Progress and Trends in Coupled Model Intercomparison Project (CMIP) Research: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Annual Number of Publications
- (i)
- The first phase (2000–2007) was the initial stage, with 46 published articles accumulating 8477 citations. Notably, a study conducted by Meehl et al. (2007) [37] received 2233 citations. This research provided a systematic description of the WCRP CMIP3 multi-model datasets on experiments of climate change and climate variability, the organization of the CMIP3 analysis phase, and some case studies with this dataset. Other representative studies included uncertainty [38] or a comparison of different model outputs [39], atmosphere–ocean general circulation models [40], prediction and attribution analysis (e.g., global ocean circulation [41], ENSO [39], and sea ice variability [42]), and climate sensitivity effects on the Earth climate system [43].
- (ii)
- The second phase (2008–2014) was a period of slow development, with 1384 articles (12.98% of the total) and 135,912 citations. Although there were fewer than 100 publications per year between 2008 and 2011, the annual number of publications increased rapidly in the following three years. The most cited article in this phase (10,727 citations) was a technical report of CMIP5 and its experimental design [11]. The research in this phase not only included the research contents of the previous phase but also introduced some new aspects such as the uncertainties of climate models [44], the hydrology cycle [45], global warming [46], snow cover change [47], atmosphere feedback [48], El Niño [49], soil carbon change [50] and the carbon cycle [51], an evaluation of the models [52], glaciers [53], experiment design [11], and scenario models [54].
- (iii)
- The third phase (2015–2023) marked a period of fast development, featuring 9235 publications (86.59% of the total) and 241,813 citations. The most cited study in this phase was a review of the CMIP6 experimental design and organization with 4796 citations [12]. Scientists mostly focused on the large initial-condition ensembles [55], dryland [56], shared socioeconomic pathway [57], forcing scenarios [58], extreme events [59,60], and variability [61].
3.2. Journals Performance and Science Categories
3.3. Contributions by Country and Institution
3.4. The Representative Literature
3.5. Author Keywords Co-Occurrence Analysis
3.6. Analysis of Keyword Mutations
3.7. The Models of CMIP
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Article Filter Criteria
ID | Abbreviation | Full Name |
---|---|---|
1 | beijing normal univ | Beijing Normal University |
2 | bjerknes ctr climate res | Bjerknes Centre for Climate Research |
3 | bur meteorol | Bureau of Meteorology |
4 | caltech | California Institute of Technology |
5 | china meteorol adm | China Meteorological Administration |
6 | chinese acad meteorol sci | Chinese Academy of Meteorological Sciences |
7 | chinese acad sci | Chinese Academy of Sciences |
8 | columbia univ | Columbia University |
9 | csiro oceans & atmosphere | Commonwealth Scientific and Industrial Research Organisation Oceans & Atmosphere |
10 | environm & climate change canada | Environment and Climate Change Canada |
11 | hohai univ | Hohai University |
12 | japan agcy marine earth sci & technol | Japan Agency for Marine—Earth Science and Technology |
13 | lanzhou univ | Lanzhou University |
14 | lawrence livermore natl lab | Lawrence Livermore National Laboratory |
15 | max planck inst meteorol | Max Planck Institute for Meteorology |
16 | met off | Met Office |
17 | met off hadley ctr | Met Office Hadley Centre |
18 | mit | Massachusetts Institute of Technology |
19 | nanjing univ | Nanjing University |
20 | nanjing univ informat sci & technol | Nanjing University of Information Science and Technology |
21 | nasa | National Aeronautics and Space Administration |
22 | natl ctr atmospher res | National Center for Atmospheric Research |
23 | noaa | National Oceanic and Atmospheric Administration |
24 | ocean univ china | Ocean University of China |
25 | pacific northwest natl lab | Pacific Northwest National Laboratory |
26 | princeton univ | Princeton University |
27 | qingdao natl lab marine sci & technol | Qingdao National Laboratory for Marine Science and Technology |
28 | sorbonne univ | Sorbonne Université |
29 | stockholm univ | Stockholm University |
30 | sun yat sen univ | Sun Yat-Sen University |
31 | swiss fed inst technol | Swiss Federal Institute of Technology |
32 | texas a&m univ | Texas A&M University |
33 | tsinghua univ | Tsinghua University |
34 | univ calif irvine | University of California, Irvine |
35 | univ calif los angeles | University of California, Los Angeles |
36 | univ calif san diego | University of California, San Diego |
37 | univ chinese acad sci | University of Chinese Academy of Sciences |
38 | univ colorado | University of Colorado |
39 | univ exeter | University of Exeter |
40 | univ hawaii manoa | University of Hawaii at Manoa |
41 | univ leeds | University of Leeds |
42 | univ maryland | University of Maryland |
43 | univ melbourne | University of Melbourne |
44 | univ new south wales | University of New South Wales |
45 | univ oxford | University of Oxford |
46 | univ reading | University of Reading |
47 | univ tokyo | University of Tokyo |
48 | univ toulouse | University of Toulouse |
49 | univ victoria | University of Victoria |
50 | univ washington | University of Washington |
References
- Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Chang. 2015, 7, 335. [Google Scholar]
- Kabato, W.; Getnet, G.T.; Sinore, T.; Nemeth, A.; Molnár, Z. Towards climate-smart agriculture: Strategies for sustainable agricultural production, food security, and greenhouse gas reduction. Agronomy 2025, 15, 565. [Google Scholar] [CrossRef]
- Beck, S.; Mahony, M. The IPCC and the new map of science and politics. Wires Clim. Chang. 2018, 9, e547. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Asrar, G.R. Challenges and opportunities in water cycle research: WCRP contributions. Surv. Geophys. 2012, 35, 515–532. [Google Scholar] [CrossRef]
- Jappe, A. International collaboration in global environmental research: A comparison of the International Geosphere Biosphere Program and the International Hydrological Program. Sci. Public Policy 2009, 36, 183–197. [Google Scholar] [CrossRef]
- Houghton, J.; Townshend, J.; Dawson, K.; Mason, P.; Zillman, J.; Simmons, A. The GCOS at 20 years: The origin, achievement and future development of the Global Climate Observing System. Weather 2012, 67, 227–235. [Google Scholar] [CrossRef]
- Kuyper, J.; Schroeder, H.; Linnér, B.-O. The evolution of the UNFCCC. Annu. Rev. Environ. Resour. 2018, 43, 343–368. [Google Scholar] [CrossRef]
- Zhou, T.; Zou, L.; Wu, B.; Jin, C.; Song, F.; Chen, X.; Zhang, L. Development of earth/climate system models in China: A review from the Coupled Model Intercomparison Project perspective. J. Meteorol. Res. 2014, 28, 762–779. [Google Scholar] [CrossRef]
- Meehl, G.A.; Boer, G.J.; Covey, C.; Latif, M.; Stouffer, R.J. The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 2000, 81, 313–318. [Google Scholar] [CrossRef]
- Durack, P.J.; Taylor, K.E.; Gleckler, P.J.; Meehl, G.A.; Lawrence, B.N.; Covey, C.; Stouffer, R.J.; Levavasseur, G.; Ben-Nasser, A.; Denvil, S.; et al. The Coupled Model Intercomparison Project (CMIP): Reviewing project history, evolution, infrastructure and implementation. EGUsphere, 2025; preprint. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef]
- Touzé-Peiffer, L.; Barberousse, A.; Le Treut, H. The Coupled Model Intercomparison Project: History, uses, and structural effects on climate research. WIREs Clim. Chang. 2020, 11, e648. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Gou, J.; Wu, Y.; Zhang, Q. Coupled Model Intercomparison Project and its research progress in simulation performance. Prog. Geogr. 2023, 42, 1204–1215. [Google Scholar] [CrossRef]
- Richter, I.; Tokinaga, H. An overview of the performance of CMIP6 models in the tropical Atlantic: Mean state, variability, and remote impacts. Clim. Dyn. 2020, 55, 2579–2601. [Google Scholar] [CrossRef]
- Priestley, M.D.K.; Ackerley, D.; Catto, J.L.; Hodges, K.I.; McDonald, R.E.; Lee, R.W. An overview of the extratropical storm tracks in CMIP6 historical simulations. J. Clim. 2020, 33, 6315–6343. [Google Scholar] [CrossRef]
- Stroeve, J.C.; Kattsov, V.; Barrett, A.; Serreze, M.; Pavlova, T.; Holland, M.; Meier, W.N. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 2012, 39, L16502. [Google Scholar] [CrossRef]
- Bellenger, H.; Guilyardi, E.; Leloup, J.; Lengaigne, M.; Vialard, J. ENSO representation in climate models: From CMIP3 to CMIP5. Clim. Dyn. 2013, 42, 1999–2018. [Google Scholar] [CrossRef]
- Li, J.L.F.; Xu, K.M.; Jiang, J.H.; Lee, W.L.; Wang, L.C.; Yu, J.Y.; Stephens, G.; Fetzer, E.; Wang, Y.H. An overview of CMIP5 and CMIP6 simulated cloud ice, radiation fields, surface wind stress, sea surface temperatures, and precipitation over tropical and subtropical oceans. J. Geophys. Res. Atmos. 2020, 125, e2020JD032848. [Google Scholar] [CrossRef]
- Jiang, J.H.; Su, H.; Wu, L.; Zhai, C.; Schiro, K.A. Improvements in cloud and water vapor simulations over the tropical oceans in CMIP6 compared to CMIP5. Earth Space Sci. 2021, 8, e2020EA001520. [Google Scholar] [CrossRef]
- Jägermeyr, J.; Müller, C.; Ruane, A.C.; Elliott, J.; Balkovic, J.; Castillo, O.; Faye, B.; Foster, I.; Folberth, C.; Franke, J.A.; et al. Climate impacts on global agriculture emerge earlier in new generation of climate and crop models. Nat. Food 2021, 2, 873–885. [Google Scholar] [CrossRef] [PubMed]
- Tittensor, D.P.; Novaglio, C.; Harrison, C.S.; Heneghan, R.F.; Barrier, N.; Bianchi, D.; Bopp, L.; Bryndum-Buchholz, A.; Britten, G.L.; Büchner, M.; et al. Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nat. Clim. Chang. 2021, 11, 973–981. [Google Scholar] [CrossRef]
- Hajat, S.; Proestos, Y.; Araya-Lopez, J.-L.; Economou, T.; Lelieveld, J. Current and future trends in heat-related mortality in the MENA region: A health impact assessment with bias-adjusted statistically downscaled CMIP6 (SSP-based) data and Bayesian inference. Lancet Planet. Health 2023, 7, e282–e290. [Google Scholar] [CrossRef]
- Varela, R.; de Castro, M.; Dias, J.M.; Gómez-Gesteira, M. Coastal warming under climate change: Global, faster and heterogeneous. Sci. Total Environ. 2023, 886, 164029. [Google Scholar] [CrossRef]
- Ye, C.; Duc Dang, T.; Xu, X.; Stewart, C.J.; Arias, M.E.; Zhang, Y.; Zhang, Q. Coupled effects of future rainfall and land use on urban stormwater drainage system in Tampa, Florida (USA). Ecol. Indic. 2023, 153, 110402. [Google Scholar] [CrossRef]
- Zhu, N. A hybrid model to predict the hydrological drought in the Tarim River Basin based on CMIP6. Clim. Dyn. 2023, 61, 4185–4201. [Google Scholar] [CrossRef]
- Choudhri, A.F.; Siddiqui, A.; Khan, N.R.; Cohen, H.L. Understanding bibliometric parameters and analysis. RadioGraphics 2015, 35, 736–746. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Ling, J.; Lin, M.W. Carbon neutrality: A comprehensive bibliometric analysis. Environ. Sci. Pollut. R 2023, 30, 45498–45514. [Google Scholar] [CrossRef]
- Velastegui-Montoya, A.; Montalván-Burbano, N.; Carrión-Mero, P.; Rivera-Torres, H.; Sadeck, L.; Adami, M. Google Earth Engine: A global analysis and future trends. Remote Sens. 2023, 15, 3675. [Google Scholar] [CrossRef]
- Jia, L.; Wang, W.; Zvomuya, F.; He, H. Trends in soil science over the past three decades (1992–2022) based on the scientometric analysis of 39 soil science journals. Agriculture 2024, 14, 445. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Zhuang, D. Wastewater treatment and emerging contaminants: Bibliometric analysis. Chemosphere 2022, 297, 133932. [Google Scholar] [CrossRef] [PubMed]
- Öztürk, O.; Kocaman, R.; Kanbach, D.K. How to design bibliometric research: An overview and a framework proposal. Rev. Manag. Sci. 2024, 18, 3333–3361. [Google Scholar] [CrossRef]
- Pan, X.; Yan, E.; Cui, M.; Hua, W. Examining the usage, citation, and diffusion patterns of bibliometric mapping software: A comparative study of three tools. J. Informetr. 2018, 12, 481–493. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics 2017, 111, 1053–1070. [Google Scholar] [CrossRef]
- Eck, N.J.v.; Waltman, L. VOSviewer Manual; University Leiden: Leiden, The Netherlands, 2023. [Google Scholar]
- Wu, Y.; Miao, C.; Fan, X.; Gou, J.; Zhang, Q.; Zheng, H. Quantifying the uncertainty sources of future climate projections and narrowing uncertainties with bias correction techniques. Earth’s Future 2022, 10, e2022EF002963. [Google Scholar] [CrossRef]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef]
- Chen, D.; Achberger, C.; Räisänen, J.; Hellström, C. Using statistical downscaling to quantify the GCM-related uncertainty in regional climate change scenarios: A case study of Swedish precipitation. Adv. Atmos. Sci. 2006, 23, 54–60. [Google Scholar] [CrossRef]
- AchutaRao, K.; Sperber, K.R. ENSO simulation in coupled ocean-atmosphere models: Are the current models better? Clim. Dyn. 2006, 27, 1–15. [Google Scholar] [CrossRef]
- Furrer, R.; Sain, S.R.; Nychka, D.; Meehl, G.A. Multivariate Bayesian analysis of atmosphere–ocean general circulation models. Environ. Ecol. Stat. 2007, 14, 249–266. [Google Scholar] [CrossRef]
- Weber, S.L.; Vettoretti, G.; Sokolov, A.; Robitaille, D.Y.; Peltier, W.R.; Oka, A.; Nawrath, S.; Murakami, S.; Montoya, M.; Levermann, A.; et al. Investigating the causes of the response of the thermohaline circulation to past and future climate changes. J. Clim. 2006, 19, 1365–1387. [Google Scholar]
- Flato, G.M. Sea-ice and its response to CO2 forcing as simulated by global climate models. Clim. Dyn. 2004, 23, 229–241. [Google Scholar] [CrossRef]
- Raper, S.C.B.; Gregory, J.M.; Stouffer, R.J. The role of climate sensitivity and ocean heat uptake on AOGCM transient temperature response. J. Clim. 2002, 15, 124–130. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. Atmos. 2008, 113, D06104. [Google Scholar] [CrossRef]
- Mariotti, A.; Zeng, N.; Yoon, J.-H.; Artale, V.; Navarra, A.; Alpert, P.; Li, L.Z.X. Mediterranean water cycle changes: Transition to drier 21st century conditions in observations and CMIP3 simulations. Environ. Res. Lett. 2008, 3, 044001. [Google Scholar] [CrossRef]
- Bony, S.; Dufresne, J.-L. An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Clim. 2008, 21, 5135–5144. [Google Scholar]
- Brown, R.D.; Mote, P.W. The response of northern hemisphere snow cover to a changing climate. J. Clim. 2009, 22, 2124–2145. [Google Scholar] [CrossRef]
- Lloyd, J.; Guilyardi, E.; Weller, H.; Slingo, J. The role of atmosphere feedbacks during ENSO in the CMIP3 models. Atmos. Sci. Lett. 2009, 10, 170–176. [Google Scholar] [CrossRef]
- Yeh, S.-W.; Kug, J.-S.; Dewitte, B.; Kwon, M.-H.; Kirtman, B.P.; Jin, F.-F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef]
- Guenet, B.; Moyano, F.E.; Vuichard, N.; Kirk, G.J.D.; Bellamy, P.H.; Zaehle, S.; Ciais, P. Can we model observed soil carbon changes from a dense inventory? A case study over England and Wales using three versions of the ORCHIDEE ecosystem model (AR5, AR5-PRIM and O-CN). Geosci. Model Dev. 2013, 6, 2153–2163. [Google Scholar] [CrossRef]
- Meinshausen, M.; Raper, S.C.B.; Wigley, T.M.L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys. 2011, 11, 1417–1456. [Google Scholar] [CrossRef]
- Collins, W.J.; Bellouin, N.; Doutriaux-Boucher, M.; Gedney, N.; Halloran, P.; Hinton, T.; Hughes, J.; Jones, C.D.; Joshi, M.; Liddicoat, S.; et al. Development and evaluation of an Earth-System model—HadGEM2. Geosci. Model Dev. 2011, 4, 1051–1075. [Google Scholar] [CrossRef]
- Marzeion, B.; Jarosch, A.H.; Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 2012, 6, 1295–1322. [Google Scholar] [CrossRef]
- Valdes, P.J.; Davies-Barnard, T.; Singarayer, J.S.; Jones, C.D. Climatic impacts of land-use change due to crop yield increases and a universal carbon tax from a scenario model. J. Clim. 2014, 27, 1413–1424. [Google Scholar]
- Kay, J.E.; Deser, C.; Phillips, A.; Mai, A.; Hannay, C.; Strand, G.; Arblaster, J.M.; Bates, S.C.; Danabasoglu, G.; Edwards, J.; et al. The Community Earth System Model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability. Bull. Am. Meteorol. Soc. 2015, 96, 1333–1349. [Google Scholar] [CrossRef]
- Huang, J.; Yu, H.; Guan, X.; Wang, G.; Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Chang. 2015, 6, 166–171. [Google Scholar] [CrossRef]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Marvel, K.; Williams, A.P.; Smerdon, J.E.; Anchukaitis, K.J. Twenty-first century drought projections in the CMIP6 forcing scenarios. Earth’s Future 2020, 8, e2019EF001461. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The Community Earth System Model: A framework for collaborative research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Swart, N.C.; Cole, J.N.S.; Kharin, V.V.; Lazare, M.; Scinocca, J.F.; Gillett, N.P.; Anstey, J.; Arora, V.; Christian, J.R.; Hanna, S.; et al. The Canadian Earth System Model version 5 (CanESM5.0.3). Geosci. Model Dev. 2019, 12, 4823–4873. [Google Scholar] [CrossRef]
- Voldoire, A.; Sanchez-Gomez, E.; Salas y Mélia, D.; Decharme, B.; Cassou, C.; Sénési, S.; Valcke, S.; Beau, I.; Alias, A.; Chevallier, M.; et al. The CNRM-CM5.1 global climate model: Description and basic evaluation. Clim. Dyn. 2012, 40, 2091–2121. [Google Scholar] [CrossRef]
- Watanabe, S.; Hajima, T.; Sudo, K.; Nagashima, T.; Takemura, T.; Okajima, H.; Nozawa, T.; Kawase, H.; Abe, M.; Yokohata, T.; et al. MIROC-ESM 2010: Model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 2011, 4, 845–872. [Google Scholar] [CrossRef]
- Dufresne, J.L.; Foujols, M.A.; Denvil, S.; Caubel, A.; Marti, O.; Aumont, O.; Balkanski, Y.; Bekki, S.; Bellenger, H.; Benshila, R.; et al. Climate change projections using the IPSL-CM5 Earth System Model: From CMIP3 to CMIP5. Clim. Dyn. 2013, 40, 2123–2165. [Google Scholar] [CrossRef]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zhang, X.; Zwiers, F.W.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. model evaluation in the present climate. J. Geophys. Res. Atmos. 2013, 118, 1716–1733. [Google Scholar] [CrossRef]
- Deser, C.; Phillips, A.; Bourdette, V.; Teng, H. Uncertainty in climate change projections: The role of internal variability. Clim. Dyn. 2010, 38, 527–546. [Google Scholar] [CrossRef]
- Sillmann, J.; Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Bronaugh, D. Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. J. Geophys. Res. Atmos. 2013, 118, 2473–2493. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J. Robustness and uncertainties in the new CMIP5 climate model projections. Nat. Clim. Chang. 2013, 3, 369–373. [Google Scholar] [CrossRef]
- van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Zhou, T.J.; Zou, L.W.; Chen, X.L. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6). Clim. Chang. Res. 2019, 15, 445–456. [Google Scholar]
- Bhatnagar, S.; Chaudhary, R.; Sharma, S.; Janjhua, Y.; Thakur, P.; Sharma, P.; Keprate, A. Exploring the dynamics of climate-smart agricultural practices for sustainable resilience in a changing climate. Environ. Sustain. Indic. 2024, 24, 100535. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, B.; Piao, S.; Wang, X.; Lobell, D.B.; Huang, Y.; Huang, M.; Yao, Y.; Bassu, S.; Ciais, P.; et al. Temperature increase reduces global yields of major crops in four independent estimates. Proc. Natl. Acad. Sci. USA 2017, 114, 9326–9331. [Google Scholar] [CrossRef]
- Li, Z.; Liu, W.; Ye, T.; Chen, S.; Shan, H. Observed and CMIP6 simulated occurrence and intensity of compound agroclimatic extremes over maize harvested areas in China. Weather Clim. Extrem. 2022, 38, 100503. [Google Scholar] [CrossRef]
- Heikonen, S.; Heino, M.; Jalava, M.; Siebert, S.; Viviroli, D.; Kummu, M. Climate change threatens crop diversity at low latitudes. Nat. Food 2025. [Google Scholar] [CrossRef]
- Wheeler, T.; von Braun, J. Climate change impacts on global food security. Science 2013, 341, 508–513. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, J.; Huang, Y. Evaluation of soil temperature in CMIP6 multimodel simulations. Agric. For. Meteorol. 2024, 352, 110039. [Google Scholar] [CrossRef]
- Phillips, C.L. How much will soil warm? J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005668. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, X.; Bai, Y.; Zeng, J. Evaluation of 22 CMIP6 model-derived global soil moisture products of different shared socioeconomic pathways. J. Hydrol. 2024, 636, 131241. [Google Scholar] [CrossRef]
- Latif, M. Uncertainty in climate change projections. J. Geochem. Explor. 2011, 110, 1–7. [Google Scholar] [CrossRef]
- Brient, F. Reducing uncertainties in climate projections with emergent constraints: Concepts, examples and prospects. Adv. Atmos. Sci. 2019, 37, 1–15. [Google Scholar] [CrossRef]
- Wu, H.; Levinson, D. The ensemble approach to forecasting: A review and synthesis. Transp. Res. Part C Emerg. Technol. 2021, 132, 103357. [Google Scholar] [CrossRef]
- Kim, Y.-T.; Yu, J.-U.; Kim, T.-W.; Kwon, H.-H. A novel approach to a multi-model ensemble for climate change models: Perspectives on the representation of natural variability and historical and future climate. Weather Clim. Extrem. 2024, 44, 100688. [Google Scholar] [CrossRef]
- Acar, E.; Bayrak, G.; Jung, Y.; Lee, I.; Ramu, P.; Ravichandran, S.S. Modeling, analysis, and optimization under uncertainties: A review. Struct. Multidiscip. Optim. 2021, 64, 2909–2945. [Google Scholar] [CrossRef]
- Wang, B.; Jägermeyr, J.; O’Leary, G.J.; Wallach, D.; Ruane, A.C.; Feng, P.Y.; Li, L.C.; Liu, D.L.; Waters, C.; Yu, Q.; et al. Pathways to identify and reduce uncertainties in agricultural climate impact assessments. Nat. Food 2024, 5, 550–556. [Google Scholar] [CrossRef] [PubMed]
- Martín-Martín, A.; Orduna-Malea, E.; Thelwall, M.; Delgado López-Cózar, E. Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. J. Informetr. 2018, 12, 1160–1177. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB J. 2007, 22, 338–342. [Google Scholar] [CrossRef]
Tool | Use(s) |
---|---|
Web of Science | Download the literature documents, and obtain the annual number of publications and scientific categories. |
VOSviewer 1.6.19 | Visualize the collaboration of organizations and keywords. |
HistCite Pro 2.1 | Extract journals, the number of publications in each country, and representative papers. |
CiteSpace 6.2.6 | Perform keyword bursts. |
ArcGIS 10.2 | Visualize the number of publications per country. |
Journal | Country | JIF5yr | JCR Category | JCR Rank | Articles | Citations | C/A |
---|---|---|---|---|---|---|---|
Journal of Climate | United States | 5.3 | Meteorology and atmospheric sciences | Q1 | 1163 | 53,518 | 46.02 |
Climate Dynamics | United States | 4.4 | Meteorology and atmospheric sciences | Q2 | 1055 | 37,569 | 35.61 |
Geophysical Research Letters | United States | 5.2 | Geosciences, multidisciplinary | Q1 | 811 | 31,979 | 39.43 |
International Journal of Climatology | England | 3.8 | Meteorology and atmospheric sciences | Q2 | 532 | 9858 | 18.53 |
Journal of Geophysical Research-Atmospheres | United States | 4.7 | Meteorology and atmospheric sciences | Q2 | 459 | 20,036 | 43.65 |
Environmental Research Letters | England | 7.2 | Environmental sciences | Q1 | 398 | 12,212 | 30.68 |
Theoretical and Applied Climatology | Germany | 3.1 | Meteorology and atmospheric sciences | Q3 | 253 | 3612 | 14.28 |
Geoscientific Model Development | Germany | 6.1 | Geosciences, multidisciplinary | Q1 | 250 | 24,997 | 99.99 |
Atmosphere | Switzerland | 2.6 | Environmental sciences | Q3 | 193 | 1263 | 6.54 |
Earth’s Future | England | 8.7 | Environmental sciences | Q1 | 180 | 4364 | 24.24 |
Climatic Change | Netherlands | 5.4 | Environmental sciences | Q1 | 175 | 6967 | 39.81 |
Water | Switzerland | 3.3 | Environmental sciences | Q2 | 159 | 1786 | 11.23 |
Journal of Hydrology | Netherlands | 6.4 | Geosciences, multidisciplinary | Q1 | 153 | 4337 | 28.35 |
Scientific Reports | England | 4.3 | Multidisciplinary sciences | Q1 | 145 | 5757 | 39.70 |
Advances in Atmospheric Sciences | China | 5.2 | Meteorology and atmospheric sciences | Q1 | 144 | 3373 | 23.42 |
Total journals (527) | - | - | - | - | 10,665 | 386,202 | 34.59 |
Characteristic | Google Scholar | Scopus | Web of Science |
---|---|---|---|
Official inauguration date | 2004 | 2004.11 | 2004.11 |
Period covered | Theoretically, all available electronically | 1966 to present | 1900 to present |
Updating | Monthly on average | 1–2 times weekly | Weekly |
Focus | Biology, life sciences and environmental sciences, business, administration, finance and economics, chemistry and materials science, engineering, pharmacology, veterinary science, social sciences, and arts and humanities | Science, technology, social science, and arts and humanities | Physics sciences, health sciences, life sciences, and social sciences |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, Y.; Azad, N.; Ding, W.; He, H. Progress and Trends in Coupled Model Intercomparison Project (CMIP) Research: A Bibliometric Analysis. Agriculture 2025, 15, 826. https://doi.org/10.3390/agriculture15080826
Ju Y, Azad N, Ding W, He H. Progress and Trends in Coupled Model Intercomparison Project (CMIP) Research: A Bibliometric Analysis. Agriculture. 2025; 15(8):826. https://doi.org/10.3390/agriculture15080826
Chicago/Turabian StyleJu, Yufeng, Nasrin Azad, Weiting Ding, and Hailong He. 2025. "Progress and Trends in Coupled Model Intercomparison Project (CMIP) Research: A Bibliometric Analysis" Agriculture 15, no. 8: 826. https://doi.org/10.3390/agriculture15080826
APA StyleJu, Y., Azad, N., Ding, W., & He, H. (2025). Progress and Trends in Coupled Model Intercomparison Project (CMIP) Research: A Bibliometric Analysis. Agriculture, 15(8), 826. https://doi.org/10.3390/agriculture15080826