The Impact of Food Import Competition Effects on Water–Land–Food System Coordination: A Perspective from Land Use Efficiency for Food Production in China
Abstract
1. Introduction
1.1. Background
1.2. Land Use Efficiency Studies for Food Production
1.3. WLF Coordination and Matching Studies
2. Materials and Methods
2.1. Virtual Land Measurement Methodology for China’s Net Food Imports
2.2. Measurement of the Competitive Effect of China’s Net Food Imports
2.3. Methodology for Measuring Land Efficiency for Food Production
2.4. Characteristics of Spatial and Temporal Variations in WLF System Coordination
2.4.1. Construction of a WLF System Coordination Index System Based on Symbiosis Theory and PSIR
2.4.2. Methods for Measuring WLF System Coordination
Integrated WLF System Assessment Methods
2.5. Impact of the Food Import Competition Effect on WLF System Coordination
2.5.1. Variable Selection
2.5.2. Empirical Modeling of the Food Import Competition Effect on WLF System Coordination
2.6. Data Sources and Data Processing
3. Results
3.1. Distributional Characteristics of WLF System Coordination
3.1.1. An Overview of WLF System Coordination in China’s Provincial-Level Administrative Regions
3.1.2. Kernel Density Estimates of WLF System Coordination
3.1.3. Spatial Relevance of WLF System Coordination
3.2. Empirical Examination of How the Food Import Competition Effect Influences WLF System Coordination in China
3.2.1. Analysis of the Variations in the Competitive Impacts of Food Imports on the Coordination of the WLF System
3.2.2. Spatial Spillovers from the Effects of the Food Import Competition Effect Affecting the Coordination of WLF Systems
3.2.3. Path Test to Assess the Impact of Competitive Food Imports on the Coordination of WLF Systems
4. Discussion and Conclusions
4.1. Discussion
4.2. Policy Implications
4.3. Limitations of the Study and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Davidson, W.H. Factor Endowment, Innovation and International Trade Theory. Kyklos 1979, 32, 764–774. [Google Scholar] [CrossRef]
- Michael, S. Product Selection, Fixed Costs, and Monopolistic Competition. Rev. Econ. Stud. 1976, 43, 217–235. [Google Scholar]
- Krugman, P.R. Increasing returns, monopolistic competition, and international trade. J. Int. Econ. 1979, 9, 469–479. [Google Scholar] [CrossRef]
- Melitz, M.J. The Impact of Trade on Intra-industry Reallocations and Aggregate Industry Productivity. Econometrica 2003, 71, 1695–1725. [Google Scholar] [CrossRef]
- Feenstra, R.C. Alternative Sources of the Gains from International Trade: Variety, Creative Destruction, and Markups. J. Econ. Perspect. 2018, 32, 25–46. [Google Scholar] [CrossRef]
- Arkolakis, C.; Costinot, A.; Donaldson, D.; Rodríguez-Clare, A. The Elusive Pro-Competitive Effects of Trade. Soc. Sci. Electron. Publ. 2019, 86, 46–80. [Google Scholar]
- Huang, H.; Lampe, M.V.; Tongeren, F.V. Climate change and trade in agriculture. Food Policy 2011, 36, S9–S13. [Google Scholar] [CrossRef]
- Qiang, W.L.; Niu, S.W.; Liu, A.M.; Kastner, T.; Bie, Q.; Wang, X.; Cheng, S.K. Trends in global virtual land trade in relation to agricultural products. Land Use Policy 2020, 92, 104439. [Google Scholar] [CrossRef]
- Liu, W.; Yang, H.; Ciais, P.; Kummu, M.; Hoekstra, A.Y. China’s Food Supply Sources Under Trade Conflict with the United States and Limited Domestic Land and Water Resources. Earth’s Future 2020, 8, e2020EF001482. [Google Scholar] [CrossRef]
- Yawson, D.O. Estimating virtual water and land use transfers associated with future food supply: A scalable food balance approach. MethodsX 2020, 7, 100811. [Google Scholar] [CrossRef]
- Cao, C.; Yuan, G.J. Foreign trade and virtual land resources: A case study of China’s grain. Agric. Econ. Zemed. Ekon. 2022, 68, 259–270. [Google Scholar] [CrossRef]
- Ni, G.H.; Teng, M.; Su, B.; Chen, Z.L. Impact of political relationships on virtual land flow from China’s food trade. Socioecon. Plan. Sci. 2024, 96, 102085. [Google Scholar] [CrossRef]
- Zhao, D.D.; Hubacek, K.; Feng, K.S.; Sun, L.X.; Liu, J.G. Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Res. 2019, 153, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Xing, Z.C.; Chu, B.W.; Zhang, H.B.; Wang, H.K. Virtual land trade and associated risks to food security in China. Environ. Impact Assess. Rev. 2024, 106, 107461. [Google Scholar] [CrossRef]
- Raza, D.; Shu, H.; Ehsan, M.; Fan, H.; Abdelrahman, K.; Aslam, H.; Quddoos, A.; Aslam, R.W.; Nazeer, M.; Fnais, M.S.; et al. Evaluation of agriculture land transformations with socio-economic influences on wheat demand and supply for food sustainability. Cogent Food Agric. 2025, 11, 2448597. [Google Scholar] [CrossRef]
- Weijiao, Y.; Ziqiang, L. Will the Grain Imports Competition Effect Reverse Land Green Efficiency of Grain Production? Analysis Based on Virtual Land Trade Perspective. Agriculture 2023, 13, 2220. [Google Scholar] [CrossRef]
- Meier, T.; Christen, O.; Semler, E.; Jahreis, G.; Voget-Kleschin, L.; Schrode, A.; Artmann, M. Balancing virtual land imports by a shift in the diet. Using a land balance approach to assess the sustainability of food consumption. Germany as an example. Appetite 2014, 74, 20–34. [Google Scholar] [CrossRef]
- Duro, J.A.; Lauk, C.; Kastner, T.; Erb, K.H.; Haberl, H. Global inequalities in food consumption, cropland demand and land-use efficiency: A decomposition analysis. Glob. Environ. Change Hum. Policy Dimens. 2020, 64, 102124. [Google Scholar] [CrossRef]
- Hemerijckx, L.M.; De Vos, K.; Kaunda, J.O.; Van Rompaey, A. Future scenarios for urban agriculture and food security in sub-Saharan Africa: Modelling the urban land-food system in an agent-based approach. Comput. Environ. Urban Syst. 2025, 118, 102258. [Google Scholar] [CrossRef]
- Li, Z.M.; Fu, W.; Luo, M.C.; Chen, J.C. The Coupling Coordination between the Competitiveness Level and Land Use Efficiency of Green Food Industry in China. Land 2022, 11, 2116. [Google Scholar] [CrossRef]
- Wang, Y.B.; Wang, H.Q.; Sun, J.X.; Qi, P.; Zhang, W.G.; Zhang, G.X. Spatially optimized allocation of water and land resources based on multi-dimensional coupling of water quantity, quality, efficiency, carbon, food, and ecology. Agric. Water Manag. 2025, 309, 109340. [Google Scholar] [CrossRef]
- Lu, L.C.; Chiu, S.Y.; Chiu, Y.H.; Chang, T.H. Three-stage circular efficiency evaluation of agricultural food production, food consumption, and food waste recycling in EU countries. J. Clean. Prod. 2022, 343, 109340. [Google Scholar] [CrossRef]
- Chen, Q.; Xie, H. Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef]
- Ding, T.H.; Chen, J.F. Evaluation and obstacle factors of coordination development of regional water-energy-food-ecology system under green development: A case study of Yangtze River Economic Belt, China. Stoch. Environ. Res. Risk Assess. 2021, 36, 25–34. [Google Scholar] [CrossRef]
- Niu, S.D.; Lyu, X.; Gu, G.Z. A New Framework of Green Transition of Cultivated Land-Use for the Coordination among the Water-Land-Food-Carbon Nexus in China. Land 2022, 11, 933. [Google Scholar] [CrossRef]
- Yaqoob, N.; Jain, V.; Atiq, Z.; Sharma, P.; Ramos-Meza, C.S.; Shabbir, M.S.; Tabash, M.I. The relationship between staple food crops consumption and its impact on total factor productivity: Does green economy matter? Environ. Sci. Pollut. Res. Int. 2022, 29, 69213–69222. [Google Scholar] [CrossRef]
- Zhai, X.J.; Wang, H.T.; Kou, C.H.; Ma, G.F.; Lin, H. Influence of Environmental Regulation on Cooperative Game in Green Food Industrial Supply Chain. J. Environ. Prot. Ecol. 2021, 22, 724–734. [Google Scholar]
- Osei-Owusu, A.K.; Kastner, T.; Ruiter, H.D.; Thomsen, M.; Caro, D. The global cropland footprint of Denmark’s food supply 2000–2013. Glob. Environ. Change 2019, 58, 101978. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Haddad, O.B.; Maroufpoor, E.; Singh, V.P. Optimal virtual water flows for improved food security in water-scarce countries. Sci. Rep. 2021, 11, 2102. [Google Scholar] [CrossRef]
- Cai, B.M.; Hubacek, K.; Feng, K.S.; Zhang, W.; Wang, F.; Liu, Y. Tension of Agricultural Land and Water Use in China’s Trade: Tele-Connections, Hidden Drivers and Potential Solutions. Environ. Sci. Technol. 2020, 54, 5365–5375. [Google Scholar] [CrossRef]
- Masud, M.B.; Wada, Y.; Goss, G.; Faramarzi, M. Global implications of regional grain production through virtual water trade. Sci. Total Environ. 2019, 659, 807–820. [Google Scholar] [CrossRef] [PubMed]
- Chartres, C.J.; Noble, A. Sustainable intensification: Overcoming land and water constraints on food production. Food Secur. 2015, 7, 235–245. [Google Scholar] [CrossRef]
- Elagib, N.A.; Al-Saidi, M. Balancing the benefits from the water–energy–land–food nexus through agroforestry in the Sahel. Sci. Total Environ. 2020, 742, 140509. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ye, W.; Jiang, H.; Song, H.; Zheng, C. Impact of the eco-efficiency of food production on the water-land-food system coordination in China: A discussion of the moderation effect of environmental regulation. Sci. Total Environ. 2023, 857, 159641. [Google Scholar] [CrossRef]
- Clothier, B.; Jovanovic, N.; Zhang, X. Reporting on water productivity and economic performance at the water-food nexus. Agric. Water Manag. 2020, 237, 106123. [Google Scholar] [CrossRef]
- Deng, C.X.; Zhang, G.J.; Li, Z.W.; Li, K. Interprovincial food trade and water resources conservation in China. Sci. Total Environ. 2020, 737, 139651. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.K.; Lu, Y.J.; Gao, H.; Jiang, T.T.; Du, X.Y.; Shen, T.X.; Wu, P.T.; Wang, Y.B. Impacts of food wastage on water resources and environment in China. J. Clean. Prod. 2018, 185, 732–739. [Google Scholar] [CrossRef]
- Siciliano, G.; Rulli, M.C.; D’Odorico, P. European large-scale farmland investments and the land-water-energy-food nexus. Adv. Water Resour. 2017, 110, 579–590. [Google Scholar] [CrossRef]
- Ofori, S.A.; Cobbina, S.; Obiri, S. Climate Change, Land, Water, and Food Security: Perspectives from Sub-Saharan Africa. Front. Sustain. Food Syst. 2021, 5, 680924. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J.; Clarke, D.; Savin, C.; Harrison, P.A. Integrated Assessment of the Food-Water-Land-Ecosystems Nexus in Europe: Implications for Sustainability. Sci. Total Environ. 2021, 768, 144461. [Google Scholar] [CrossRef]
- Ringler, C.; Bhaduri, A.; Lawford, R. The nexus across water, energy, land and food (WELF): Potential for improved resource use efficiency? Curr. Opin. Environ. Sustain. 2013, 5, 617–624. [Google Scholar] [CrossRef]
- Lee, S.H.; Mohtar, R.; Yoo, S. Assessment of food trade impacts on water, food, and land security in the MENA region. Hydrol. Earth Syst. Sci. 2018, 1, 557–572. [Google Scholar] [CrossRef]
- Psomas, A.; Vryzidis, I.; Spyridakos, A.; Mimikou, M. MCDA approach for agricultural water management in the context of water–energy–land–food nexus. Oper. Res. 2018, 21, 689–723. [Google Scholar] [CrossRef]
- Karabulut, A.A.; Crenna, E.; Sala, S.; Udias, A. A proposal for integration of the ecosystem-water-food-land-energy (EWFLE) nexus concept into life cycle assessment: A synthesis matrix system for food security. J. Clean. Prod. 2018, 172, 3874–3889. [Google Scholar] [CrossRef]
- Yilin, L.; La, Z.; Varis, O.; Kai, F.; Gang, L.; Pute, W. Enhancing water and land efficiency in agricultural production and trade between Central Asia and China. Sci. Total Environ. 2021, 780, 146584. [Google Scholar] [CrossRef]
- Taherzadeh, O.; Caro, D. Drivers of water and land use embodied in international soybean trade. J. Clean. Prod. 2019, 223, 83–93. [Google Scholar] [CrossRef]
- Cai, B.M.; Feng, K.S.; Zhang, W.; Liu, Y.; Wang, F.; Hubacek, K. Mitigating trade-driven water scarcity via water-saving irrigation in China: Different role of surface water and groundwater. Resour. Conserv. Recycl. 2024, 205, 107570. [Google Scholar] [CrossRef]
- Yang, H.; Wang, L.; Abbaspour, K.C.; Zehnder, A.J.B. Virtual water trade: An assessment of water use efficiency in the international food trade. Hydrol. Earth Syst. Sci. 2006, 10, 443–454. [Google Scholar] [CrossRef]
- Lamastra, L.; Miglietta, P.P.; Toma, P.; De Leo, F.; Massari, S. Virtual water trade of agri-food products: Evidence from Italian-Chinese relations. Sci. Total Environ. 2017, 599, 474–482. [Google Scholar] [CrossRef]
- Konar, M.; Dalin, C.; Suweis, S.; Hanasaki, N.; Rinaldo, A.; Rodriguez-Iturbe, I. Water for food: The global virtual water trade network. Water Resour. Res. 2011, 47, W05520. [Google Scholar] [CrossRef]
- Oh, D.H. A global Malmquist-Luenberger productivity index. J. Product. Anal. 2010, 34, 183–197. [Google Scholar] [CrossRef]
- Quispel, A. Some theoretical aspects of symbiosis. Antonie Leeuwenhoek 1951, 17, 69–80. [Google Scholar] [CrossRef]
- Ren, D.D.; Yang, Y.H.; Yang, Y.M.; Richards, K.; Zhou, X.Y. Land-Water-Food Nexus and indications of crop adjustment for water shortage solution. Sci. Total Environ. 2018, 626, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Han, C.H.; Han, X.T.; Ma, B.; Li, D.; Wang, Z.F.; Hao, Z.L.; Zhang, X.Y. Research on the Coupling Coordination Relationship and Spatial Equilibrium Measurement of the Water-Energy-Food Nexus System in China. Water 2025, 17, 527. [Google Scholar] [CrossRef]
- Wang, Y.R.; Song, J.X.; Li, Q.; Jiang, X.H. Exploration of the development of water-energy-food nexus and its endogenous and exogenous drivers in the Yellow River Basin, China. J. Environ. Manag. 2025, 378, 124735. [Google Scholar] [CrossRef]
- Yan, X.; Jiang, D.; Fu, J.; Hao, M. Assessment of Sweet Sorghum-Based Ethanol Potential in China within the Water–Energy–Food Nexus Framework. Sustainability 2018, 10, 1046. [Google Scholar] [CrossRef]
- Zou, Z.H.; Yi, Y.; Sun, J.N. Entropy method for determination of weight of evaluating indicators in fuzzy synthetic evaluation for water quality assessment. J. Environ. Sci. 2006, 18, 1020–1023. [Google Scholar] [CrossRef]
- Shih, H.S.; Shyur, H.J.; Lee, E.S. An extension of TOPSIS for group decision making. Math. Comput. Model. 2007, 45, 801–813. [Google Scholar] [CrossRef]
- Sun, L.Y.; Miao, C.L.; Yang, L. Ecological-economic efficiency evaluation of green technology innovation in strategic emerging industries based on entropy weighted TOPSIS method. Ecol. Indic. 2017, 73, 554–558. [Google Scholar] [CrossRef]
- Qi, Y.Y.; Farnoosh, A.; Lin, L.; Liu, H. Coupling coordination analysis of China’s provincial water-energy-food nexus. Environ. Sci. Pollut. Res. 2022, 29, 23303–23313. [Google Scholar] [CrossRef]
- Olayungbo, D.O. Global oil price and food prices in food importing and oil exporting developing countries: A panel ARDL analysis. Heliyon 2021, 7, e06357. [Google Scholar] [CrossRef] [PubMed]
- Hanyuan, J.; Ciwen, Z. Will the structure of food imports improve China’s water-intensive food cultivation structure? A spatial econometric analysis. Water 2023, 15, 2800. [Google Scholar] [CrossRef]
- Cai, B.Z.; Wangda, L.; Shi, F.; Abate, M.C.; Geremew, B.; Addis, A.K. Agricultural socialized services and Chinese food security: Examining the threshold effect of land tenure change. Front. Sustain. Food Syst. 2024, 8, 1371520. [Google Scholar] [CrossRef]
- Ibrahim, H.K.; Hendriks, S.L.; Schönfeldt, H.C. The effect of land tenure across food security outcomes among smallholder farmers using a flexible conditional difference-in-difference approach. Int. J. Agric. Sustain. 2023, 21, 2220900. [Google Scholar] [CrossRef]
Criterion | Element | Indicator | Calculation Method | Classification |
---|---|---|---|---|
Stability (S) | Water system (SW) | Modulus of water production | Total water resources/provincial land area | + |
Degree of water resources development and utilization | Water supply/total water resources | − | ||
Percentage of groundwater resources | Underground water resources/total water resources | − | ||
Water resources per capita | Total water resources/resident population | + | ||
Precipitation | Statistical data | + | ||
Land systems (SL) | Cultivated land per capita in villages | Cultivated land area/countryside population | + | |
Cultivated land area per laborer | Cultivated land area/(number of employees in primary industry × agricultural output value/added value of primary industry) | + | ||
Ratio of land-to-land area | Cultivated land area/provincial land area | + | ||
Cultivated land area | Statistical data | + | ||
Food system (SF) | Food production per capita | Statistical data | + | |
Food production per unit area | Food output/area sown with food | + | ||
Food-sown area per laborer | Food-sown area/(number of employees in primary industry × food production value/value added of primary industry) | + | ||
Consumer price index of food for the population | Statistical data | − | ||
Food-sown area | Statistical data | + | ||
Adaptability (A) | Water–land (WL) | Agricultural water and soil resources’ matching coefficient | Agricultural water consumption/cultivated land area | + |
Percentage of effective irrigated area of land | Effective irrigation area/cultivated land area | + | ||
Irrigated farmland area | Statistical data | + | ||
Water–food (WF) | Water use per unit of food production | (Agricultural water consumption × food sown area/crop-sown area)/food production | − | |
Food production per unit of irrigation investment in RMB 10,000 | Food output/(irrigation investment completed by water conservancy construction × food-sown area/crop-sown area) | + | ||
Water-saving irrigation area for food | Water-saving irrigation area × food-sown area/crop-sown area | + | ||
Area under water-saving irrigation for food crops | Dewatering area × food-sown area/crop-sown area | + | ||
Land–food (LF) | Food yield per unit of land | Food production/cultivated land area | + | |
Food-growing area per unit of land | Food-sown area/cultivated area | + | ||
Fertilizer input per unit of land for food | Agricultural fertilizer application × area sown for food/area sown for crops/area under cultivation | − | ||
Pesticide input per unit of land | Pesticide use × food-sown area/crop-sown area/cultivated area | − | ||
Sustainability (U) | Economic system (EC) | Share of agricultural output value in GDP | Gross agricultural output value/gross domestic product (GDP) | + |
Land use per 10,000 RMB of agricultural value added | Cultivated land area/gross value of agricultural production | − | ||
Water consumption per 10,000 RMB of agricultural value added | Agricultural water consumption/gross agricultural output value | − | ||
Fixed asset investment per farmer | Fixed asset investment in rural farming Households/rural population | + | ||
Total GDP | Statistical data | + | ||
Social system (SC) | Natural population growth rate | Statistical data | − | |
Urbanization rate | Statistical data | − | ||
Per capita living water consumption | Total domestic water consumption/resident population | − | ||
Engel’s coefficient of rural households | Statistical data | − | ||
Population density | Resident population/provincial land area | − | ||
Ecosystems (EV) | Urban sewage discharge per capita | Urban sewage discharge/(resident population × share of urban population) | − | |
Forest coverage rate | Statistical data | + | ||
Percentage of nature reserves | Nature reserve/provincial land area | + | ||
Wastewater discharge per 10,000 RMB GDP | Wastewater discharge/gross domestic product | − |
Variable Category | Variable | Calculation Method | Unit |
---|---|---|---|
Dependent variable | Water–land–food system coordination | Measured by entropy weight–TOPSIS and coupled coordination models | None |
Independent variable | Food import competition effect | Measured by | ×109 tons |
Mediating variable | Land efficiency for food production | Measured by the global Malmquist–Luenberger Index. | None |
Instrumental variable | Farming scale | Milk production + beef production + poultry production + lamb production + pork production | ×108 tons |
Control variables | Technical environment | Technology market turnover/internal R&D expenditure | None |
Water structure | (total industrial water use + total domestic water use)/total water use | None | |
Irrigation ratio | Effective irrigated area/crop-sown area | None | |
Financial support for agriculture | Expenditure on agriculture, forestry, and water affairs in fiscal expenditure | ×1010 yuan | |
disaster rate | Crop-affected area/total sown area of crops | None | |
Agricultural machinery level | Total power of agricultural machinery/number of employees in primary industry | kW/person | |
Industrial and economic structure | (value-added of secondary industry + value-added of tertiary industry)/total value of GDP | None | |
Environmental regulation | Investment in environmental pollution control as a proportion of GDP | % | |
Village land share | (current land area of villages in each province/current land area of villages in the whole country) × 100% | % | |
Specialization in crop cultivation | Herfindahl index for wheat, rice, maize, pulses, and yams | None |
Producing Area | Variable | Water–Land–Food System Coordination | ||||
---|---|---|---|---|---|---|
Year | 2003–2007 | 2008–2011 | 2012–2015 | 2016–2020 | 2003–2020 | |
Province/Mean | 0.332 | 0.310 | 0.301 | 0.320 | 0.317 | |
Major food-producing area | Hebei | 0.346 | 0.365 | 0.366 | 0.394 | 0.368 |
Inner Mongolia | 0.321 | 0.345 | 0.343 | 0.37 | 0.345 | |
Liaoning | 0.377 | 0.34 | 0.32 | 0.33 | 0.342 | |
Jilin | 0.419 | 0.355 | 0.344 | 0.346 | 0.366 | |
Heilongjiang | 0.435 | 0.458 | 0.482 | 0.489 | 0.466 | |
Jiangsu | 0.365 | 0.39 | 0.403 | 0.439 | 0.399 | |
Anhui | 0.363 | 0.358 | 0.371 | 0.397 | 0.372 | |
Jiangxi | 0.397 | 0.306 | 0.303 | 0.311 | 0.329 | |
Shandong | 0.359 | 0.387 | 0.411 | 0.432 | 0.397 | |
Henan | 0.382 | 0.377 | 0.38 | 0.399 | 0.385 | |
Hubei | 0.337 | 0.306 | 0.313 | 0.338 | 0.324 | |
Hunan | 0.372 | 0.32 | 0.306 | 0.365 | 0.341 | |
Sichuan | 0.312 | 0.322 | 0.302 | 0.315 | 0.313 | |
Mean | 0.368 | 0.356 | 0.357 | 0.379 | 0.365 | |
Major food-marketing area | Beijing | 0.261 | 0.24 | 0.212 | 0.252 | 0.241 |
Tianjin | 0.301 | 0.246 | 0.232 | 0.289 | 0.267 | |
Shanghai | 0.271 | 0.283 | 0.29 | 0.306 | 0.288 | |
Zhejiang | 0.376 | 0.325 | 0.295 | 0.301 | 0.324 | |
Fujian | 0.383 | 0.314 | 0.305 | 0.305 | 0.327 | |
Guangdong | 0.38 | 0.351 | 0.322 | 0.33 | 0.346 | |
Chongqing | 0.25 | 0.21 | 0.2 | 0.216 | 0.219 | |
Hainan | 0.291 | 0.333 | 0.28 | 0.281 | 0.296 | |
Mean | 0.314 | 0.288 | 0.267 | 0.285 | 0.289 | |
Balanced production and sales area | Shanxi | 0.271 | 0.234 | 0.238 | 0.254 | 0.249 |
Guangxi | 0.385 | 0.307 | 0.274 | 0.28 | 0.312 | |
Guizhou | 0.293 | 0.256 | 0.184 | 0.19 | 0.231 | |
Yunnan | 0.253 | 0.238 | 0.236 | 0.258 | 0.246 | |
Shaanxi | 0.266 | 0.254 | 0.265 | 0.245 | 0.258 | |
Gansu | 0.23 | 0.229 | 0.229 | 0.246 | 0.234 | |
Qinghai | 0.37 | 0.262 | 0.249 | 0.294 | 0.294 | |
Ningxia | 0.245 | 0.242 | 0.238 | 0.275 | 0.25 | |
Xinjiang | 0.355 | 0.339 | 0.351 | 0.359 | 0.351 | |
Mean | 0.297 | 0.262 | 0.252 | 0.267 | 0.270 |
Year | Inverse Distance Weight Matrix | Year | Inverse Distance Weight Matrix | Year | Inverse Distance Weight Matrix |
---|---|---|---|---|---|
2003 | −0.032 | 2009 | 0.177 ** | 2015 | 0.251 *** |
2004 | −0.043 | 2010 | 0.177 ** | 2016 | 0.241 *** |
2005 | 0.300 *** | 2011 | 0.265 *** | 2017 | 0.193 *** |
2006 | 0.266 *** | 2012 | 0.207 *** | 2018 | 0.003 |
2007 | 0.300 *** | 2013 | 0.244 *** | 2019 | 0.333 *** |
2008 | 0.201 *** | 2014 | 0.246 *** | 2020 | 0.156 ** |
(1) | (2) | (3) | (4) | (5) | (6) | |
---|---|---|---|---|---|---|
Food import competition effect | 0.002 *** | 0.023 *** | 0.002 * | 0.006 *** | ||
(2.911) | (3.806) | (1.795) | (4.718) | |||
Food import competition effect first-order lag term | 0.002 ** | |||||
(2.369) | ||||||
Food import competition effect square term | −0.0002 *** | |||||
(−3.741) | ||||||
Technical environment | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.00002 |
(0.191) | (0.185) | (0.156) | (0.690) | (0.098) | (0.007) | |
Water structure | −0.009 | −0.011 | −0.020 | −0.010 | −0.011 | −0.011 |
(−0.694) | (−0.808) | (−0.827) | (−0.806) | (−0.899) | (−0.837) | |
Irrigation ratio | 0.040 | 0.041 | 0.061 | 0.030 | 0.041 | 0.034 |
(1.429) | (1.466) | (1.092) | (1.075) | (1.174) | (1.230) | |
Financial support for agriculture | 0.006 *** | 0.006 *** | 0.002 | 0.004 *** | 0.006 *** | 0.005 *** |
(4.478) | (4.254) | (0.829) | (3.430) | (2.620) | (3.650) | |
Disaster rate | −0.008 | −0.008 | −0.019 | −0.001 | −0.008 | −0.011 |
(−0.517) | (−0.559) | (−0.719) | (−0.057) | (−0.569) | (−0.754) | |
Agricultural machinery level | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
(0.981) | (0.958) | (0.391) | (0.900) | (0.390) | (1.050) | |
Industrial and economic structure | −0.073 * | −0.059 | 0.126 | −0.068 * | −0.059 | −0.037 |
(−1.742) | (−1.414) | (1.433) | (−1.658) | (−1.500) | (−0.898) | |
Environmental regulation | −0.001 | 0.001 | 0.017 ** | 0.003 | 0.001 | 0.002 |
(−0.276) | (0.152) | (2.266) | (0.960) | (0.158) | (0.468) | |
Village land share | 0.004 | 0.004 | 0.002 | 0.004 | 0.004 | 0.005 |
(0.891) | (1.020) | (0.200) | (1.023) | (1.053) | (1.243) | |
Specialization in crop cultivation | 0.010 | 0.011 | 0.014 | 0.006 | 0.011 | 0.004 |
(0.430) | (0.475) | (0.319) | (0.276) | (0.253) | (0.193) | |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes | Yes |
Phase I F-statistics values | 19.72 | |||||
Wald test value | 45.63 *** | |||||
Constant term | 0.363 *** | 0.347 *** | 0.162 | 0.360 *** | 0.347 *** | 0.330 *** |
(8.496) | (8.175) | (1.552) | (8.460) | (8.720) | (7.849) | |
Observed value | 540 | 540 | 540 | 510 | 540 | 540 |
Northern Region | Southern Region | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Food import competition effect | 0.002 * | 0.010 | 0.002 ** | 0.030 *** | ||||
(1.936) | (1.614) | (2.155) | (2.605) | |||||
Food import competition effect first-order lag term | 0.001 | 0.002 ** | ||||||
(0.508) | (2.260) | |||||||
Technical environment | −0.005 | −0.004 | −0.002 | −0.002 | −0.001 | −0.001 | 0.001 | −0.004 |
(−0.995) | (−0.842) | (−0.312) | (−0.523) | (−0.041) | (−0.083) | (0.067) | (−0.463) | |
Water structure | −0.005 | −0.008 | −0.010 | −0.001 | −0.006 | −0.008 | −0.023 | −0.011 |
(−0.193) | (−0.324) | (−0.328) | (−0.040) | (−0.435) | (−0.539) | (−0.530) | (−0.743) | |
Irrigation ratio | 0.082 ** | 0.078 *** | 0.086 * | 0.069 ** | 0.024 | 0.037 | 0.118 | 0.050 |
(2.212) | (2.077) | (1.869) | (1.972) | (0.497) | (0.784) | (0.754) | (1.041) | |
Financial support for agriculture | 0.008 *** | 0.008 *** | 0.006 ** | 0.006 *** | 0.006 *** | 0.006 *** | −0.001 | 0.006 *** |
(3.605) | (3.437) | (2.191) | (2.612) | (3.979) | (3.820) | (−0.075) | (3.531) | |
Disaster rate | −0.036 | −0.040 * | −0.057 ** | −0.024 | 0.027 | 0.029 | 0.073 | 0.023 |
(−1.593) | (−1.780) | (−2.080) | (−1.095) | (1.304) | (1.424) | (1.193) | (1.095) | |
Agricultural machinery level | 0.002 | 0.002 | 0.003 | 0.003 | 0.001 | 0.001 | −0.001 | 0.001 |
(0.757) | (0.838) | (0.898) | (1.075) | (1.013) | (0.983) | (−0.058) | (0.865) | |
Industrial and economic structure | −0.031 | −0.017 | 0.051 | −0.058 | 0.099 | 0.104 | 0.255 | 0.128 * |
(−0.557) | (−0.302) | (0.692) | (−1.093) | (1.486) | (1.592) | (1.161) | (1.904) | |
Environmental regulation | −0.006 | −0.003 | 0.007 | −0.001 | −0.015 ** | −0.014 ** | −0.003 | −0.011 * |
(−1.251) | (−0.590) | (0.773) | (−0.047) | (−2.505) | (−2.399) | (−0.191) | (−1.826) | |
Village land share | 0.009 | 0.008 | −0.001 | 0.009 | 0.001 | 0.003 | 0.021 | 0.003 |
(1.532) | (1.462) | (−0.038) | (1.630) | (0.264) | (0.598) | (0.788) | (0.683) | |
Specialization in crop cultivation | −0.083 | −0.086 | −0.096 | −0.130 * | 0.009 | 0.013 | 0.039 | 0.013 |
(−1.186) | (−1.236) | (−1.069) | (−1.843) | (0.407) | (0.592) | (0.584) | (0.602) | |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Phase I F-statistics values | 13.86 | 12.98 | ||||||
Wald test value | 2.91 * | 65.03 *** | ||||||
constant term | 0.346 *** | 0.335 *** | 0.289 *** | 0.374 *** | 0.229*** | 0.211 *** | −0.064 | 0.202 *** |
(5.290) | (5.102) | (2.995) | (5.898) | (3.524) | (3.368) | (−0.251) | (3.240) | |
Observed value | 270 | 270 | 270 | 255 | 270 | 270 | 270 | 255 |
Major Food-Producing Area | Non-Major Food-Producing Area | |||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
Food import competition effect | 0.002 ** | 0.049 ** | 0.0003 | 0.008 | ||||
(2.267) | (2.025) | (0.381) | (1.360) | |||||
Food import competition effect first-order lag term | 0.002 * | −0.00004 | ||||||
(1.785) | (−0.048) | |||||||
Technical environment | −0.010 * | −0.009 * | 0.003 | −0.009 | 0.002 | 0.002 | 0.002 | 0.005 |
(−1.799) | (−1.657) | (0.115) | (−1.520) | (0.560) | (0.532) | (0.276) | (1.221) | |
Water structure | 0.090 | 0.045 | −1.129 * | 0.027 | −0.011 | −0.011 | −0.006 | −0.010 |
(1.606) | (0.777) | (−1.681) | (0.455) | (−0.770) | (−0.766) | (−0.320) | (−0.693) | |
Irrigation ratio | 0.151 ** | 0.138 ** | −0.042 | 0.121 ** | 0.056 * | 0.056 * | 0.004 | 0.048 |
(2.559) | (2.361) | (−0.145) | (2.040) | (1.754) | (1.749) | (0.089) | (1.512) | |
Financial support for agriculture | 0.007 *** | 0.007 *** | −0.001 | 0.007 *** | −0.003 | −0.003 | −0.001 | −0.005 ** |
(4.729) | (4.523) | (−0.197) | (4.384) | (−1.191) | (−1.151) | (−0.455) | (−2.049) | |
disaster rate | −0.024 | −0.026 | −0.049 | −0.015 | 0.001 | 0.001 | 0.008 | −0.002 |
(−1.204) | (−1.293) | (−0.658) | (−0.741) | (0.020) | (0.035) | (0.317) | (−0.123) | |
Agricultural machinery level | 0.009 *** | 0.008 *** | −0.024 | 0.008 *** | −0.001 | −0.001 | −0.001 | −0.001 |
(4.035) | (3.302) | (−1.313) | (3.137) | (−0.679) | (−0.660) | (−0.156) | (−0.591) | |
Industrial and economic structure | −0.065 | −0.049 | 0.326 | −0.032 | −0.029 | −0.028 | 0.027 | −0.051 |
(−1.458) | (−1.080) | (1.271) | (−0.693) | (−0.456) | (−0.448) | (0.306) | (−0.817) | |
Environmental regulation | −0.003 | 0.001 | 0.091 * | −0.002 | 0.002 | 0.002 | 0.005 | 0.006 |
(−0.642) | (0.066) | (1.815) | (−0.290) | (0.384) | (0.403) | (0.883) | (1.319) | |
Village land share | −0.007 * | −0.007 * | −0.001 | −0.007 * | 0.011 ** | 0.011 * | −0.001 | 0.014 ** |
(−1.819) | (−1.798) | (−0.051) | (−1.872) | (1.994) | (1.949) | (−0.060) | (2.422) | |
Specialization in crop cultivation | −0.035 | −0.037 | −0.145 | −0.048 | 0.033 | 0.033 | 0.019 | 0.031 |
(−0.724) | (−0.785) | (−0.489) | (−1.004) | (1.246) | (1.256) | (0.586) | (1.244) | |
Time-fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Individual fixed effect | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Phase I F-statistics values | 7.43 | 9.99 | ||||||
Wald test value | 63.59 *** | 2.29 *** | ||||||
constant term | 0.369 *** | 0.372 *** | 0.479 | 0.385 *** | 0.277 *** | 0.276 *** | 0.268 *** | 0.289 *** |
(5.900) | (6.077) | (1.460) | (6.326) | (4.781) | (4.781) | (3.033) | (4.978) | |
Observed value | 234 | 234 | 234 | 221 | 306 | 306 | 306 | 289 |
(1) | (2) | |
---|---|---|
ρ | 0.166 *** | |
(2.775) | ||
Food import competition effect | 0.001 ** | 0.004 *** |
(1.975) | (2.737) | |
Technical environment | 0.003 | 0.029 *** |
(0.902) | (4.113) | |
Water structure | −0.007 | 0.006 |
(−0.487) | (0.160) | |
Irrigation ratio | 0.026 | −0.006 |
(0.798) | (−0.092) | |
Financial support for agriculture | 0.007 *** | −0.002 |
(5.222) | (−0.814) | |
Disaster rate | −0.003 | −0.028 |
(−0.222) | (−1.032) | |
Agricultural machinery level | 0.001 | −0.001 |
(0.548) | (−0.464) | |
Industrial and economic structure | −0.040 | −0.287 *** |
(−0.976) | (−2.886) | |
Environmental regulation | −0.002 | −0.002 |
(−0.597) | (−0.297) | |
Village land share | −0.016 *** | 0.005 |
(−2.845) | (0.525) | |
Specialization in crop cultivation | −0.023 | −0.045 |
(−1.019) | (−0.969) | |
Time-fixed effect | Yes | Yes |
Individual fixed effect | Yes | Yes |
Observed value | 540 | 540 |
(1) | (2) | (3) | |
---|---|---|---|
Food import competition effect | 0.001 ** | 0.004 *** | 0.006 *** |
(2.186) | (2.776) | (3.241) | |
Technical environment | 0.004 | 0.032 *** | 0.036 *** |
(1.198) | (4.046) | (3.680) | |
Water structure | −0.005 | 0.005 | 0.001 |
(−0.396) | (0.135) | (0.002) | |
Irrigation ratio | 0.026 | −0.006 | 0.019 |
(0.779) | (−0.086) | (0.205) | |
Financial support for agriculture | 0.007 *** | −0.001 | 0.006 * |
(5.259) | (−0.297) | (1.802) | |
Disaster rate | −0.003 | −0.029 | −0.033 |
(−0.236) | (−0.970) | (−1.046) | |
Agricultural machinery level | 0.001 | −0.001 | −0.001 |
(0.499) | (−0.438) | (−0.123) | |
Industrial and economic structure | −0.053 | −0.330 *** | −0.383 *** |
(−1.303) | (−2.850) | (−2.820) | |
Environmental regulation | −0.002 | −0.003 | −0.005 |
(−0.541) | (−0.285) | (−0.426) | |
Village land share | −0.016 *** | 0.003 | −0.013 |
(−2.799) | (0.228) | (−1.009) | |
Specialization in crop cultivation | −0.026 | −0.055 | −0.081 |
(−1.160) | (−1.128) | (−1.399) |
Path | Indirect Effect | Skewness Correction | Percentile | ||
---|---|---|---|---|---|
95% Confidence Interval | 95% Confidence Interval | ||||
Lower | Upper | Lower | Upper | ||
Food import competition effect → land efficiency for food production → water–land–food system coordination | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Ye, W.; Zheng, C. The Impact of Food Import Competition Effects on Water–Land–Food System Coordination: A Perspective from Land Use Efficiency for Food Production in China. Agriculture 2025, 15, 819. https://doi.org/10.3390/agriculture15080819
Li Z, Ye W, Zheng C. The Impact of Food Import Competition Effects on Water–Land–Food System Coordination: A Perspective from Land Use Efficiency for Food Production in China. Agriculture. 2025; 15(8):819. https://doi.org/10.3390/agriculture15080819
Chicago/Turabian StyleLi, Ziqiang, Weijiao Ye, and Ciwen Zheng. 2025. "The Impact of Food Import Competition Effects on Water–Land–Food System Coordination: A Perspective from Land Use Efficiency for Food Production in China" Agriculture 15, no. 8: 819. https://doi.org/10.3390/agriculture15080819
APA StyleLi, Z., Ye, W., & Zheng, C. (2025). The Impact of Food Import Competition Effects on Water–Land–Food System Coordination: A Perspective from Land Use Efficiency for Food Production in China. Agriculture, 15(8), 819. https://doi.org/10.3390/agriculture15080819