Investigation and Analysis of the Residual Status and Distribution of Long-Lasting-Effect Herbicides in Field Soil: A Case Study of Henan Province, a Major Agricultural Producing Area in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Chromatography Analysis Conditions
2.3. Preparation of Analytic Sample
2.4. Analysis of Field Soil Samples
3. Results
3.1. Optimized Chromatographic Conditions
3.2. Method Validation
3.2.1. Linearity
3.2.2. Accuracy, Precision, and Sensitivity
3.3. Residual Detection Results of Nine Herbicides in Field Soil
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, G.T. Sustaining the Earth, 6th ed.; Thompson Learning Inc.: Los Angeles, CA, USA, 2004; pp. 211–216. [Google Scholar]
- Dubelman, A.M.; Solsten, T.R.; Fujiwara, H.; Akbar, M.; Mehrsheikh, A. Metabolism of halosulfuron-methyl by corn and wheat. J. Agric. Food Chem. 1997, 45, 2314–2321. [Google Scholar] [CrossRef]
- Koo, S.J.; Neal, J.C.; Ditomaso, J.M. Mechanism of action and selectivity of quinclorac in grass roots. Pestic. Biochem. Phys. 1997, 57, 44–53. [Google Scholar] [CrossRef]
- Moyer, J.R.; Esau, R.; Boswall, A.L. Effects of quinclorac on following rotational crops. Weed Technol. 1999, 13, 548–553. [Google Scholar] [CrossRef]
- Grossmann, K.; Kwiatkowski, J. The mechanism of quinclorac selectivity in grasses. Pestic. Biochem. Phys. 2000, 66, 83–91. [Google Scholar]
- Baćmaga, M.; Borowik, A.; Kucharski, J.; Tomkiel, M.; Wyszkowska, J. Microbial and enzymatic activity of soil contaminated with a mixture of diflufenican + mesosulfuron-methyl + iodosulfuron-methyl-sodium. Environ. Sci. Pollut. R. 2015, 22, 643–656. [Google Scholar]
- Zhou, Q.Y.; Xu, C.; Zhang, Y.S.; Liu, W.P. Enantioselectivity in the phytotoxicity of herbicide imazethapyr. J. Agric. Food Chem. 2009, 57, 1624–1631. [Google Scholar] [CrossRef]
- Li, Z.M.; Shao, T.J.; Min, H.; Lu, Z.M.; Xu, X.Y. Stress response of Burkholderia cepacia WZ1 exposed to quinclorac and the biodegradation of quinclorac. Soil Biol. Biochem. 2009, 41, 984–990. [Google Scholar] [CrossRef]
- Zhao, S.; Ye, F. Applications of imidazolinone herbicide and its degradation. Plant Protec. 2009, 35, 15–19. [Google Scholar]
- Tejada, M. Evolution of soil biological properties after addition of glyphosate, diflufenican and glyphosate + diflufenican herbicides. Chemosphere 2009, 76, 365–373. [Google Scholar]
- Zhang, C.P.; Xu, J.; Liu, X.G.; Dong, F.S.; Kong, Z.Q.; Sheng, Y.; Zheng, Y.Q. Impact of imazethapyr on the microbial community structure in agricultural soils. Chemosphere 2010, 81, 800–806. [Google Scholar]
- Zhang, Y.; Guo, A.L.; Cui, Y.; Feng, L.; Wu, D.D. Effect of quinclorac on soil microbial community structure under culture conditions. Acta Ecologica Sinica 2015, 35, 849–857. [Google Scholar] [CrossRef]
- Singh, A.; Kewat, M.L.; Sondhia, S. Studies on the effect of day time application of herbicide mesosulfuron-methyl on soil microbial communities of wheat rhizosphere. J. Environ. Biol. 2018, 39, 59–65. [Google Scholar] [CrossRef]
- Wu, X.H.; Zhang, Y.; Du, P.Q.; Xu, J.; Dong, F.S.; Liu, X.G.; Zheng, Y.Q. Impact of fomesafen on the soil microbial communities in soybean fields in Northeastern China. Ecotoxicol. Environ. Saf. 2018, 148, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.H.; Yao, X.F.; Li, X.X.; Zhu, L.S.; Wang, J.H.; Wang, J. Responses of soil microbial community to herbicide atrazine contamination. Water Air Soil Poll. 2023, 234, 255. [Google Scholar] [CrossRef]
- Dhakar, K.; Medina, S.; Ziadna, H.; Igbaria, K.; Achdari, G.; Lati, R.; Zarecki, R.; Ronen, Z.; Dovrat, G.; Eizenberg, H. Comparative study of bacterial community dynamics in different soils following application of the herbicide atrazine. Environ. Res. 2023, 220, 115189. [Google Scholar] [CrossRef]
- Wang, Y.H.; Men, J.N.; Zheng, T.; Ma, Y.L.; Li, W.S.; Cernava, T.; Bai, L.Y.; Jin, D.C. Impact of pyroxasulfone on sugarcane rhizosphere microbiome and functioning during field degradation. J. Hazard. Mater. 2023, 455, 131608. [Google Scholar] [CrossRef]
- Hou, M.C.; Zhu, Y.F.; Chen, H. Chiral herbicide imazethapyr influences plant-soil feedback on nitrogen metabolism by shaping rhizosphere microorganisms. Environ. Sci. Pollut. R. 2024, 31, 18625–18635. [Google Scholar] [CrossRef]
- Konda, L.N.; Pasztor, Z. Environmental distribution of acetochlor, atrazine, chlorpyrifos, and propisochlor under field conditions. J. Agric. Food Chem. 2001, 49, 3859–3863. [Google Scholar] [CrossRef]
- Dagnac, T.; Bristeau, S.; Jeannot, R.; Mouvet, C.; Baran, N. Determination of chloroacetanilides, triazines and phenylureas and some of their metabolites in soils by pressurised liquid extraction, GC-MS/MS, LC-MS and LC-MS/MS. J. Chromatogr. A 2005, 1067, 225–233. [Google Scholar] [CrossRef]
- Guo, L.Q.; Xu, J.; Dong, F.S.; Liu, X.G.; Zheng, Y.Q. Simultaneous determination of nicosulfuron, atrazine and fluroxypyr in soil and corn by ultraperformance liquid chromatography-mass spectrometry. Chin. J. Pestic. Sci. 2012, 14, 177–184. [Google Scholar]
- Bzour, M.; Zuki, F.M.; Mispan, M.S.; Jodeh, S.; Abdel-Latif, M. Determination of the leaching potential and residues activity of imidazolinone herbicide in clear field rice soil using high-performance liquid chromatography. Bull. Environ. Contam. Tox. 2019, 103, 348–353. [Google Scholar] [CrossRef]
- Xiang, W.S.; Su, S.Q.; Wu, Y.Q.; Han, X.J. Trace residue analysis of the herbicide imazethapyr in soil by gas chromatography-nitrogen/phosphorous detector. J. Northeast Agr. Unive. 1997, 4, 73–77. [Google Scholar]
- Stout, S.J.; Dacunha, A.R.; Allardice, D.G. Microwave-assisted extraction coupled with gas chromatography/electron capture negative chemical ionization mass spectrometry for the simplified determination of imidazolinone herbicides in soil at the ppb level. Anal. Chem. 1996, 68, 653–658. [Google Scholar] [CrossRef]
- Shaifuddin, S.N.M.; Hussain, H.; Hassan, H.F. Optimization of extraction and detection method for imazapyr and imazapic residues in water, soil and fish tissue samples using high performance liquid chromatography. J. Teknol. 2016, 78, 43–48. [Google Scholar] [CrossRef]
- Assalin, M.R.; Queiroz, S.C.N.; Ferracini, V.L.; Oliveira, T.; Vilhena, E.; Mattos, M.L.T. A method for determination of imazapic and imazethapyr residues in soil using an ultrasonic assisted extraction and LC-MS/MS. Bull. Environ. Contam. Tox. 2014, 93, 360–364. [Google Scholar] [CrossRef]
- Kemmerich, M.; Bernardi, G.; Adaime, M.B.; Zanella, R.; Prestes, O.D. A simple and efficient method for imidazolinone herbicides determination in soil by ultra-high performance liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2015, 1412, 82–89. [Google Scholar] [CrossRef]
- Kaur, H.; Kaur, P. Comparison of extraction procedures for the determination of mesosulfuron methyl and iodosulfuron methyl sodium from soil and wheat using response surface modelling. Microchem. J. 2021, 168, 10645. [Google Scholar] [CrossRef]
- Zhang, S.J.; Yang, G.L.; Zheng, Z.S.; Chen, Y.D.; Wang, L.; Qian, X. Study on the residue dynamics of mesosulfuron-methyl in wheat and soil. J Agric Univ Hebei 2009, 32, 12–16. [Google Scholar]
- Devi, R.; Duhan, A.; Punia, S.S.; Yadav, D.B. Degradation dynamics of halosulfuron-methyl in two textured soils. Bull. Environ. Contam. Tox. 2019, 102, 246–251. [Google Scholar] [CrossRef]
- Guo, M.; Shan, Z.J.; Shi, L.L.; Song, N.H.; Xu, J. Degradation and adsorption characteristics of three sulfonylurea herbicides in different soils. Acta Sci. Circumst. 2012, 32, 1459–1464. [Google Scholar]
- Rajasekharam, C.; Ramesh, A. Adsorption and degradation of herbicide halosulfuron-methyl in Indian soils. J. Ecol. Environ. Sci. 2014, 2, 40–46. [Google Scholar]
- Costa, A.; Queiroz, M.E.; Neves, A.A.; de Assis, R.C.; dos Soares, C.E.S.; da Silva D’Antonino, L.; de Oliveira, A.F.; Bellato, C.R. Mobility and persistence of the herbicide fomesafen in soils cultivated with bean plants using SLE/LTP and HPLC/DAD. Environ. Sci. Pollut. Res. Int. 2015, 22, 3457–3466. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.N.; Gioia, F.D.; Hwang, J.I.; Hong, J.; Ozores-Hampton, M.; Zhao, X.; Pisani, C.; Rosskopf, E.; Wilson, P.C. Dissipation of fomesafen in fumigated, anaerobic soil disinfestation-treated, and organic-mended soil in Florida tomato production systems. Pest Manag. Sci. 2020, 76, 628–635. [Google Scholar] [CrossRef]
- Gao, S.J.; Han, Y.J.; Jiang, L.X.; Tao, B. Study on bioassay method of fomesafen. J. Northeast Agr. Univ. 2011, 42, 45–49. [Google Scholar]
- Zhu, Y.Y.; Wu, J.J.X.; Han, L.J.; Wang, X.Y.; Li, W.; Guo, H.C.; We, H. Nanozyme sensor arrays based on heteroatom-doped graphene for detecting pesticides. Anal. Chem. 2020, 92, 7444–7452. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.Q.; Chen, L.; An, Z.X.; Wang, Y.S.; Yang, D.C.; Wang, Z.Z.; Kang, J.; Barnych, B.; Hammock, B.D.; Huo, J.Q.; et al. Development of an immunoassay based on a specific antibody for the detection of diphenyl ether herbicide fomesafen. Sci. Total Environ. 2024, 914, 169858. [Google Scholar] [CrossRef]
- Rouchaud, J.; Neus, O.; Bulcke, R.; Bulcke, O.N.R.; Cools, K.; Eelen, H.; Dekkers, T. Soil dissipation of diuron, chlorotoluron, simazine, propyzamide, and diflufenican herbicides after repeated applications in fruit tree orchards. Arch. Environ. Con. Tox. 2000, 39, 60–65. [Google Scholar] [CrossRef]
- Hu, Z.L.; Li, J.; Zhang, Y.Z.; Shi, Y. Determination of residue of diflufenican in wheat and soil by ultra-high-pressure liquid chromatography and mass spectrometry conditions. J. Sci. Food Agric. 2021, 101, 215–219. [Google Scholar] [CrossRef]
- Tang, M.; Li, L.C.; Zhong, Q.Z.; Zhang, G.B.; Feng, X.J.; Deng, S.Q.; Wan, S.Q. Determination of herbicides in soil by dispersive solid-phase extraction, dispersive liquid-liquid microextraction, and high-performance liquid chromatography. Anal. Lett. 2014, 47, 2871–2881. [Google Scholar] [CrossRef]
- Zheng, X.Z.; Zeng, W.A.; Zhao, S.Y.; Cai, Z.M.; Zhou, Q.M.; Zhang, L.Y.; Wang, Z.D.; Ou, X.M. Determination of quinclorac residues in tobacco and soil using HPLC coupled to photodiode array detector. Acta Tabacaria Sin. 2013, 19, 17–22. [Google Scholar]
- Khalil, Y.; Siddique, K.H.M.; Ward, P.; Piggin, C.; Bong, S.H.; Nambiar, S.; Trengove, R.D.; Flower, K. A bioassay for prosulfocarb, pyroxasulfone and trifluralin detection and quantification in soil and crop residue. Crop Pasture Sci. 2018, 69, 606–616. [Google Scholar] [CrossRef]
- Westra, E.P.; Shaner, D.L.; Westra, P.H.; Chapman, P.L. Dissipation and leaching of pyroxasulfone and S-metolachlor. Weed Technol. 2014, 28, 72–81. [Google Scholar] [CrossRef]
- Argyraki, A.; Ramsey, M.H.; Potts, P.J. Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. Analyst 1997, 122, 743–749. [Google Scholar] [CrossRef]
- Webster, R.; Lark, R.M. Field Sampling for Environmental Science and Management; Taylor & Francis Group: London, UK, 2012; pp. 162–200. [Google Scholar]
- Muntau, H.; Rehnert, A.; Desaules, A.; Wagner, G.; Quevauviller, P. Analytical aspects of the CEEM soil project. Sci. Total Environ. 2001, 264, 27–49. [Google Scholar] [CrossRef]
Chemicals | Chemical Category | Research & Development | Target Sites | Application |
---|---|---|---|---|
Atrazine | Triazine | Ciba-Geigy, 1958 | PSII a | Corn, sorghum, millet, nursery, and non-cultivated land |
Imazethapyr | Imidazolinone | ACC, 1983 | ALS b | Corn |
Imazapic | Imidazolinone | ACC, 1983 | ALS | Sugarcane and peanut |
Mesosulfuron-methyl | Sulfonylurea | Bayer, 2002 | ALS | Wheat |
Halosulfuron-methyl | Sulfonylurea | Nissan Chemical & Monsanto, 1987 | ALS | Wheat, corn, rice, sugarcane, and sorghum |
Fomesafen | Diphenyl ether | ICI, 1979 | PPO c | Soybean, peanut, and non-cultivated land |
Diflufenican | pyridyl aniline | Rhone-Poulenc, 1982 | PDS d | Wheat, rice, and garlic |
Quinclorac | Quinoline acid | BASF, 1985 | PSII | Rapeseed, rice, and sorghum |
Pyroxasulfone | Isoxazole | Kumiai Chemical, 2002 | VLCFA e | Wheat, soybean, and corn |
Analytes | Techniques | Sample Treatment | Detection Performance | Reference | |
---|---|---|---|---|---|
Linear Range | LOQ i | ||||
Atrazine | GC-NPD | SLE a | 0.01~20 mg/L | 0.02 mg/kg | [19] |
GC-MS/MS | SLE | 5–100 mg/L | 0.2 μg/kg | [20] | |
LC-MS/MS | QuEChERS b | 0.01–1 mg/L | <7.1 μg/kg | [21] | |
Imazethapyr | LC-UVD | UAE c | 0.1–20 mg/L | 0.51 mg/kg | [22] |
GC-NPD | SLE | 2–10 mg/L | 5 µg/kg | [23] | |
GC-MS | MAE d | 1–50 μg/L | 1 μg/L | [24] | |
Imazapic | LC-SPD | MSPE e | 1–50 mg/L | 0.5 mg/kg | [25] |
LC-MS/MS | UAE | 0.25–5 μg/L | 0.1 μg/kg | [26] | |
LC-MS/MS | QuEChERS | 0.2–20 μg/L | 5.0 μg/kg | [27] | |
Mesosulfuron-methyl | LC-UVD | UAE | 0.008–5 mg/L | 0.008 mg/kg | [28] |
LC-UVD | SLE | 0.01–5 mg/L | 0.004 mg/kg | [29] | |
Halosulfuron-methyl | LC-MS | QuEChERS | 0.001–1 mg/L | 0.005 mg/kg | [30] |
LC-PAD | SLE | 0.05–2 mg/L | 0.05 mg/kg | [31] | |
LC-DAD | SLE | 0.01–5 mg/l | 0.02 mg/kg | [32] | |
Fomesafen | HPLC-DAD | SLE-LTP f | 25–270 μg/kg | 22.1 μg/kg | [33] |
LC-MS/MS | QuEChERS | 0.1–500 μg/L | 0.15 μg/kg | [34] | |
Bioassay | not required | 0.3–1.5 mg/L | 0.1 mg/kg | [35] | |
sensor | UAE | 5–500 μmol/L | 5 μmol/L | [36] | |
ELISA | SLE | 1.92–779.8 μg/L | 0.00192 mg/kg | [37] | |
Diflufenican | GC-MS | LEP-TLC | - | 4 μg/kg | [38] |
LC-MS/MS | QuEChERS | 0.01–5 μg/L | 0.1 ng/kg | [39] | |
Quinclorac | LC-UV | DSPE-DLLME g | 10–300 μg/L | 5 μg/kg | [40] |
LC-PDA | LE-SPE h | 0.05–20 mg/L | 0.05 mg/kg | [41] | |
Pyroxasulfone | Bioassay | not required | 0.05–2 mg/kg | - | [42] |
GC/MS | SLE | - | 5 μg/kg | [43] |
Chemicals | 0.1 mg/g | 0.5 mg/g | 1 mg/g | LOQ (mg/kg) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | RSD | Ⅰ | Ⅱ | Ⅲ | RSD | Ⅰ | Ⅱ | Ⅲ | RSD | ||
Atrazine | 86.8 | 84.6 | 80.8 | 3.0 | 85.8 | 91.9 | 86.2 | 3.4 | 98.9 | 86.9 | 95.6 | 6.2 | 0.017 |
Imazethapyr | 96.9 | 92.3 | 96.3 | 2.5 | 93.2 | 80.9 | 92.3 | 6.9 | 84.0 | 88.7 | 78.1 | 5.3 | 0.016 |
Imazapic | 80.7 | 83.3 | 78.4 | 2.5 | 96.7 | 95.7 | 86.4 | 5.7 | 79.2 | 83.1 | 84.8 | 2.9 | 0.016 |
Mesosulfuron-methyl | 86.2 | 82.1 | 85.9 | 2.3 | 82.4 | 90.5 | 82.3 | 4.7 | 99.9 | 95.7 | 96.3 | 6.2 | 0.017 |
Halosulfuron-methyl | 83.6 | 91.8 | 83.9 | 4.7 | 92.8 | 86.0 | 90.4 | 3.4 | 83.0 | 86.4 | 84.1 | 1.7 | 0.026 |
Fomesafen | 85.7 | 82.9 | 78.4 | 2.8 | 84.6 | 81.2 | 80.5 | 2.2 | 83.1 | 80.8 | 87.4 | 3.4 | 0.031 |
Diflufenican | 89.5 | 85.3 | 93.9 | 4.3 | 93.3 | 86.0 | 84.4 | 3.1 | 83.5 | 87.4 | 82.2 | 2.7 | 0.026 |
Quinclorac | 86.9 | 82.5 | 76.3 | 5.3 | 78.3 | 87.9 | 86.7 | 5.2 | 79.1 | 84.9 | 82.3 | 2.9 | 0.016 |
Pyroxasulfone | 86.4 | 77.4 | 80.3 | 4.6 | 82.8 | 84.5 | 84.9 | 1.1 | 84.8 | 78.0 | 86.7 | 4.2 | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, G.; Yang, Y.; Wang, S.; Li, D.; Liu, R.; Zhang, Y.; Wu, Y. Investigation and Analysis of the Residual Status and Distribution of Long-Lasting-Effect Herbicides in Field Soil: A Case Study of Henan Province, a Major Agricultural Producing Area in China. Agriculture 2025, 15, 996. https://doi.org/10.3390/agriculture15090996
Li G, Yang Y, Wang S, Li D, Liu R, Zhang Y, Wu Y. Investigation and Analysis of the Residual Status and Distribution of Long-Lasting-Effect Herbicides in Field Soil: A Case Study of Henan Province, a Major Agricultural Producing Area in China. Agriculture. 2025; 15(9):996. https://doi.org/10.3390/agriculture15090996
Chicago/Turabian StyleLi, Guangling, Yang Yang, Shoumeng Wang, Dongzhi Li, Runqiang Liu, Youduo Zhang, and Yanbing Wu. 2025. "Investigation and Analysis of the Residual Status and Distribution of Long-Lasting-Effect Herbicides in Field Soil: A Case Study of Henan Province, a Major Agricultural Producing Area in China" Agriculture 15, no. 9: 996. https://doi.org/10.3390/agriculture15090996
APA StyleLi, G., Yang, Y., Wang, S., Li, D., Liu, R., Zhang, Y., & Wu, Y. (2025). Investigation and Analysis of the Residual Status and Distribution of Long-Lasting-Effect Herbicides in Field Soil: A Case Study of Henan Province, a Major Agricultural Producing Area in China. Agriculture, 15(9), 996. https://doi.org/10.3390/agriculture15090996