Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Experimental Design
2.2. Experimental Data Acquisition
2.3. Statistical Analyses
3. Results
3.1. Hormone Metabolism
3.2. Substance Accumulation
4. Discussion
4.1. Cane Sugar and Soluble Sugar
4.2. Hydrogen Peroxide (H2O2) and Catalase (CAT)
4.3. Superoxide Dismutase (SOD), Polyphenol Oxidase (PPO), and Malondialdehyde (MDA)
4.4. Substance Accumulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Shi, Q.; Xu, G.; Yang, N.; Chen, T.; Taha, M.F.; Mao, H. Transmission Route of Airborne Fungal Spores for Cucumber Downy Mildew. Horticulturae 2025, 11, 336. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.Y.; Yan, H.F.; Ullah, I.; Zuo, Z.Y.; Li, L.L.; Yu, J.J. Effects of irrigation quantity and biochar on soil physical properties, growth characteristics, yield and quality of greenhouse tomato. Agric. Water Manag. 2020, 241, 106263. [Google Scholar] [CrossRef]
- Pan, L.X.; Zhou, C.G.; Jing, J.; Zhuang, M.; Zhang, J.C.; Wang, K.; Zhang, H.Y. Metabolomics analysis of cucumber fruit in response to foliar fertilizer and pesticides using UHPLC-Q-Orbitrap-HRMS. Food Chem. 2022, 369, 130960. [Google Scholar] [CrossRef]
- Wang, Y.F.; Li, T.Z.; Chen, T.H.; Zhang, X.D.; Taha, M.F.; Yang, N.; Mao, H.P.; Shi, Q. Cucumber Downy Mildew Disease Prediction Using a CNN-LSTM Approach. Agriculture-basel. Agriculture 2024, 14, 1155. [Google Scholar] [CrossRef]
- Shi, J.Y.; Wang, Y.Y.; Li, Z.H.; Huang, X.W.; Shen, T.T.; Zou, X.B. Simultaneous and nondestructive diagnostics of nitrogen/magnesium/potassium-deficient cucumber leaf based on chlorophyll density distribution features. Biosyst. Eng. 2021, 212, 458–467. [Google Scholar] [CrossRef]
- Yan, H.F.; Acquah, S.J.; Zhang, J.Y.; Wang, G.Q.; Zhang, C.; Darko, R.O. Overview of modelling techniques for greenhouse microclimate environment and evapotranspiration. Int. J. Agric. Biol. Eng. 2021, 14, 1–8. [Google Scholar] [CrossRef]
- Xu, Y.H.; Ma, Y.; Luz, C.M.; Angel, S.M.M.; Wang, Q.J. Compost biochemical quality mediates nitrogen leaching loss in a greenhouse soil under vegetable cultivation. Geoderma 2020, 358, 113984. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.P.; Wang, Z.C.; Hassan, M.; Aleem, M.; Javed, Q.; Chen, S. Effect of Buried Straw Layer Coupled with Fertigation on Florescence and Yield Parameters of Chinese Cabbage Under Greenhouse Environment. J. Soil Sci. Plant Nutr. 2020, 20, 598–609. [Google Scholar] [CrossRef]
- Zhu, W.D.; Sun, J.; Wang, S.M.; Shen, J.F.; Yang, K.F.; Zhou, X. Identifying Field Crop Diseases Using Transformer-Embedded Convolutional Neural Network. Agriculture 2022, 12, 1083. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, L.; Ju, F.; Wang, Z.; Xiong, C.; Yu, H.; Yu, K.; Huo, Y.; Khattak, W.A.; Hu, W.; et al. Potassium Application Increases Cotton (Gossypium hirsutum L.) Fiber Length by Improving K+/Na+ Homeostasis and Potassium Transport Capacity in the Boll-Leaf System under Moderate Salinity. Agronomy 2020, 12, 2962. [Google Scholar] [CrossRef]
- Li, M.Q.; Li, J.Y.; Wei, X.H.; Zhu, W.J. Early diagnosis and monitoring of nitrogen nutrition stress in tomato leaves using electrical impedance spectroscopy. Int. J. Agric. Biol. Eng. 2017, 10, 194–205. [Google Scholar] [CrossRef]
- Mustapha, A.T.; Zhou, C.S.; Amanor-Atiemoh, R.; Ali, T.A.A.; Wahia, H.; Ma, H.L.; Sun, Y.H. Efficacy of dual-frequency ultrasound and sanitizers washing treatments on quality retention of cherry tomato. Innov. Food Sci. Emerg. Technol. 2022, 62, 102348. [Google Scholar] [CrossRef]
- Shi, Y.; Yang, Q.Y.; Zhao, Q.H.; Dhanasekaran, S.; Ahima, J.; Zhang, X.Y.; Zhou, S.Q.; Droby, S.; Zhang, H.Y. Aureobasidium pullulans S-2 reduced the disease incidence of tomato by influencing the postharvest microbiome during storage. Postharvest Biol. Technol. 2022, 185, 111809. [Google Scholar] [CrossRef]
- Raynaldo, F.A.; Dhanasekaran, S.; Ngea, G.L.N.; Yang, Q.Y.; Zhang, X.Y.; Zhang, H.Y. Investigating the biocontrol potentiality of Wickerhamomyces anomalus against postharvest gray mold decay in cherry tomatoes. Sci. Hortic. 2021, 285, 110137. [Google Scholar] [CrossRef]
- Mao, H.P.; Wang, Y.F.; Yang, N.; Liu, Y.; Zhang, X.D. Effects of nutrient solution irrigation quantity and powdery mildew infection on the growth and physiological parameters of greenhouse cucumbers. Int. J. Agric. Biol. Eng. 2022, 15, 68–74. [Google Scholar] [CrossRef]
- Wang, Y.F.; Ma, G.X.; Du, X.X.; Liu, Y.; Wang, B.; Xu, G.L.; Mao, H.P. Effects of Nutrient Solution Irrigation Quantity and Downy Mildew Infection on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy 2020, 10, 1921. [Google Scholar] [CrossRef]
- Li, C.; Zeng, Q.P.; Han, Y.Z.; Zhou, X.F.; Xu, H.W. Effects of Bacillus subtilis on Cucumber Seedling Growth and Photosynthetic System under Different Potassium Ion Levels. Biology 2024, 13, 348. [Google Scholar] [CrossRef]
- Dabu, X.; Li, S.; Cai, Z.; Ge, T.; Hai, M. The effect of potassium on photosynthetic acclimation in cucumber during CO2 enrichment. Photosynthetica 2019, 57, 640–645. [Google Scholar] [CrossRef]
- Mao, H.P.; Liu, Y.; Wang, Y.F.; Ma, G.X.; Wang, B.; Du, X.X.; Shi, Q.; Ni, J.H. Response of growth, photosynthesis, dry matter partition and roots to combined nitrogen-potassium stress in cucumber. Qual. Assur. Saf. Crop. Foods 2022, 14, 45–53. [Google Scholar] [CrossRef]
- Alotaibi, M.M.; El Nagy, M.M.M.; Almuziny, M.; Alsubeie, M.S.; Abo-Zeid, A.A.I.; Alzuaibr, F.M.; Alasmari, A.; Albalawi, B.F.; Abd-Elwahed, A.H.M.; Ismail, K.A.; et al. The Effect of Foliar Application with Naphthalene Acetic Acid and Potassium Nitrate on the Growth, Sex Ratio, and Productivity of Cucumbers (Cucumis sativas L.) under High Temperatures in Semi-Arid Areas. Agronomy 2024, 14, 1202. [Google Scholar] [CrossRef]
- Li, N.; Wang, X.X.; Xue, Z.J.; Li, Q.Y. Water and potassium utilization efficiency and yield and quality of cucumber (Cucumis sativus L.). Sci. Hortic. 2024, 330, 113025. [Google Scholar] [CrossRef]
- Lee, N.R.; Kim, Y.X.; Lee, Y.; Lee, C.; Song, Y.; Park, H.; Lee, C.H.; Lee, Y. Metabolomics Reveals the Effects of Nitrogen/Phosphorus/Potassium (NPK) Fertilizer Levels on Cucumber Fruit Raised in Different Nutrient Soils. Metabolites 2024, 14, 102. [Google Scholar] [CrossRef]
- Shi, Q.; You, L.; Wang, Y.; Du, X.; Chen, T. Effects of Downy Mildew Infection and Potassium on Growth and Physiological Traits of Greenhouse Cucumber. Agronomy 2025, 15, 1017. [Google Scholar] [CrossRef]
- Zhu, Z.X.; Li, D.; Wang, P.; Li, J.H.; Lu, X.C. Transcriptome and ionome analysis of nitrogen, phosphorus and potassium interactions in sorghum seedlings. Theor. Exp. Plant Physiol. 2020, 32, 271–285. [Google Scholar] [CrossRef]
- Sarah, M.M.D.; Prado, R.D.; de Souza, J.P.; Teixeira, G.C.M.; Duarte, J.C.D.; de Medeiros, R.L.S. Silicon supplied via foliar application and root to attenuate potassium deficiency in common bean plants. Sci. Rep. 2021, 11, 19690. [Google Scholar] [CrossRef]
- Thornburg, T.E.; Liu, J.; Li, Q.; Xue, H.Y.; Wang, G.; Li, L.J.; Fontana, J.E.; Davis, K.E.; Liu, W.Y.; Zhang, B.H.; et al. Potassium Deficiency Significantly Affected Plant Growth and Development as Well as microRNA-Mediated Mechanism in Wheat (Triticum aestivum L.). Front. Plant Sci. 2020, 11, 1219. [Google Scholar] [CrossRef]
- Gao, H.Y.; Gong, L.Y.; Ni, J.H.; Li, Q.L. Metabolomics Analysis of Lettuce (Lactuca sativa L.) Affected by Low Potassium Supply. Agriculture 2022, 12, 1153. [Google Scholar] [CrossRef]
- GB/T 17980.26-2000; Pesticide--Guidelines for the Field Efficacy Trials(I)--Fungicides Against Downy Mildew of Cucumber. The State Bureau of Quality and Technical Supervision: Beijing, China, 2000.
- Chai, W.C.; Yan, S.J. Effects of drought stress on growth and physiological indicators of grafted cucumber seedlings. North. Hortic. 2024, 7, 10–17. [Google Scholar] [CrossRef]
- Boussadia, O.; Steppe, K.; Zgallai, H.; El Hadj, S.B.; Braham, M.; Lemeur, R.; Van Labeke, M.C. Effects of nitrogen deficiency on leaf photosynthesis, carbohydrate status and biomass production in two olive cultivars ’Meski’ and ’Koroneiki’. Sci. Hortic. 2010, 123, 336–342. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.P.; Wang, Z.C.; Ali, M.U.; Chen, S.; Zhang, S.X.; Wu, Q.; Ullah, M.S. Coupling fertigation and buried straw layer improves fertilizer use efficiency, fruit yield, and quality of greenhouse tomato. Agric. Water Manag. 2020, 239, 106239. [Google Scholar] [CrossRef]
- Shao, C.H.; Qiu, C.F.; Qian, Y.F.; Liu, G.R. Nitrate deficiency decreased photosynthesis and oxidation-reduction processes, but increased cellular transport, lignin biosynthesis and flavonoid metabolism revealed by RNA-Seq in Oryza sativa leaves. PLoS ONE 2020, 15, e0235975. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhu, J.; Li, Y.; Li, M. Effect of high-voltage electrostatic field on inorganic nitrogen uptake by cucumber plants. Trans. ASABE 2016, 59, 25–29. [Google Scholar]
- Sung, J.; Lee, S.; Lee, Y.; Ha, S.; Song, B.; Kim, T.; Waters, B.M.; Krishnan, H.B. Metabolomic profiling from leaves and roots of tomato (Solanum lycopersicum L.) plants grown under nitrogen, phosphorus or potassium-deficient condition. Plant Sci. 2015, 241, 55–64. [Google Scholar] [CrossRef]
- Song, H.F.; Cai, Z.; Liao, J.; Zhang, S. Phosphoproteomic and Metabolomic Analyses Reveal Sexually Differential Regulatory Mechanisms in Poplar to Nitrogen Deficiency. J. Proteome Res. 2020, 19, 1073–1084. [Google Scholar] [CrossRef] [PubMed]
- Abubaker, B.A.; Yan, H.F.; Hong, L.; You, W.Y.; Elshaikh, N.A.; Hussei, G.; Pandab, S.; Hassan, S. Enhancement of Depleted Loam Soil as Well as Cucumber Productivity Utilizing Biochar Under Water Stress. Commun. Soil Sci. Plant Anal. 2019, 50, 49–64. [Google Scholar] [CrossRef]
- Cui, J.; Lamade, E.; Tcherkez, G. Potassium deficiency reconfigures sugar export and induces catecholamine accumulation in oil palm leaves. Plant Sci. 2020, 300, 110628. [Google Scholar] [CrossRef]
- Yan, H.F.; Deng, S.S.; Zhang, C.; Wang, G.Q.; Zhao, S.; Li, M.; Liang, S.W.; Jiang, J.H.; Zhou, Y.D. Determination of energy partition of a cucumber grown Venlo-type greenhouse in southeast China. Agric. Water Manag. 2023, 276, 108047. [Google Scholar] [CrossRef]
- Sun, Y.M.; Huang, X.L.; Zhang, T.; Yang, Y.H.; Cheng, X.F.; Xu, X.Y.; Yuan, H.Y. Potassium deficiency inhibits steviol glycosides synthesis by limiting leaf sugar metabolism in stevia (Stevia rebaudiana Bertoni) plants. J. Integr. Agric. 2021, 20, 2932–2943. [Google Scholar] [CrossRef]
- Ali, A.B.; Elshaikh, N.A.; Hussien, G.; Abdallah, F.E.; Hassan, S. Biochar Addition For Enhanced Cucumber Fruit Quality Under Deficit Irrigation. Biosci. J. 2020, 36, 1930–1937. [Google Scholar] [CrossRef]
- Sung, J.; Sonn, Y.; Lee, Y.; Kang, S.; Ha, S.; Krishnan, H.B.; Oh, T.K. Compositional changes of selected amino acids, organic acids, and soluble sugars in the xylem sap of N, P, or K-deficient tomato plants. J. Plant Nutr. Soil Sci. 2015, 178, 792–797. [Google Scholar] [CrossRef]
- Rasool, G.; Guo, X.P.; Wang, Z.C.; Chen, S.; Hamoud, Y.A.; Javed, Q. Response of Fertigation Under Buried Straw Layer on Growth, Yield, and Water-fertilizer Productivity of Chinese Cabbage Under Greenhouse Conditions. Commun. Soil Sci. Plant Anal. 2019, 50, 1030–1043. [Google Scholar] [CrossRef]
- Okazaki, K.; Tanahashi, T.; Kato, Y.; Suzuki, I.; Tanaka, F.; Ohwaki, Y. Metabolic indices related to leaf marginal necrosis associated with potassium deficiency in tomato using GC/MS metabolite profiling. J. Biosci. Bioeng. 2020, 130, 520–524. [Google Scholar] [CrossRef]
- Yan, H.F.; Zhang, C.; Gerrits, M.C.; Acquah, S.J.; Zhang, H.N.; Wu, H.M.; Zhao, B.S.; Huang, S.; Fu, H.W. Parametrization of aerodynamic and canopy resistances for modeling evapotranspiration of greenhouse cucumber. Agric. For. Meteorol. 2018, 262, 370–378. [Google Scholar] [CrossRef]
- Chen, Z.P.; Li, H.P.; Yang, T.Y.; Chen, T.T.; Dong, C.X.; Gu, Q.; Cheng, X.M. Transcriptome analysis provides insights into the molecular bases in response to different nitrogen forms-induced oxidative stress in tea plant roots (Camellia sinensis). Funct. Plant Biol. 2020, 47, 1073–1082. [Google Scholar] [CrossRef] [PubMed]
- Tewari, R.K.; Kumar, P.; Tewari, N.; Srivastava, S.; Sharma, P.N. Macronutrient deficiencies and differential antioxidant responses—Influence on the activity and expression of superoxide dismutase in maize. Plant Sci. 2004, 166, 687–694. [Google Scholar] [CrossRef]
- Matic, M.; Vukovic, R.; Vrandecic, K.; Camagajevac, I.S.; Cosic, J.; Vukovic, A.; Sabljic, K.; Sabo, N.; Dvojkovic, K.; Novoselovic, D. Oxidative Status and Antioxidative Response to Fusarium Attack and Different Nitrogen Levels in Winter Wheat Varieties. Plants 2021, 10, 611. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Xu, Q.W.; Zou, Y.G.; Ma, S.M.; Zhang, X.D.; Xie, X.Y.; Wang, L.C. Effect of potassium deficiency on growth, antioxidants, ionome and metabolism in rapeseed under drought stress. Plant Growth Regul. 2020, 90, 455–466. [Google Scholar] [CrossRef]
- Liu, Y.; Yin, Q.; Dai, B.J.; Wang, K.L.; Lu, L.; Qaseem, M.F.; Wang, J.X.; Li, H.L.; Wu, A.M. The key physiology and molecular responses to potassium deficiency in Neolamarckia cadamba. Ind. Crop. Prod. 2021, 162, 113260. [Google Scholar] [CrossRef]
- Waqas, M.; Chen, Y.N.; Iqbal, H.; Shareef, M.; Rehman, H.U.; Bilal, H.M. Synergistic consequences of salinity and potassium deficiency in quinoa: Linking with stomatal patterning, ionic relations and oxidative metabolism. Plant Physiol. Biochem. 2021, 159, 17–27. [Google Scholar] [CrossRef]
- Mustapha, A.T.; Zhou, C.S. Novel assisted/unassisted ultrasound treatment: Effect on respiration rate, ethylene production, enzymes activity, volatile composition, and odor of cherry tomato. LWT 2021, 149, 111779. [Google Scholar] [CrossRef]
- Sun, T.T.; Zhang, J.K.; Zhang, Q.; Li, X.L.; Li, M.J.; Yang, Y.Z.; Zhou, J.; Wei, Q.P.; Zhou, B.B. Integrative physiological, transcriptome, and metabolome analysis reveals the effects of nitrogen sufficiency and deficiency conditions in apple leaves and roots. Environ. Exp. Bot. 2021, 192, 104633. [Google Scholar] [CrossRef]
- Maswada, H.F.; Abd El-Razek, U.A.; El-Sheshtawy, A.N.A.; Mazrou, Y.S.A. Effect of Azolla filiculoides on Growth, Physiological and Yield Attributes of Maize Grown under Water and Nitrogen Deficiencies. J. Plant Growth Regul. 2021, 40, 558–573. [Google Scholar] [CrossRef]
- Helena Ramirez-Solet, C.; Magnitskiy, S.; Melo Martinez, S.E.; Alvarez-Florez, F.; Marina Melgarejo, L. Photosynthesis, biochemical activity, and leaf anatomy of tree tomato (Solanum betaceum Cav.) plants under potassium deficiency. J. Appl. Bot. Food Qual. 2021, 94, 75–81. [Google Scholar] [CrossRef]
- Pi, Z.; Stevanato, P.; Yv, L.H.; Geng, G.; Guo, X.L.; Yang, Y.; Peng, C.X.; Kong, X.S. Effects of potassium deficiency and replacement of potassium by sodium on sugar beet plants. Russ. J. Plant Physiol. 2014, 61, 224–230. [Google Scholar] [CrossRef]
- Liaqat, S.; Umar, S.; Saffeullah, P.; Iqbal, N.; Siddiqi, T.O.; Khan, M.I.R. Protective Effect of 24-Epibrassinolide on Barley Plants Growing Under Combined Stress of Salinity and Potassium Deficiency. J. Plant Growth Regul. 2020, 39, 1543–1558. [Google Scholar] [CrossRef]
- Abd El-Mageed, T.A.; Semida, W.M.; Taha, R.S.; Rady, M.M. Effect of summer-fall deficit irrigation on morpho-physiological, anatomical responses, fruit yield and water use efficiency of cucumber under salt affected soil. Sci. Hortic. 2018, 237, 148–155. [Google Scholar] [CrossRef]
- Yan, H.F.; Ma, J.M.; Zhang, J.Y.; Wang, G.Q.; Zhang, C.; Akhlaq, M.; Huang, S.; Yu, J.J. Effects of film mulching on the physiological and morphological parameters and yield of cucumber under insufficient drip irrigation. Irrig. Drain. 2022, 71, 897–911. [Google Scholar] [CrossRef]
- Anderson, N.O.; Annis, J.; Buchholz, M.; Cutting, J.; Heuring, E.; Jankila, E.; McCrumb, M.; Nelson, N.; Pehoski, M.; Piepho, K.; et al. Undergraduate Sustainable Learning: Effects of Sustainable Soilless Media on Production and Sensory Evaluation of Cucumbers, Basil, Parsley, and Lettuce. Sustainability 2011, 3, 1381–1398. [Google Scholar] [CrossRef]
- Yan, H.F.; Acquah, S.J.; Zhang, C.; Wang, G.Q.; Huang, S.; Zhang, H.N.; Zhao, B.S.; Wu, H.M. Energy partitioning of greenhouse cucumber based on the application of Penman-Monteith and Bulk Transfer models. Agric. Water Manag. 2019, 217, 201–211. [Google Scholar] [CrossRef]
- Anders, A.; Choszcz, D.; Markowski, P.; Lipinski, A.J.; Kaliniewicz, Z.; Slesicka, E. Numerical Modeling of the Shape of Agricultural Products on the Example of Cucumber Fruits. Sustainability 2019, 11, 2798. [Google Scholar] [CrossRef]
- Huang, S.; Yan, H.F.; Zhang, C.; Wang, G.Q.; Acquah, S.J.; Yu, J.J.; Li, L.L.; Mam, J.M.; Darko, R.O. Modeling evapotranspiration for cucumber plants based on the Shuttleworth-Wallace model in a Venlo-type greenhouse. Agric. Water Manag. 2020, 228, 105861. [Google Scholar] [CrossRef]
- Takahashi, H.; Pradal, C. Root phenotyping: Important and minimum information required for root modeling in crop plants. Breed. Sci. 2021, 71, 109–116. [Google Scholar] [CrossRef] [PubMed]
Treatment | Measurement Index | ||||||
---|---|---|---|---|---|---|---|
Cane Sugar (mg/gFW) | Soluble Sugar (μg/gFW) | H2O2 (mmol/gprot) | CAT (U/mgprot) | SOD (U/gFW) | PPO (U/gFW) | MDA (nmol/mgprot) | |
B0T1 | 2.27 ± 0.24f | 2794.81 ± 32.02f | 4.31 ± 0.67a | 7.26 ± 0.43e | 686.54 ± 13.91a | 109.59 ± 5.39a | 1.45 ± 0.21a |
B0T2 | 2.73 ± 0.23d | 3190.36 ± 70.26d | 3.99 ± 0.35b | 9.97 ± 0.32c | 646.06 ± 13.11b | 98.47 ± 7.73b | 0.97 ± 0.13d |
B0T3 | 2.65 ± 0.21e | 2978.24 ± 52.5e | 3.78 ± 0.46c | 8.31 ± 0.19d | 595.43 ± 20.63c | 82.15 ± 6.19c | 1.27 ± 0.11c |
B1T1 | 3.09 ± 0.14c | 3507.15 ± 44.92c | 3.6 ± 0.43c | 10.25 ± 0.13c | 596.4 ± 12.14c | 96.75 ± 4.41b | 1.38 ± 0.16b |
B1T2 | 3.55 ± 0.24a | 4377.81 ± 61.19a | 3.29 ± 0.36d | 15.72 ± 0.23a | 526.97 ± 20.03d | 78.62 ± 5.2c | 0.79 ± 0.13e |
B1T3 | 3.34 ± 0.28b | 4034.57 ± 53.34b | 3.76 ± 0.23e | 13.14 ± 0.38b | 503.86 ± 18.94e | 75.13 ± 4.39d | 0.99 ± 0.15d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, Q.; Lin, J.; Lu, X.; Ye, B.; Lv, H.; Du, X.; Chen, T. Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress. Agriculture 2025, 15, 994. https://doi.org/10.3390/agriculture15090994
Wang Y, Shi Q, Lin J, Lu X, Ye B, Lv H, Du X, Chen T. Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress. Agriculture. 2025; 15(9):994. https://doi.org/10.3390/agriculture15090994
Chicago/Turabian StyleWang, Yafei, Qiang Shi, Jiale Lin, Xuanting Lu, Bin Ye, Huanxing Lv, Xiaoxue Du, and Tianhua Chen. 2025. "Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress" Agriculture 15, no. 9: 994. https://doi.org/10.3390/agriculture15090994
APA StyleWang, Y., Shi, Q., Lin, J., Lu, X., Ye, B., Lv, H., Du, X., & Chen, T. (2025). Hormone Metabolism and Substance Accumulation in Cucumber Plants: Downy Mildew Infection and Potassium Stress. Agriculture, 15(9), 994. https://doi.org/10.3390/agriculture15090994