Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Forage Plant for Silage
2.2. Silage Preparation
2.3. Aerobic Exposure
2.4. Forage Quality and Nutritive Values
2.5. Fermentation Characteristics of Silage and Microbe Enumeration
2.6. Microbial Community Analysis
2.7. Statistical Analysis and Data Visualization
3. Results
3.1. Chemical Composition and Microbial Populations of Sugarcane Tops and Corn Stover Before and After Silage
3.2. Fermentation Characteristics of Sugarcane Top and Corn Stover Silage
3.3. Fermentation Characteristics and Microbiome Count of Sugarcane Top and Corn Stover Silage with Different Aerobic Exposure Times
3.4. Bacterial Taxa Structure of Sugarcane Top and Corn Stover Silage
3.5. Fungal Taxa Structure of Sugarcane Top Silage and Corn Stover Silage
4. Discussion
4.1. Chemical Composition and Microbial Populations of Sugarcane Tops and Corn Stover Before and After Silage
4.2. Fermentation Characteristics of Sugarcane Top and Corn Stover Silage
4.3. Fermentation Characteristics and Microbe Count in Sugarcane Top and Corn Stover Silage Under Different Aerobic Exposure Times
4.4. Bacterial Taxa Structure of Sugarcane Top and Corn Stover Silage
4.5. Fungal Taxa Structure of Sugarcane Top and Corn Stover Silage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S. Silage Preparation, Processing and Efficient Utilization. Agriculture 2025, 15, 128. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Li, X.; MacAdam, J.W.; Zhang, Y. Interaction between plants and epiphytic lactic acid bacteria that affect plant silage fermentation. Front. Microbiol. 2023, 14, 1164904. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Zhao, J.; Wang, S.; Dong, Z.; Li, J.; Shao, T. The effects of epiphytic microbiota and chemical composition of Italian ryegrass harvested at different growth stages on silage fermentation. J. Sci. Food Agric. 2023, 103, 1385–1393. [Google Scholar] [CrossRef] [PubMed]
- Kung Jr, L.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Y.; Wang, X.; Li, X.; Xiong, Y.; Lin, Y.; Yang, F. Dynamic fermentation quality and bacterial community structure of paper mulberry silage from three regions of China. Chem. Biol. Technol. Agric. 2023, 10, 51. [Google Scholar] [CrossRef]
- Ali, N.; Wang, S.; Zhao, J.; Dong, Z.; Li, J.; Nazar, M.; Shao, T. Microbial diversity and fermentation profile of red clover silage inoculated with reconstituted indigenous and exogenous epiphytic microbiota. Bioresour. Technol. 2020, 314, 123606. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, X.; Gu, Q.; Liang, M.; Mu, S.; Zhou, B.; Zou, C. Analysis of the correlation between bacteria and fungi in sugarcane tops silage prior to and after aerobic exposure. Bioresour. Technol. 2019, 291, 121835. [Google Scholar] [CrossRef]
- FAO. World Food and Agriculture—Statistical Yearbook; FAO: Rome, Italy, 2024. [Google Scholar]
- Gu, Q.; Zhang, L.; Zhou, X.; Lin, B.; Zou, C. Effects of sugarcane variety and nitrogen application level on the quality and aerobic exposure of sugarcane tops silage. Front. Plant 2023, 14, 1148884. [Google Scholar] [CrossRef]
- Xie, H.; Peng, L.; Li, M.; Guo, Y.; Liang, X.; Peng, K.; Yang, C. Effects of mixed sugarcane tops and napiergrass silages on fermentative quality, nutritional value, and milk yield in water buffaloes. Anim. Sci. J. 2023, 94, e13824. [Google Scholar] [CrossRef]
- Nishino, N.; Touno, E. Ensiling characteristics and aerobic exposure of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Sci. Food Agric. 2005, 85, 1882–1888. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Thiex, N.; Novotny, L.; Crawford, A. Determination of Ash in Animal Feed: AOAC Official Method 942.05 Revisited. J. AOAC Int. 2012, 95, 1392–1397. [Google Scholar] [CrossRef] [PubMed]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Lin, M.; Huang, Y.; Datsomor, O.; Wang, K.; Zhao, G. Effects of solid-state fermentation pretreatment with single or dual culture white rot fungi on white tea residue nutrients and in vitro rumen fermentation parameters. Fermentation 2022, 8, 557. [Google Scholar] [CrossRef]
- Ren, F.; He, R.; Zhou, X.; Gu, Q.; Xia, Z.; Liang, M.; Zou, C. Dynamic changes in fermentation profiles and bacterial community composition during sugarcane top silage fermentation: A preliminary study. Bioresour. Technol. 2019, 285, 121315. [Google Scholar] [CrossRef]
- Jeranyama, P.; Garcia, A.D. Understanding Relative Feed Value (RFV) and Relative Forage Quality (RFQ); SDSU: Brookings, SD, USA, 2004. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.; Morgan, C.A. Animal Nutrition, 5th ed.; Longman Scientific and Technical: New York, NY, USA; John Wiley and Sons: Hoboken, NJ, USA, 1995; p. 33. [Google Scholar]
- Bo, P.T.; Dong, Y.; Zhang, R.; Soe Htet, M.N.; Hai, J. Optimization of alfalfa-based mixed cropping with winter wheat and ryegrass in terms of forage yield and quality traits. Plants 2022, 11, 1752. [Google Scholar] [CrossRef]
- Zhao, N.; Hao, X.; Yin, M.; Li, C.; Wang, C.; Han, H. Influence of growth stages and additives on the fermentation quality and microbial profiles of whole-plant millet silage. Agriculture 2024, 14, 1323. [Google Scholar] [CrossRef]
- Hundal, J.S.; Sharma, A.; Pal, R.; Grewal, R.S. Harnessing the in vitro nutritional potential of different varieties of sugarcane tops silages enriched with molasses and bacterial inoculants as an unconventional feed resource. Sugar Tech 2020, 23, 923–932. [Google Scholar] [CrossRef]
- Li, J.; Wu, K.; Wu, J.; Yang, C.; Sun, B.; Deng, M.; Liu, D.; Li, Y.; Liu, G.; Guo, Y. Effects of Fresh Corn Stover to Corn Flour Ratio on Fermentation Quality and Bacterial Community of Mixed Silage. Fermentation 2024, 10, 654. [Google Scholar] [CrossRef]
- Du, Z.; Yamasaki, S.; Oya, T.; Nguluve, D.; Euridse, D.; Tinga, B.; Cai, Y. Microbial network and fermentation modulation of Napier grass and sugarcane top silage in southern Africa. Microbiol. Spectr. 2024, 12, e03032-23. [Google Scholar] [CrossRef]
- Bernardes, T.F.; Daniel, J.L.P.; Adesogan, A.T.; McAllister, T.A.; Drouin, P.; Nussio, L.G.; Cai, Y. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 2018, 101, 4001–4019. [Google Scholar] [CrossRef]
- Wu, S.; Wang, C.; Chen, D.; Zhou, W.; Chen, X.; Wang, M.; Zhang, Q. Effects of pyroligneous acid as silage additive on fermentation quality and bacterial community structure of waste sugarcane tops. Chem. Biol. Technol. Agric. 2022, 9, 67. [Google Scholar] [CrossRef]
- Li, P.; Liao, C.; Yan, L.; Zhang, C.; Chen, L.; You, M.; Chen, C. Effects of small-scale silo types and additives on silage fermentation and bacterial community of high moisture alfalfa on the qinghai-tibetan plateau. Anim. Feed Sci. Technol. 2023, 299, 115594. [Google Scholar] [CrossRef]
- Harrison, J.H.; Soderlund, S.O.; Loney, K.A. Effect of inoculation rate of selected strains of lactic acid bacteria on fermentation and in vitro digestibility of grass-legume forage. J. Dairy Sci. 1989, 72, 2421–2426. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.M.; Davies, D.R. The aerobic exposure of silage: Key findings and recent developments. Grass Forage Sci. 2013, 68, 1–19. [Google Scholar] [CrossRef]
- Pahlow, G.; Muck, R.E.; Driehuis, F.; Elferink, S.J.O.; Spoelstra, S.F. Microbiology of ensiling. Silage Sci. Technol. 2003, 42, 31–93. [Google Scholar] [CrossRef]
- Wolthusen, E.; Weissbach, F.; Derno, M. Fermentation acid content and aerobic exposure of silages. In Proceedings of the an International Symposium on Production, Evaluation and Feeding of Silage, Rostock, Germany, 12–16 June 1989; pp. 123–132. [Google Scholar]
- Pahlow, G.; Honig, H. The role of microbial additives in the aerobic exposure of silage. In Workshop Proceedings of the 15th General Meeting European Grassland Federation, Wageningen, The Netherlands, 6–9 June 1994; Mannetje, L.T., Ed.; Netherlands Society for Grassland and Fodder Crops: Wageningen, The Netherlands, 1994; pp. 149–151. [Google Scholar]
- Merry, R.J.; Davies, D.R. Propionbacteria and their role in the biological control of aerobic spoilage in silage. Le Lait 1999, 79, 149–164. [Google Scholar] [CrossRef]
- Finkel, O.M.; Burch, A.Y.; Lindow, S.E.; Post, A.F.; Belkin, S. Geographical location determines the population structure in phyllosphere microbial communities of a salt-excreting desert tree. Appl. Environ. Microbiol. 2011, 77, 7647–7655. [Google Scholar] [CrossRef]
- Kim, M.; Singh, D.; Lai-Hoe, A.; Go, R.; Abdul Rahim, R.; An, A.; Adams, J.M. Distinctive phyllosphere bacterial communities in tropical trees. Microb. Ecol. 2012, 63, 674–681. [Google Scholar] [CrossRef]
- Huang, S.; Zha, X.; Fu, G. Affecting factors of plant phyllosphere microbial community and their responses to climatic warming—A Review. Plants 2023, 12, 2891. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Benno, Y.; Ogawa, M.; Ohmomo, S.; Kumai, S.; Nakase, T. Influence of Lactobacillus spp. from an inoculant and of Weissella and Leuconostoc spp. from forage crops on silage fermentation. Appl. Environ. Microbiol. 1998, 64, 2982–2987. [Google Scholar] [CrossRef]
- Dos Santos Vieira, C.F.; Codogno, M.C.; Maugeri Filho, F.; Maciel Filho, R.; Mariano, A.P. Sugarcane bagasse hydrolysates as feedstock to produce the isopropanol-butanol-ethanol fuel mixture: Effect of lactic acid derived from microbial contamination on Clostridium beijerinckii DSM 6423. Bioresour. Technol. 2021, 319, 124140. [Google Scholar] [CrossRef]
- Li, R.; Jiang, D.; Zheng, M.; Tian, P.; Zheng, M.; Xu, C. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 2020, 10, 17782. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Rangel, M.; Barboza-Corona, J.E.; Navarro-Díaz, M.; Escalante, A.E.; Valdez-Vazquez, I. The duo Clostridium and Lactobacillus linked to hydrogen production from a lignocellulosic substrate. Water Sci. Technol. 2021, 83, 3033–3040. [Google Scholar] [CrossRef]
- Liu, Q.H.; Shao, T.; Zhang, J.G. Determination of aerobic deterioration of corn stover silage caused by aerobic bacteria. Anim. Feed Sci. Technol. 2013, 183, 124–131. [Google Scholar] [CrossRef]
- Yin, X.; Tian, J.; Zhang, J. Effects of re-ensiling on the fermentation quality and microbial community of napier grass (Pennisetum purpureum) silage. J. Sci. Food Agric. 2021, 101, 5028–5037. [Google Scholar] [CrossRef]
- Saarisalo, E.; Skyttä, E.; Haikara, A.; Jalava, T.; Jaakkola, S. Screening and selection of lactic acid bacteria strains suitable for ensiling grass. J. Appl. Microbiol. 2007, 102, 327–336. [Google Scholar] [CrossRef]
- Zhang, J.G.; Cai, Y.; Kobayashi, R.; Kumai, S. Characteristics of lactic acid bacteria isolated from forage crops and their effects on silage fermentation. J. Sci. Food Agric. 2000, 80, 1455–1460. [Google Scholar] [CrossRef]
- Wang, M.; Yu, Z.; Wu, Z.; Hannaway, D.B. Effect of Lactobacillus plantarum ‘KR107070’and a propionic acid-based preservative on the fermentation characteristics, nutritive value and aerobic exposure of alfalfa-corn mixed silage ensiled with four ratios. Grassl. Sci. 2018, 64, 51–60. [Google Scholar] [CrossRef]
- Li, M.; Zi, X.; Sun, R.; Ou, W.; Chen, S.; Hou, G.; Zhou, H. Co-ensiling whole-plant cassava with corn stover for excellent silage production: Fermentation characteristics, bacterial community, function profile, and microbial ecological network features. Agronomy 2024, 14, 501. [Google Scholar] [CrossRef]
- Carvalho, B.F.; Ávila, C.L.S.; Miguel, M.G.C.P.; Pinto, J.C.; Santos, M.C.; Schwan, R.F. Aerobic exposure of sugar-cane silage inoculated with tropical strains of lactic acid bacteria. Grass Forage Sci. 2015, 70, 308–323. [Google Scholar] [CrossRef]
- Guan, H.; Yan, Y.; Li, X.; Li, X.; Shuai, Y.; Feng, G.; Zhang, X. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 2018, 265, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Chang, J.; Yu, J.; Li, S.; Niu, H. Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage. Asian-Australas. J. Anim. Sci. 2018, 31, 1464–1473. [Google Scholar] [CrossRef] [PubMed]
- Boonyuen, N.; Manoch, L.; Luangsa-ard, J.J.; Piasai, O.; Chamswarng, C.; Chuaseeharonnachai, C.; Sri-indrasutdhi, V. Decomposition of sugarcane bagasse with lignocellulose-derived thermotolerant and thermoresistant Penicillia and Aspergilli. Int. Biodeterior. Biodegrad. 2014, 92, 86–100. [Google Scholar] [CrossRef]
- Alonso, V.A.; Pereyra, C.M.; Keller, L.A.M.; Dalcero, A.M.; Rosa, C.A.R.; Chiacchiera, S.M.; Cavaglieri, L.R. Fungi and mycotoxins in silage: An overview. J. Appl. Microbiol. 2013, 115, 637–643. [Google Scholar] [CrossRef]
- Rosa-Magri, M.M.; Tauk-Tornisielo, S.M.; Ceccato-Antonini, S.R. Bioprospection of yeasts as biocontrol agents against phytopathogenic molds. Braz. Arch. Biol. Technol. 2011, 54, 1–5. [Google Scholar] [CrossRef]
- Schauer, F.; Hanschke, R. Zur Taxonomie und Ökologie der Gattung Candida: Taxonomy and ecology of the genus Candida. Mycoses 1999, 42 (Suppl. 1), 12–21. [Google Scholar] [CrossRef]
- Bai, C.; Wang, C.; Sun, L.; Xu, H.; Jiang, Y.; Na, N.; Xue, Y. Dynamics of bacterial and fungal communities and metabolites during aerobic exposure in whole-plant corn silages with two different moisture levels. Front. Microbiol. 2021, 12, 663895. [Google Scholar] [CrossRef]
- Hooker, K.; Forwood, D.L.; Caro, E.; Huo, Y.; Holman, D.B.; Chaves, A.V.; Meale, S.J. Microbial characterization and fermentative characteristics of crop maize ensiled with unsalable vegetables. Sci. Rep. 2019, 9, 13183. [Google Scholar] [CrossRef]
- Wang, T.; Teng, K.; Cao, Y.; Shi, W.; Xuan, Z.; Zhou, J.; Zhong, J. Effects of Lactobacillus hilgardii 60TS-2, with or without homofermentative Lactobacillus plantarum B90, on the aerobic exposure, fermentation quality and microbial community dynamics in sugarcane top silage. Bioresour. Technol. 2020, 312, 123600. [Google Scholar] [CrossRef]
Items | Treatment | p-Values | |
---|---|---|---|
ST | CS | ||
Chemical Composition of Fresh Samples | |||
DM (g kg/FW) | 220.15 ± 12.75 | 231.79 ± 15.85 | 0.58 |
NDF (g/kg DM) | 658.97 ± 17.45 | 546.56 ± 14.36 | <0.01 |
ADF (g/kg DM) | 350.06 ± 4.50 | 291.07 ± 12.76 | <0.01 |
HC (g/kg DM) | 308.92 ± 14.08 | 255.49 ± 3.84 | <0.01 |
CP (g/kg DM) | 64.82 ± 2.52 | 77.85 ± 2.10 | <0.01 |
WSC (g/kg DM) | 227.09 ± 0.96 | 225.29 ± 14.05 | 0.90 |
pH | 6.62 ± 0.00 | 6.97 ± 0.00 | <0.01 |
LAB (log10 CFU/g FM) | 4.86 ± 0.22 | 4.93 ± 0.39 | 0.87 |
Yeast (log10 CFU/g FM) | 5.55 ± 0.17 | 5.94 ± 0.40 | 0.05 |
Mold (log10 CFU/g FM) | 4.14 ± 0.38 | 4.37 ± 0.27 | 0.64 |
ET (log10 CFU/g FM) | 5.36 ± 0.31 | 6.12 ± 0.70 | <0.01 |
Chemical Composition of Samples After Silage | |||
DM (g kg/FW) | 194.74 ± 9.41 | 218.29 ± 10.60 | 0.12 |
NDF (g/kg DM) | 710.26 ± 7.36 | 535.60 ± 12.02 | <0.01 |
ADF (g/kg DM) | 412.08 ± 7.03 | 278.20 ± 4.68 | <0.01 |
HC (g/kg DM) | 298.18 ± 8.93 | 257.40 ± 14.53 | <0.05 |
CP (g/kg DM) | 64.26 ± 1.06 | 73.46 ± 3.58 | <0.05 |
WSC (g/kg DM) | 41.82 ± 4.13 | 42.18 ± 4.24 | 0.97 |
pH | 4.46 ± 0.10 | 3.53 ± 0.03 | <0.01 |
LAB (log10 CFU/g FM) | 5.79 ± 0.07 | 5.91 ± 0.20 | 0.56 |
Yeast (log10 CFU/g FM) | 3.35 ± 0.44 | 4.25 ± 0.20 | 0.08 |
Mold (log10 CFU/g FM) | 2.70 ± 0.30 | 2.47 ± 0.19 | 0.53 |
ET (log10 CFU/g FM) | 2.96 ± 0.74 | 3.00 ± 0.85 | 0.96 |
Items | Treatment | p-Values | |
---|---|---|---|
ST | CS | ||
Fresh Samples | |||
DDM (%) | 61.63 ± 0.35 | 66.23 ± 0.99 | <0.01 |
DMI (%/BW) | 1.83 ± 0.05 | 2.20 ± 0.06 | <0.01 |
DCP (%) | 2.29 ± 0.23 | 3.47 ± 0.19 | <0.01 |
RFV | 87.35 ± 2.62 | 113.30 ± 4.49 | <0.01 |
Silage Samples | |||
DDM (%) | 56.80 ± 0.55 | 67.23 ± 0.36 | <0.01 |
DMI (%/BW) | 1.69 ± 0.02 | 2.25 ± 0.49 | <0.01 |
DCP (%) | 2.24 ± 0.10 | 3.08 ± 0.33 | <0.05 |
RFV | 74.47 ± 1.16 | 117.17 ± 2.37 | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, Q.; Ding, H.; Qin, C.; Gu, Q.; Gao, X.; Tan, Y.; Wei, D.; Li, Y.; Zhang, N.; Wang, R.; et al. Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures. Agriculture 2025, 15, 890. https://doi.org/10.3390/agriculture15080890
Yan Q, Ding H, Qin C, Gu Q, Gao X, Tan Y, Wei D, Li Y, Zhang N, Wang R, et al. Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures. Agriculture. 2025; 15(8):890. https://doi.org/10.3390/agriculture15080890
Chicago/Turabian StyleYan, Qi, Hao Ding, Chenghuan Qin, Qichao Gu, Xin Gao, Yongqi Tan, Deshuang Wei, Yiqiang Li, Nanji Zhang, Ruizhanghui Wang, and et al. 2025. "Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures" Agriculture 15, no. 8: 890. https://doi.org/10.3390/agriculture15080890
APA StyleYan, Q., Ding, H., Qin, C., Gu, Q., Gao, X., Tan, Y., Wei, D., Li, Y., Zhang, N., Wang, R., Lin, B., & Zou, C. (2025). Influence of Epiphytic Microorganisms on Silage Quality and Aerobic Exposure Characteristics of Grass Pastures. Agriculture, 15(8), 890. https://doi.org/10.3390/agriculture15080890