. Soil Water Conserv. 2016, 71, 1–11. [Google Scholar] [CrossRef]
- Lounsbury, N.P.; Warren, N.D.; Wolfe, S.D.; Smith, R.G. Investigating Tarps to Facilitate Organic No-till Cabbage Production with High-Residue Cover Crops. Renew. Agric. Food Syst. 2020, 35, 227–233. [Google Scholar] [CrossRef]
- Mohammed, S.; Hassan, E.; Abdo, H.G.; Szabo, S.; Mokhtar, A.; Alsafadi, K.; Al-Khouri, I.; Rodrigo-Comino, J. Impacts of Rainstorms on Soil Erosion and Organic Matter for Different Cover Crop Systems in the Western Coast Agricultural Region of Syria. Soil Use Manag. 2021, 37, 196–213. [Google Scholar] [CrossRef]
- Basche, A.D.; DeLonge, M.S. Comparing Infiltration Rates in Soils Managed with Conventional and Alternative Farming Methods: A Meta-Analysis. PLoS ONE 2019, 14, e0215702. [Google Scholar] [CrossRef]
- Shu, X.; Zou, Y.; Shaw, L.J.; Todman, L.; Tibbett, M.; Sizmur, T. Cover Crop Residue Diversity Enhances Microbial Activity and Biomass with Additive Effects on Microbial Structure. Soil Res. 2021, 60, 349–359. [Google Scholar] [CrossRef]
- Crystal-Ornelas, R.; Thapa, R.; Tully, K.L. Soil Organic Carbon Is Affected by Organic Amendments, Conservation Tillage, and Cover Cropping in Organic Farming Systems: A Meta-Analysis. Agric. Ecosyst. Environ. 2021, 312, 107356. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.; Li, F.; Dai, J.; Li, Q.; Xue, C.; Cao, H.; Wang, S.; Malhi, S.S. Soil Water Storage and Winter Wheat Productivity Affected by Soil Surface Management and Precipitation in Dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Abrantes, J.R.C.B.; Prats, S.A.; Keizer, J.J.; de Lima, J.L.M.P. Effectiveness of the Application of Rice Straw Mulching Strips in Reducing Runoff and Soil Loss: Laboratory Soil Flume Experiments under Simulated Rainfall. Soil Tillage Res. 2018, 180, 238–249. [Google Scholar] [CrossRef]
- Fu, B.; Chen, L.; Huang, H.; Qu, P.; Wei, Z. Impacts of crop residues on soil health: A review. Environ. Pollut. Bioavailab. 2021, 33, 164–173. [Google Scholar] [CrossRef]
- Das, A.; Babu, S.; Singh, R.; Kumar, S.; Rathore, S.S.; Singh, V.K.; Datta, M.; Yadav, S.K.; Wani, O.A.; Yadav, D. Impact of Live Mulch-Based Conservation Tillage on Soil Properties and Productivity of Summer Maize in Indian Himalayas. Sustainability 2022, 14, 12078. [Google Scholar] [CrossRef]
- Lou, Y.; Zhang, X.; Zhang, S.; Li, N.; Zhao, Y.; Bai, W.; Sun, Z.; Zhang, Z. Effects of Straw Input on the Yield and Water-Use Efficiency of Spring Maize in Film-Mulched Farmland. Agriculture 2024, 14, 1803. [Google Scholar] [CrossRef]
- Yisfah, T.; Grum, B.; Aregay, G. Comparison of different mulching options for improving water productivity and maize yield in a semi-arid climate, Northern Ethiopia, Tigray. Discov. Agric. 2023, 1, 5. [Google Scholar] [CrossRef]
- Singh, V.K.; Malhi, G.S.; Kaur, M.; Singh, G.; Jatav, H.S. Use of organic soil amendments for improving soil ecosystem health and crop productivity. In Ecosystem Services: Types, Management and Benefits; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2022; p. 259. [Google Scholar]
- Kitamura, R.; Sugiyama, C.; Yasuda, K.; Nagatake, A.; Yuan, Y.; Du, J.; Yamaki, N.; Taira, K.; Kawai, M.; Hatano, R. Effects of three types of organic fertilizers on greenhouse gas emissions in a grassland on Andosol in Southern Hokkaido, Japan. Front. Sustain. Food Syst. 2021, 5, 649613. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Z.; Ye, Q.; Peng, Z.; Zhu, S.; Chen, H.; Liu, D.; Li, Y.; Deng, L.; Shu, X.; et al. Positive Effects of Organic Amendments on Soil Microbes and Their Functionality in Agro-Ecosystems. Plants 2023, 12, 3790. [Google Scholar] [CrossRef]
- Pieters, A.J. GreenManuring: Principles and Practices; John Wiley and Sons, Inc.: New York, NY, USA, 1927. [Google Scholar]
- Yang, L.; Bai, J.; Liu, J.; Zeng, N.; Cao, W. Green Manuring Effect on Changes of Soil Nitrogen Fractions, Maize Growth, and Nutrient Uptake. Agronomy 2018, 8, 261. [Google Scholar] [CrossRef]
- Ramesh, K.; Chandrasekaran, B. Soil Organic Carbon Build-up and Dynamics in Rice–Rice Cropping Systems. J. Agron. Crop Sci. 2004, 190, 21–27. [Google Scholar] [CrossRef]
- Valadares, R.V.; Avila-Silva, L.D.; Teixeira, R.D.S.; De Sousa, R.N.; Vergutz, L. Green manures and crop residues as source of nutrients in tropical environment. In Organic Fertilizers—From Basic Concepts to Applied Outcomes; Larramendy, M.L., Soloneski, S., Eds.; IntechOpen Publication: London, UK, 2016. [Google Scholar] [CrossRef]
- Pooniya, V.; Shivay, Y.S.; Rana, A.; Nain, L.; Prasanna, R. Enhancing Soil Nutrient Dynamics and Productivity of Basmati Rice through Residue Incorporation and Zinc Fertilization. Eur. J. Agron. 2012, 41, 28–37. [Google Scholar] [CrossRef]
- Maitra, S.; Zaman, A. Brown Manuring, An Effective Technique for Yield Sustainability and Weed Management of Cereal Crops: A Review. Int. J. Bioresour. Sci. 2017, 4, 1–5. [Google Scholar] [CrossRef]
- Gangaiah, B.; Babu, P. Brown Manuring as a Tool of Weed Management and Contributor to Nitrogen Nutrition of Direct Wet Seeded Rice. Oryza 2016, 53, 415–421. [Google Scholar]
- Singh, R.P.; Singh, P.K.; Singh, A.K. Effect of Green Manuring on Physic-Chemical Properties of Soil and Productivity of Rice. Oryza 2009, 46, 120–123. [Google Scholar]
- Maity, S.K.; Mukherjee, P.K. Effect of brown manuring on grain yield and partial factor productivity of nutrients in dry direct seeded summer rice (Oryza sativa L.) under Terai agro-ecological region of West Bengal. J. Crop Weed 2009, 5, 31–35. [Google Scholar]
- Qaswar, M.; Huang, J.; Ahmed, W.; Li, D.; Liu, S.; Ali, S.; Liu, K.; Xu, Y.; Zhang, L.; Liu, L.; et al. Long-Term Green Manure Rotations Improve Soil Biochemical Properties, Yield Sustainability and Nutrient Balances in Acidic Paddy Soil under a Rice-Based Cropping System. Agronomy 2019, 9, 780. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Lal, R.; Rehman, A.; Hussain, T.; Nadeem, A. Influence of Sesbania Brown Manuring and Rice Residue Mulch on Soil Health, Weeds and System Productivity of Conservation Rice–Wheat Systems: Soil Health and Weed Spectrum in Rice-Wheat System. Land Degrad. Dev. 2017, 28, 1078–1090. [Google Scholar] [CrossRef]
- Yadav, G.S.; Das, A.; Lal, R.; Babu, S.; Datta, M.; Meena, R.S.; Patil, S.B.; Singh, R. Impact of No-till and Mulching on Soil Carbon Sequestration under Rice (Oryza sativa L.)-Rapeseed (Brassica campestris L. Var. Rapeseed) Cropping System in Hilly Agro-Ecosystem of the Eastern Himalayas, India. Agric. Ecosyst. Environ. 2019, 275, 81–92. [Google Scholar] [CrossRef]
- Mishra, V.K.; Srivastava, S.; Bhardwaj, A.K.; Sharma, D.K.; Singh, Y.P.; Nayak, A.K. Resource Conservation Strategies for Rice-Wheat Cropping Systems on Partially Reclaimed Sodic Soils of the Indo-Gangetic Region, and Their Effects on Soil Carbon. Nat. Resour. Forum 2015, 39, 110–122. [Google Scholar] [CrossRef]
- Das, S.; Bhattacharyya, R.; Das, T.K.; Sharma, A.R.; Dwivedi, B.S.; Meena, M.C.; Dey, A.; Biswas, S.; Aditya, K.; Aggarwal, P.; et al. Soil Quality Indices in a Conservation Agriculture Based Rice-Mustard Cropping System in North-Western Indo-Gangetic Plains. Soil Tillage Res. 2021, 208, 104914. [Google Scholar] [CrossRef]
- Upadhyay, S.K.; Singh, G.; Rani, N.; Rajput, V.D.; Seth, C.S.; Dwivedi, P.; Minkina, T.; Wong, M.H.; Show, P.L.; Khoo, K.S. Transforming bio-waste into value-added products mediated microbes for enhancing soil health and crop production: Perspective views on circular economy. Environ. Technol. Innov. 2024, 34, 103573. [Google Scholar] [CrossRef]
- Liobikiene, G.; Chen, X.; Streimikiene, D.; Balezentis, T. The trends in bioeconomy development in the European Union: Exploiting capacity and productivity measures based on the land footprint approach. Land Use Policy 2020, 91, 104375. [Google Scholar] [CrossRef]
- Gupta, N.; Mahur, B.K.; Izrayeel, A.M.D.; Ahuja, A.; Rastogi, V.K. Biomass conversion of agricultural waste residues for different applications: A comprehensive review. Environ. Sci. Pollut. Res. 2022, 29, 73622–73647. [Google Scholar] [CrossRef] [PubMed]
- Obi, F.O.; Ugwuishiwu, B.O.; Nwakaire, J.N. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957–964. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Butterly, C.R.; Bhatta Kaudal, B.; Baldock, J.A.; Tang, C. Contribution of soluble and insoluble fractions of agricultural residues to short-term pH changes. Eur. J. Soil Sci. 2011, 62, 718–727. [Google Scholar] [CrossRef]
- Jarvis, S.C.; Stockdale, E.A.; Shepherd, M.A.; Powlson, D.S. Nitrogen mineralization in temperate agricultural soils: Processes and measurement. Adv. Agron. 1996, 57, 187–235. [Google Scholar]
- Barus, J. Utilization of crops residues as compost and biochar for improving physical properties and upland rice productivity. J. Degrad. Min. Lands Manag. 2016, 3, 631. [Google Scholar] [CrossRef]
- Chaudhary, S.; Dheri, G.S.; Brar, B.S. Long-term effects of NPK fertilizers and organic manures on carbon stabilization and management index under rice-wheat cropping system. Soil Tillage Res. 2017, 166, 59–66. [Google Scholar] [CrossRef]
- Kayombo, B.; Lal, R. Tillage systems and soil compaction in Africa. Soil Tillage Res. 1993, 27, 35–72. [Google Scholar] [CrossRef]
- Singh, R.; Das, R.; Sangwan, S.; Rohatgi, B.; Khanam, R.; Peera, S.K.P.G.; Das, S.; Lyngdoh, Y.A.; Langyan, S.; Shukla, A.; et al. Utilisation of Agro-Industrial Waste for Sustainable Green Production: A Review. Environ. Sustain. 2021, 4, 619–636. [Google Scholar] [CrossRef]
- Doran, J.W.; Sarrantonio, M.; Liebig, M.A. Soil health and sustainability. Adv. Agron. 1996, 56, 1–54. [Google Scholar] [CrossRef]
- Ajala, E.O.; Ighalo, J.O.; Ajala, M.A.; Adeniyi, A.G.; Ayanshola, A.M. Sugarcane bagasse: A biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess 2021, 8, 1–25. [Google Scholar] [CrossRef]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-Smart Soils. Nature 2016, 532, 49. [Google Scholar] [CrossRef]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A. Lochyński An Overview of Natural Soil Amendments in Agriculture. Soil Till Res 2023, 225, 105462. [Google Scholar] [CrossRef]
- Chhabra, R. Soil Salinity and Water Quality; CRC Press: Boca Raton, FL, USA; A.A. Balkema: Brookfield, TV, USA, 1996. [Google Scholar]
- Jehangir, I.A.; Khan, M.H.; Bhat, Z.A. Strategies for increasing crop production and productivity in problem soils. Int. J. For. Soil Environ. 2013, 3, 73–78. [Google Scholar]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Ryals, R.; Kaiser, M.; Torn, M.S.; Berhe, A.A.; Silver, W.L. Impacts of Organic Matter Amendments on Carbon and Nitrogen Dynamics in Grassland Soils. Soil Biol. Biochem. 2014, 68, 52–61. [Google Scholar] [CrossRef]
- Ortiz, C.; Yagüe, M.R.; Valdez, A.S.; Molina, M.G.; Bosch-Serra, À.D. Sustainability of Organic Fertilizers Use in Dryland Mediterranean Agriculture. Agriculture 2024, 14, 1301. [Google Scholar] [CrossRef]
- Oueriemmi, H.; Kidd, P.; Trasar-Cepeda, C.; Rodríguez-Garrido, B.; Zoghlami, R.; Ardhaoui, K.; Prieto-Fernández, Á.; Moussa, M. Evaluation of Composted Organic Wastes and Farmyard Manure for Improving Fertility of Poor Sandy Soils in Arid Regions. Agriculture 2021, 11, 415. [Google Scholar] [CrossRef]
- Li, X.; Zhu, W.; Xu, F.; Du, J.; Tian, X.; Shi, J.; Wei, G. Organic Amendments Affect Soil Organic Carbon Sequestration and Fractions in Fields with Long-Term Contrasting Nitrogen Applications. Agric. Ecosyst. Environ. 2021, 322, 107643. [Google Scholar] [CrossRef]
- Urra, J.; Alkorta, I.; Garbisu, C. Potential Benefits and Risks for Soil Health Derived from the Use of Organic Amendments in Agriculture. Agronomy 2019, 9, 542. [Google Scholar] [CrossRef]
- Guo, L.; Nie, Z.; Zhou, J.; Zhang, S.; An, F.; Zhang, L.; Tóth, T.; Yang, F.; Wang, Z. Effects of Different Organic Amendments on Soil Improvement, Bacterial Composition, and Functional Diversity in Saline–Sodic Soil. Agronomy 2022, 12, 2294. [Google Scholar] [CrossRef]
- Loconto, A.M.; Poisot, A.S.; Santacoloma, P. Innovative markets for sustainable agriculture. In How Innovations in Market Institutions Encourage Sustainable Agriculture in Developing Countries; Food and Agriculture Organization of the United Nations; Institut National de la Recherche Agronomique: Rome, Italy, 2016; ISBN 978-92-5-109327-6. [Google Scholar]
- Pretty, J.; Bharucha, Z.P. Integrated Pest Management for Sustainable Intensification of Agriculture in Asia and Africa. Insects 2015, 6, 152–182. [Google Scholar] [CrossRef]
- Romeh, A.A. Integrated pest management for sustainable agriculture. In The Handbook of Environmental Chemistry; Springer: Cham, Switherland, 2018; pp. 215–234. [Google Scholar]
- Pretty, J.N.; Williams, S.; Toulmin, C. Sustainable Intensification: Increasing Productivity in African Food and Agricultural Systems; Routledge: London, UK, 2012. [Google Scholar]
- Saliu, F.; Luqman, M.; Alkhaz’leh, H.S. A Review on the Impact of Sustainable Agriculture Practices on Crop Yields and Soil Health. Int. J. Res. Adv. Agric. Sci. 2023, 2, 1–13. [Google Scholar]
- Bhardwaj, S.; Dipta, B. Integrated nutrient and disease management practices in root and tuber crops. In Microbial Biotechnology in Crop Protection; Springer: Berlin/Heidelberg, Germany, 2021; pp. 97–121. [Google Scholar]
- Selim, M.M. Introduction to the Integrated Nutrient Management Strategies and Their Contribution to Yield and Soil Properties. Int. J. Agron. 2020, 2020, 2821678. [Google Scholar] [CrossRef]
- Sanginga, N.; Woomer, P.L. Integrated Soil Fertility Management in Africa: Principles, Practices, and Developmental Process; TSBF-CIAT: Nairobi, Kenya, 2009; 263p. [Google Scholar]
- Adeniyan, O.N.; Ojeniyi, S.O. Comparative Effectiveness of Different Levels of Poultry Manure with NPK Fertilizer on Residual Soil Fertility, Nutrient Uptake and Yield of Maize. Moor J. Agric. Res. 2005, 4, 2. [Google Scholar] [CrossRef]
- Chen, C.; Westcott, M.; Neill, K.; Wichman, D.; Knox, M. Row Configuration and Nitrogen Application for Barley–Pea Intercropping in Montana. Agron. J. 2004, 96, 1730–1738. [Google Scholar] [CrossRef]
- Chen, X.-P.; Cui, Z.-L.; Vitousek, P.M.; Cassman, K.G.; Matson, P.A.; Bai, J.-S.; Meng, Q.-F.; Hou, P.; Yue, S.-C.; Römheld, V.; et al. Integrated Soil-Crop System Management for Food Security. Proc. Natl. Acad. Sci. USA 2011, 108, 6399–6404. [Google Scholar] [CrossRef]
- Barquero, M.; Cazador, C.; Ortiz-Liébana, N.; Zotti, M.; Brañas, J.; González-Andrés, F. Fertilising Maize with Bio-Based Mineral Fertilisers Gives Similar Growth to Conventional Fertilisers and Does Not Alter Soil Microbiome. Agronomy 2024, 14, 916. [Google Scholar] [CrossRef]
- Mukherjee, A.; Omondi, E.C.; Hepperly, P.R.; Seidel, R.; Heller, W.P. Impacts of Organic and Conventional Management on the Nutritional Level of Vegetables. Sustainability 2020, 12, 8965. [Google Scholar] [CrossRef]
- Stanojković-Sebić, A.; Miladinović, V.; Stajković-Srbinović, O.; Pivić, R. Response of Arugula to Integrated Use of Biological, Inorganic, and Organic Fertilization. Microorganisms 2024, 12, 1334. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Wu, Y.; He, G.; Wen, S.; Yang, L.; Ji, L. Fertilization Regime Changes Rhizosphere Microbial Community Assembly and Interaction in Phoebe Bournei Plantations. Appl. Microbiol. Biotechnol. 2024, 108, 417. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Ma, B. Integrated Nutrient Management (INM) for Sustaining Crop Productivity and Reducing Environmental Impact: A Review. Sci. Total Environ. 2015, 512–513, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Prasad, P.V.V.; Satyanarayana, V.; Murthy, V.R.K.; Boote, K.J. Maximizing Yields in Rice–Groundnut Cropping Sequence through Integrated Nutrient Management. Field Crops Res. 2002, 75, 9–21. [Google Scholar] [CrossRef]
- Patra, A.K. Concept, scope and components of integrated farming system. In Root and Tuber Crops Based Integrated Farming System: A Way Forward to Address Climate Change and Livelihood Improvement; Training Manual; Nedunchezhiyan, M., Bansode, V.V., Chauhan, V.B.S., Mukherjee, A., Eds.; ICAR-Central Tuber Crops Research Institute, Regional Centre: Bhubaneswar, India, 2016; pp. 1–150. [Google Scholar]
- Soni, R.P.; Katoch, M.; Ladohia, R. Integrated Farming Systems—A Review. IOSR-JAVS 2014, 7, 36–42. [Google Scholar] [CrossRef]
- Fiebrig, I.; Zikeli, S.; Bach, S.; Gruber, S. Perspectives on Permaculture for Commercial Farming: Aspirations and Realities. Org. Agric. 2020, 10, 379–394. [Google Scholar] [CrossRef]
- Pereira, L.S.; Cordery, I.; Iacovides, I. Improved Indicators of Water Use Performance and Productivity for Sustainable Water Conservation and Saving. Agric. Water Manag. 2012, 108, 39–51. [Google Scholar] [CrossRef]
- Bilali, H.E.; Callenius, C.; Strassner, C.; Probst, L. Food and Nutrition Security and Sustainability Transitions in Food Systems. Food Energy Secur. 2019, 8, e00154. [Google Scholar] [CrossRef]
- Kidd, P.; Mench, M.; Alvarez-Lopez, V.; Bert, V.; Dimitriou, I.; Friesl-Hanl, W.; Herzig, R.; Janssen, J.O.A.; Kolbas, I.; Müller, I.; et al. Agronomic Practices for Improving Gentle Remediation of Trace Element-Contaminated Soils. Int. J. Phytoremediation 2015, 17, 1005–1037. [Google Scholar] [CrossRef]
- Bonaudo, T.; Bendahan, A.B.; Sabatier, R.; Ryschawy, J.; Bellon, S.; Leger, F.; Magda, D.; Tichit, M. Agroecological Principles for the Redesign of Integrated Crop–Livestock Systems. Eur. J. Agron. 2014, 57, 43–51. [Google Scholar] [CrossRef]
- Rana, S.S.; Chopra, P. Integrated Farming System; Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya: Palampur, India, 2013. [Google Scholar]
- Shah, F.; Wu, W. Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef]
- Santoro, A.; Venturi, M.; Bertani, R.; Agnoletti, M. A Review of the Role of Forests and Agroforestry Systems in the FAO Globally Important Agricultural Heritage Systems (GIAHS) Programme. Forests 2020, 11, 860. [Google Scholar] [CrossRef]
- Gold, M.A.; Garrett, H.E.; Garrett, H.E.G. Agroforestry nomenclature, concepts, and practices. In North American Agroforestry: An Integrated Science and Practice; Garrett, H.E.G., Ed.; American Society of Agronomy (ASA): Madison, WI, USA, 2009; pp. 45–56. [Google Scholar] [CrossRef]
- Clark, K.H.; Nicholas, K.A. Introducing Urban Food Forestry: A Multifunctional Approach to Increase Food Security and Provide Ecosystem Services. Landsc. Ecol. 2013, 28, 1649–1669. [Google Scholar] [CrossRef]
- Rosati, A.; Borek, R.; Canali, S. Agroforestry and Organic Agriculture. Agrofor. Syst. 2021, 95, 805–821. [Google Scholar] [CrossRef]
- Altieri, M.; Nicholls, C.; Montalba, R. Technological Approaches to Sustainable Agriculture at a Crossroads: An Agroecological Perspective. Sustainability 2017, 9, 349. [Google Scholar] [CrossRef]
- Brown, S.E.; Miller, D.C.; Ordonez, P.J.; Baylis, K. Evidence for the Impacts of Agroforestry on Agricultural Productivity, Ecosystem Services, and Human Wellbeing in High-Income Countries: A Systematic Map Protocol. Environ. Evid. 2018, 7, 24. [Google Scholar] [CrossRef]
- Paul, C.; Weber, M.; Knoke, T. Agroforestry versus Farm Mosaic Systems—Comparing Land-Use Efficiency, Economic Returns and Risks under Climate Change Effects. Sci. Total Environ. 2017, 587, 22–35. [Google Scholar] [CrossRef]
- Abbas, F.; Hammad, H.M.; Fahad, S.; Cerdà, A.; Rizwan, M.; Farhad, W.; Ehsan, S.; Bakhat, H.F. Agroforestry: A Sustainable Environmental Practice for Carbon Sequestration under the Climate Change Scenarios—A Review. Environ. Sci. Pollut. Res. Int. 2017, 24, 11177–11191. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Biological nitrogen fixation and mycorrhizal associations in agroforestry. In Tropical Agroforestry; Springer: Dordrecht, The Netherlands, 2014; pp. 173–202. [Google Scholar]
- Fahad, S.; Chavan, S.B.; Chichaghare, A.R.; Uthappa, A.R.; Kumar, M.; Kakade, V.; Pradhan, A.; Jinger, D.; Rawale, G.; Yadav, D.K.; et al. Agroforestry Systems for Soil Health Improvement and Maintenance. Sustainability 2022, 14, 14877. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Rana, S.S.; Negi, S.C. Practical Guide to Farming Systems and Sustainable Agriculture; Department of Agronomy, College of Agriculture, CSK Himachal Pradesh Krishi Vishvavidyalaya Palampur: Palampur, India, 2018; pp. 1–82. [Google Scholar]
- Sekhar, M.; Rajesh, C.; Saikanth, M.D.R.K.; Rout, S.; Patel, A.K. Exploring Traditional Agricultural Techniques Integrated with Modern Farming for a Sustainable Future: A Review. J. Sci. Res. Rep 2024, 30, 185–198. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Sellami, M.H.; Terribile, F. Research Evolution on the Impact of Agronomic Practices on Soil Health from 1996 to 2021: A Bibliometric Analysis. Soil Syst. 2023, 7, 78. [Google Scholar] [CrossRef]
- Roper, W.R.; Osmond, D.L.; Heitman, J.L.; Wagger, M.G.; Reberg-Horton, S.C. Soil Health Indicators Do Not Differentiate among Agronomic Management Systems in North Carolina Soils. Soil Sci. Soc. Am. J. 2017, 81, 828–843. [Google Scholar] [CrossRef]
- Hubanks, H.; Deenik, J.; Crow, S. Getting the Dirt on Soil Health and Management. Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Stewart, R.D.; Jian, J.; Gyawali, A.J.; Thomason, W.E.; Badgley, B.D.; Reiter, M.S.; Strickland, M.S. What We Talk about When We Talk about Soil Health. Agric. Environ. Lett. 2018, 3, 180033. [Google Scholar] [CrossRef]
Soil Health Parameter | Measurement Unit | Explanation | Measurement Techniques and References |
---|---|---|---|
Texture | 12 classifications determined by the relative proportions of sand, silt, and clay | Crucial for the transmission and retention of soil water and nutrients | Bouyoucos hydrometer procedure and international pipette technique; Gupta [53]. |
Bulk density | Gram cm−3 or Mg m−3 | Indicator of soil compaction and represents the soil’s capacity for structural support, water and solute transport, and aeration | Direct and indirect methods; Al-shammary et al. [54]. |
Water-holding capacity | mm m−1 depth of soil | Adequate moisture to sustain plant growth | Pressure plate and membrane device; Richards and Weaver [55]. |
Penetration resistance | Megapascal (MPa); N m−2 (cone index, N cm−2) | Concerns the infiltration capacity and the processes of erosion and runoff | Cone penetrometer; Herrick and Jones [56]. |
Aggregation | Mean weight diameter (mm) | Soil structure and erosion protection indicator | Wet sieving and dry sieving methodologies; Das and Chong [57]. |
Infiltration | mm hour−1 | Indicators for erosion and runoff | Ring infiltrometer; Sur and Gupta [58]. |
Depth of hardpan | Specified as the depth from the surface at which hardpan is observed | Roots’ growth potential | Established using the compaction of the soil at various layers; Batey [59]. |
Porosity | % | Proportion of a soil’s volume that is made up of pores or spaces between soil particles | Mercury intrusion porosimetry; image interpretation and soil micromorphology; Rao and Jo [60]. |
pH | 1–14 | Availability of nutrients | Soil in water or 0.1 M KCl or 0.01 M CaCl2 solution at ratio of 1:2.5–10; Prasad et al. [61]. |
Electrical conductivity | dS m−1 | Concerns soil structure, infiltration, and crop growth | Saturated soil extract or soil–water suspension (1:2 or 1:2.5); Rao and Reddy [62]. |
Total organic carbon | % or g kg−1 | Crucial for soil composition, fertility, and moisture retention | Tandon [63]. |
Total soil nitrogen | mg kg−1 soil or kg ha−1 | Nutrient required for plant growth and development | Kjeldahl method; Nelson and Sommers [64]. |
Cation exchange capacity | Milliequivalent 100−1 g soil or Cmol(p+) kg−1 soil | Soil’s capacity to provide plant nutrients | Ammonium acetate extraction technique; barium chloride (BaCl2) compulsive exchange method; Gillman and Sumpter [65]. |
Microbial biomass carbon | μg microbial biomass carbon g−1 soil | Source and/or drain of C and nutrients | Fumigation method; Nunan et al. [66]. |
Soil respiration rate (soil CO2 efflux) | μ mol m−2 s−1 | Indicator for biological activity and organic matter | Closed or open dynamic system; Davidson et al. [67]. |
Nitrogen fixation of microorganisms | n mole ethylene g−1 h−1 | Capacity of the soil to supply N for crop growth | Acetylene reductase activity; Stewart et al. [68]. |
Plant | Improvement | Maintenance | Reduction | Ecosystem |
---|---|---|---|---|
Enhancement of crop yield | Aggregate stability | Temperature | Bulk density | Increase in carbon sequestration |
Enhancement of quality | Porosity | Soil consistency | Erodibility and erosion | Lessens greenhouse gas emissions |
Enhances the efficiency of resource utilization | Infiltration | Air circulation | Accrual of hazardous substances | Mitigates siltation of reservoirs and augments their storage capacity and longevity |
Improvement in profitability | Chelation of micronutrients | Optimum soil moisture | Minimizes the leaching losses of nutrients | |
Sustainable production systems | Cation exchange capacity and base saturation | pH | Soil crusting and compaction |
Name of Crop | Practice | Impact on Soil Health | References |
---|---|---|---|
Maize | Green manuring (Orychophragmus violaceus) resulted in three distinct levels of the suggested nutrient dosage (100%, 85%, and 75%; the advised nutrient treatment rates are 225 kg N, 49 kg P, and 94 kg K, respectively). | The combination of green manuring crops contributed 21.5–94 kg of nitrogen, 2.2–9.8 kg of phosphorus, and 21.2–99.2 kg of potassium per hectare. Additionally, there was an enhancement in the microbial biomass nitrogen, dissolved organic nitrogen, and mineral nitrogen concentrations within the 0–20 cm soil layer at the third and eighth fully expanded leaf stages. | Yang et al. [168] |
Rice | Cultivation of Sesbania aculeata and Crotalaria juncea, followed by incorporation and transplantation of rice. | Enhancement of the SOC content and the availability of nitrogen and phosphorus resulting from the integration of both green manure crops. | Singh et al. [173] |
Rice | Integration of brown manuring with herbicide application (pre-emergence use of butachlor, pendimethalin, pretilachlor, and benthiocarb) in direct-seeded rice. | Improvement in the partial factor productivity of nitrogenous, phosphatic, and potassic fertilizers, hence diminishing their impact on soil and groundwater contamination. | Maity and Mukherjee [174] |
Rice-based cropping system | Planting of green manure crops following the harvest of the second-season rice crop and integrating them through plowing before the sowing of the subsequent rice crop. | Green manure considerably enhanced phosphatase and urease activity. | Qaswar et al. [175] |
Rice | Cultivation of directly sown aerobic rice with brown manuring of Sesbania, succeeded by no-till wheat cultivation. | Augmentation of total nitrogen, organic carbon, microbial biomass carbon, and microbial biomass nitrogen concentrations in the soil. | Nawaz et al. [176] |
Rice | Directly wet-seeded rice. | Beneficial impact on soil health via nitrogen cycling as Sesbania aculeata sequestered 32.4 kg of nitrogen, 3.65 kg of phosphorus, and 16.0 kg of potassium per hectare in its biomass without the application of fertilizers, rendering these nutrients readily accessible to rice. | Gangaiah and Prasad Babu [177] |
Rice–rapeseed cropping system | Conventional tillage system (residue removal) and no-tillage system with residue retention; brown manuring of cowpeas and mulching of Gliricidia in both tillage systems. | The brown manuring of cowpeas and the mulching of Gliricidia enhanced the SOC pool, carbon sequestration rate, and carbon retention efficiency. | Yadav et al. [178] |
Rice–wheat cropping system | The direct seeding of rice, followed by brown manuring and subsequently wheat production, was successful in the sodic soil of the Indo-Gangetic region. | Augmentation of SOC and microbial biomass carbon concentrations resulting from brown manuring. | Mishra et al. [179] |
Rice–mustard cropping system | Zero-tillage direct-seeded rice cultivation accompanied by brown manuring, succeeded by zero-tillage mustard cultivation, with retention of residues from both crops. | Enhancement in the soil quality index (SQI) following the traditional practice of puddled transplanted rice cultivation succeeded by standard-tillage mustard cultivation. The SQI was computed using the saturated hydraulic conductivity, pH, total nitrogen, available phosphorus, and available potassium. | Das et al. [180] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Țopa, D.-C.; Căpșună, S.; Calistru, A.-E.; Ailincăi, C. Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture 2025, 15, 998. https://doi.org/10.3390/agriculture15090998
Țopa D-C, Căpșună S, Calistru A-E, Ailincăi C. Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture. 2025; 15(9):998. https://doi.org/10.3390/agriculture15090998
Chicago/Turabian StyleȚopa, Denis-Constantin, Sorin Căpșună, Anca-Elena Calistru, and Costică Ailincăi. 2025. "Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review" Agriculture 15, no. 9: 998. https://doi.org/10.3390/agriculture15090998
APA StyleȚopa, D.-C., Căpșună, S., Calistru, A.-E., & Ailincăi, C. (2025). Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review. Agriculture, 15(9), 998. https://doi.org/10.3390/agriculture15090998