In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Chemical Composition
- ▪
- NFCs are non-fiber carbohydrates in mg/g dry matter;
- ▪
- CP is crude protein in mg/g dry matter;
- ▪
- EE is ether extract in mg/g dry matter;
- ▪
- NDF is neutral detergent fiber in mg/g dry matter;
- ▪
- Ash in mg/g dry matter.
2.3. In Vitro Ruminal Degradability
- ▪
- DMD is the dry matter degradability in mg/g dry matter;
- ▪
- DM0h is the sample weight of dry matter before incubation in mg;
- ▪
- DMresidue is the residue weight of dry matter after incubation in mg;
- ▪
- NDFD is the neutral detergent fiber degradability in mg/g neutral detergent fiber;
- ▪
- NDF0h is the sample neutral detergent fiber weight before incubation in mg;
- ▪
- NDFresidue is the residue weight of neutral detergent fiber after incubation in mg.
2.4. Relative Indexes
- ▪
- DMI is the dry matter intake in percentage of body weight (BW);
- ▪
- DMD is the dry matter degradability in percentage of dry matter;
- ▪
- RFV is the relative feed value;
- ▪
- NDF is the neutral detergent fiber in percentage of dry matter.
2.5. Statistical Analysis
- ▪
- Yij is the experimental data;
- ▪
- μ is the overall mean;
- ▪
- Feedi is the effect ith feed;
- ▪
- εij is the residual error.
3. Results
3.1. Nutritional Compounds
3.2. Ruminal Degradability, Dry Matter Intake, and Relative Feed Value
4. Discussion
4.1. Nutritional Compounds
4.2. In Vitro Ruminal Degradability
4.3. Estimated Dry Matter Intake and Relative Feed Value
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Godde, C.M.; Mason-D’Croz, D.; Mayberry, D.E.; Thornton, P.K.; Herrero, M. Impacts of Climate Change on the Livestock Food Supply Chain; a Review of the Evidence. Glob. Food Secur. 2021, 28, 100488. [Google Scholar] [CrossRef]
- Khanal, P.; Pandey, D.; Næss, G.; Cabrita, A.R.J.; Fonseca, A.J.M.; Maia, M.R.G.; Timilsina, B.; Veldkamp, T.; Sapkota, R.; Overrein, H. Yellow Mealworms (Tenebrio Molitor) as an Alternative Animal Feed Source: A Comprehensive Characterization of Nutritional Values and the Larval Gut Microbiome. J. Clean. Prod. 2023, 389, 136104. [Google Scholar] [CrossRef]
- Zorer Çelebi, Ş.; Şahar, A.K. Effects of Different Harvest Stages on Forage Yield and Quality of Soybean Cultivars Grown as Second Crops. Yuz. Yıl Univ. J. Agric. Sci. 2023, 33, 571–580. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Animal Nutrition in a 360-Degree View and a Framework for Future R&D Work: Towards Sustainable Livestock Production. Anim. Prod. Sci. 2016, 56, 1561. [Google Scholar] [CrossRef]
- Uddin, M.E.; Kebreab, E. Review: Impact of Food and Climate Change on Pastoral Industries. Front. Sustain. Food Syst. 2020, 4, 543403. [Google Scholar] [CrossRef]
- Muscat, A.; De Olde, E.M.; De Boer, I.J.M.; Ripoll-Bosch, R. The Battle for Biomass: A Systematic Review of Food-Feed-Fuel Competition. Glob. Food Secur. 2020, 25, 100330. [Google Scholar] [CrossRef]
- Gobbo, S.; Ghiraldini, A.; Dramis, A.; Dal Ferro, N.; Morari, F. Estimation of Hail Damage Using Crop Models and Remote Sensing. Remote Sens. 2021, 13, 2655. [Google Scholar] [CrossRef]
- Sánchez, J.L.; Fraile, R.; De La Madrid, J.L.; De La Fuente, M.T.; Rodríguez, P.; Castro, A. Crop Damage: The Hail Size Factor. J. Appl. Meteorol. 1996, 35, 1535–1541. [Google Scholar] [CrossRef]
- Kim, M.H.; Lee, J.; Lee, S.-J. Hail: Mechanisms, Monitoring, Forecasting, Damages, Financial Compensation Systems, and Prevention. Atmosphere 2023, 14, 1642. [Google Scholar] [CrossRef]
- Gardiner, B.; Berry, P.; Moulia, B. Review: Wind Impacts on Plant Growth, Mechanics and Damage. Plant Sci. 2016, 245, 94–118. [Google Scholar] [CrossRef]
- Subedi, B.; Poudel, A.; Aryal, S. The Impact of Climate Change on Insect Pest Biology and Ecology: Implications for Pest Management Strategies, Crop Production, and Food Security. J. Agric. Food Res. 2023, 14, 100733. [Google Scholar] [CrossRef]
- Whiting, F. Flax hay and straw as feeds for sheep. Can. J. Anim. Sci. 1958, 38, 129–132. [Google Scholar] [CrossRef]
- Tedone, L.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Colonna, M.A. Camelina sativa (L. Crantz) Fresh Forage Productive Performance and Quality at Different Vegetative Stages: Effects of Dietary Supplementation in Ionica Goats on Milk Quality. Agriculture 2022, 12, 91. [Google Scholar] [CrossRef]
- Ebeid, H.M.; Kholif, A.E.; El-Bordeny, N.; Chrenkova, M.; Mlynekova, Z.; Hansen, H.H. Nutritive Value of Quinoa (Chenopodium quinoa) as a Feed for Ruminants: In Sacco Degradability and in Vitro Gas Production. Environ. Sci. Pollut. Res. 2022, 29, 35241–35252. [Google Scholar] [CrossRef]
- Kökten, K.; Seydosoglu, S.; Kaplan, M.; Boydak, E. Forage Nutritive Value of Soybean Varieties. Legume Res.—Int. J. 2014, 37, 201. [Google Scholar] [CrossRef]
- Tassone, S.; Barbera, S.; Glorio Patrucco, S.; Kaihara, H.; Abid, K. Seasonal and Altitudinal Effects on Chemical Composition and Rumen Degradability of Blackberry Leaves in Northwestern Italian Alps. Animals. 2025, 15, 111. [Google Scholar] [CrossRef]
- Feldmann, M.; Hering, A.; Gabella, M.; Berne, A. Hailstorms and Rainstorms versus Supercells—A Regional Analysis of Convective Storm Types in the Alpine Region. NPJ Clim. Atmos. Sci. 2023, 6, 19. [Google Scholar] [CrossRef]
- Fabietti, G.; Biasioli, M.; Barberis, R.; Ajmone-Marsan, F. Soil Contamination by Organic and Inorganic Pollutants at the Regional Scale: The Case of Piedmont, Italy. J. Soils Sediments 2010, 10, 290–300. [Google Scholar] [CrossRef]
- Dynes, R.A.; Henry, D.A.; Masters, D.G. Characterising Forages for Ruminant Feeding. Asian-Australas. J. Anim. Sci. 2003, 16, 116–123. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001; p. 138. ISBN 978-0-309-06997-7. [Google Scholar] [CrossRef]
- ANKOM Technology. In Vitro True Digestibility Using the DAISY Incubator 2017. Available online: https://www.ankom.com/sites/default/files/2024-08/Method_3_InVitro_D200_D200I.pdf?srsltid=AfmBOoqHJY4msReXkIKDKOsGapF_57Ugxidzsnuz7ig4vAIbvRKrWzQx (accessed on 5 April 2025).
- Fortina, R.; Glorio Patrucco, S.; Barbera, S.; Tassone, S. Rumen Fluid from Slaughtered Animals: A Standardized Procedure for Sampling, Storage and Use in Digestibility Trials. Methods Protoc. 2022, 5, 59. [Google Scholar] [CrossRef] [PubMed]
- Goering, H.K.; Van Soest, P.J. Forage Fiber Analyses (Apparatus, Reagents, Procedures, and Some Applications). Agricultural Handbook; US Department of Agriculture: Washington, DC, USA, 1970; Volume 379. [Google Scholar]
- Weiss, W.P.; Conrad, H.R.; St. Pierre, N.R. A Theoretically-Based Model for Predicting Total Digestible Nutrient Values of Forages and Concentrates. Anim. Feed Sci. Technol. 1992, 39, 95–110. [Google Scholar] [CrossRef]
- Selim, A.S.M.; Hasan, M.N.; Rahman, M.A.; Rahman, M.M.; Islam, M.R.; Bostami, A.B.M.R.; Islam, S.; Tedeschi, L.O. Nutrient Content and in Vitro Degradation Study of Some Unconventional Feed Resources of Bangladesh. Heliyon 2022, 8, e09496. [Google Scholar] [CrossRef] [PubMed]
- Jabri, J.; Ammar, H.; Abid, K.; Beckers, Y.; Yaich, H.; Malek, A.; Rekhis, J.; Morsy, A.S.; Soltan, Y.A.; Soufan, W.; et al. Effect of Exogenous Fibrolytic Enzymes Supplementation or Functional Feed Additives on In Vitro Ruminal Fermentation of Chemically Pre-Treated Sunflower Heads. Agriculture 2022, 12, 696. [Google Scholar] [CrossRef]
- VanSoest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Comstock: Ithaca, NY, USA; London, UK, 1994; ISBN 978-0-8014-2772-5. [Google Scholar]
- Abid, K.; Boudagga, S.; Abid, O.; Najar, T.; Jaouani, A. Bioconversion of Grape Pomace Waste into Suitable Alternative Feed for Ruminants with Pleurotus cornucopiae and Ganoderma resinaceum via Solid-State Fermentation Bioprocess. Biomass Convers. Biorefinery 2023, 3, 1–10. [Google Scholar] [CrossRef]
- Peiretti, P.G.; Meineri, G. Chemical Composition, Organic Matter Digestibility and Fatty Acid Content of Linseed (Linum usitatissimum, L.) Harvested at Five Stages of Growth. J. Sci. Food Agric. 2008, 88, 1850–1854. [Google Scholar] [CrossRef]
- Kazemi, M.; Moheghi, M.M.; Tohidi, R. A Study on the Nutritional Characteristics of Some Plants and Their Effects on Ruminal Microbial Fermentation and Protozoa Population. AMB Express 2021, 11, 174. [Google Scholar] [CrossRef]
- Nogoy, K.M.C.; Yu, J.; Song, Y.G.; Li, S.; Chung, J.-W.; Choi, S.H. Evaluation of the Nutrient Composition, In Vitro Fermentation Characteristics, and In Situ Degradability of Amaranthus Caudatus, Amaranthus Cruentus, and Amaranthus Hypochondriacus in Cattle. Animals 2020, 11, 18. [Google Scholar] [CrossRef]
- Colonna, M.A.; Giannico, F.; Tufarelli, V.; Laudadio, V.; Selvaggi, M.; De Mastro, G.; Tedone, L. Dietary Supplementation with Camelina sativa (L. Crantz) Forage in Autochthonous Ionica Goats: Effects on Milk and Caciotta Cheese Chemical, Fatty Acid Composition and Sensory Properties. Animals 2021, 11, 1589. [Google Scholar] [CrossRef]
- Mbugua, D.M.; Kiruiro, E.M.; Pell, A.N. In Vitro Fermentation of Intact and Fractionated Tropical Herbaceous and Tree Legumes Containing Tannins and Alkaloids. Anim. Feed Sci. Technol. 2008, 146, 1–20. [Google Scholar] [CrossRef]
- Njidda, A.A.; Olatunji, E.A.; Garba, M.G. In Sacco and In Vitro Organic Matter Degradability (OMD) Of Selected Semi Arid Browse Forages. IOSR J. Agric. Vet. Sci. 2013, 3, 9–16. [Google Scholar] [CrossRef]
- Açikgöz, E.; Sincik, M.; Wietgrefe, G.; Sürmen, M.; Çeçen, S.; Yavuz, T.; Erdurmuş, C.; Göksoy, A.T. Dry Matter Accumulation and Forage Quality Characteristics of Different Soybean Genotypes. Turk. J. Agric. For. 2013, 37, 22–32. [Google Scholar] [CrossRef]
- Seiter, S.; Altemose, C.E.; Davis, M.H. Forage Soybean Yield and Quality Responses to Plant Density and Row Distance. Agron. J. 2004, 96, 966–970. [Google Scholar] [CrossRef]
- Salama, R.; Yacout, M.; Elgzar, M.; Awad, A. Nutritional evaluation of quinoa (chenopodium quinoa willd) crop as unconventional forage resource in feeding ruminants. Egypt. J. Nutr. Feeds 2021, 24, 77–84. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in Fatty Acids Nutrition in Dairy Cows: From Gut to Cells and Effects on Performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Y.; Kong, F.; Wang, W.; Li, S. Comparison of Nutritional Components, Ruminal Degradation Characteristics and Feed Value from Different Cultivars of Alfalfa Hay. Animals 2023, 13, 734. [Google Scholar] [CrossRef]
- El Hassan, S.M.; Lahlou Kassi, A.; Newbold, C.J.; Wallace, R.J. Chemical Composition and Degradation Characteristics of Foliage of Some African Multipurpose Trees. Anim. Feed Sci. Technol. 2000, 86, 27–37. [Google Scholar] [CrossRef]
- Jung, H.G.; Mertens, D.R.; Payne, A.J. Correlation of Acid Detergent Lignin and Klason Lignin with Digestibility of Forage Dry Matter and Neutral Detergent Fiber. J. Dairy Sci. 1997, 80, 1622–1628. [Google Scholar] [CrossRef]
- Jung, H.G.; Allen, M.S. Characteristics of Plant Cell Walls Affecting Intake and Digestibility of Forages by Ruminants. J. Anim. Sci. 1995, 73, 2774. [Google Scholar] [CrossRef]
- Sarmadi, B.; Rouzbehan, Y.; Rezaei, J. Influences of Growth Stage and Nitrogen Fertilizer on Chemical Composition, Phenolics, in Situ Degradability and in Vitro Ruminal Variables in Amaranth Forage. Anim. Feed Sci. Technol. 2016, 215, 73–84. [Google Scholar] [CrossRef]
- Seguin, P.; Mustafa, A.F.; Donnelly, D.J.; Gélinas, B. Chemical Composition and Ruminal Nutrient Degradability of Fresh and Ensiled Amaranth Forage. J. Sci. Food Agric. 2013, 93, 3730–3736. [Google Scholar] [CrossRef] [PubMed]
- Acikgoz, E.; Sincik, M.; Oz, M.; Albayrak, S.; Wietgrefe, G.; Turan, Z.M.; Goksoy, A.T.; Bilgili, U.; Karasu, A.; Tongel, O.; et al. Forage Soybean Performance in Mediterranean Environments. Field Crops Res. 2007, 103, 239–247. [Google Scholar] [CrossRef]
- Oba, M.; Allen, M.S. Evaluation of the Importance of the Digestibility of Neutral Detergent Fiber from Forage: Effects on Dry Matter Intake and Milk Yield of Dairy Cows. J. Dairy Sci. 1999, 82, 589–596. [Google Scholar] [CrossRef] [PubMed]
- Riaz, R.; Ahmed, I.; Sizmaz, O.; Ahsan, U. Use of Camelina Sativa and By-Products in Diets for Dairy Cows: A Review. Animals 2022, 12, 1082. [Google Scholar] [CrossRef]
- Asher, A.; Galili, S.; Whitney, T.; Rubinovich, L. The Potential of Quinoa (Chenopodium quinoa) Cultivation in Israel as a Dual-Purpose Crop for Grain Production and Livestock Feed. Sci. Hortic. 2020, 272, 109534. [Google Scholar] [CrossRef]
- Park, M.R.; Seo, M.-J.; Yun, H.-T.; Park, C.-H. Analysis of Feed Value and Usability of Soybean Varieties as Livestock Forage. J. Korean Soc. Grassl. Forage Sci. 2017, 37, 116–124. [Google Scholar] [CrossRef]
- Hurley, M.; Lewis, E.; Beecher, M.; Garry, B.; Fleming, C.; Boland, T.; Hennessy, D. Dry Matter Intake and In Vivo Digestibility of Grass-Only and Grass-White Clover in Individually Housed Sheep in Spring, Summer and Autumn. Animals 2021, 11, 306. [Google Scholar] [CrossRef]
- Fekadu, D.; Walelegn, M.; Terefe, G. Indexing Ethiopian Feed Stuffs Using Relative Feed Value: Dry Forages and Roughages, Energy Supplements, and Protein Supplements. J. Biol. Agric. Healthc. 2017, 7, 57–60. [Google Scholar]
DM * | CP | EE | NDF | ADF | ADL | Ash | NFC | |
---|---|---|---|---|---|---|---|---|
Amaranth | 160.0 cd | 105.9 cd | 14.2 b | 515.0 c | 349.1 cd | 109.4 b | 153.1 b | 211.8 b |
Borage | 98.9 e | 125.5 bc | 16.9 b | 345.0 d | 303.7 d | 70.7 cd | 194.1 a | 318.6 a |
Camelina | 254.2 b | 100.2 d | 28.1 a | 523.0 c | 434.4 b | 76.9 cd | 76.7 d | 271.4 a |
Flax | 250.2 b | 117.8 bcd | 30.0 a | 684.7 a | 551.5 a | 152.2 a | 57.4 e | 110.1 c |
Quinoa | 198.0 c | 150.4 a | 15.4 b | 596.0 b | 401.7 bc | 65.0 cd | 162.6 b | 75.6 c |
Soybean | 199.9 c | 153.9 a | 15.3 b | 662.8 ab | 425.4 b | 81.3 bc | 95.9 c | 72.1 c |
White lupin | 149.7 d | 131.4 b | 26.1 a | 518.2 c | 445.1 b | 87.6 bc | 102.2 c | 222.1 b |
Ray-grass (hay) | 865.4 a | 76.4 e | 15.8 b | 618.8 b | 374.4 bc | 39.8 d | 80.8 d | 208.2 b |
Alfalfa (hay) | 870.0 a | 164.0 a | 15.0 b | 630.8 b | 399.7 bc | 52.8 cd | 78.0 d | 112.2 c |
S.E.M | 25.31 | 12.79 | 2.70 | 26.32 | 35.40 | 17.93 | 7.70 | 29.31 |
p-value | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
DMD (mg/g DM) | NDFD (mg/g NDF) | DMI (%BW) | RFV | |
---|---|---|---|---|
Amaranth | 781.0 b | 593.9 b | 2.3 b | 141.0 b |
Borage | 886.8 a | 671.0 a | 3.5 a | 239.3 a |
Camelina | 650.4 c | 333.7 d | 2.3 b | 115.1 c |
Flax | 549.3 d | 341.4 d | 1.8 d | 74.3 e |
Quinoa | 671.0 c | 519.2 c | 2.0 bc | 103.0 d |
Soybean | 675.0 c | 502.0 c | 1.8 cd | 95.1 d |
White lupin | 765.2 b | 488.9 c | 2.3 b | 136.9 b |
Ryegrass (hay) | 655.4 c | 518.2 c | 1.9 c | 99.0 d |
Alfalfa (hay) | 641.0 c | 495.4 c | 1.9 c | 95.4 d |
S.E.M | 29.51 | 40.10 | 0.09 | 10.32 |
p-value | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassone, S.; Barbera, S.; Issaoui, R.; Kaihara, H.; Glorio Patrucco, S.; Abid, K. In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants. Agriculture 2025, 15, 799. https://doi.org/10.3390/agriculture15080799
Tassone S, Barbera S, Issaoui R, Kaihara H, Glorio Patrucco S, Abid K. In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants. Agriculture. 2025; 15(8):799. https://doi.org/10.3390/agriculture15080799
Chicago/Turabian StyleTassone, Sonia, Salvatore Barbera, Rabeb Issaoui, Hatsumi Kaihara, Sara Glorio Patrucco, and Khalil Abid. 2025. "In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants" Agriculture 15, no. 8: 799. https://doi.org/10.3390/agriculture15080799
APA StyleTassone, S., Barbera, S., Issaoui, R., Kaihara, H., Glorio Patrucco, S., & Abid, K. (2025). In Vitro Assessment of the Nutritional Value of Seed Crop Plants Damaged by Hailstorms and Strong Winds as Alternative Forages for Ruminants. Agriculture, 15(8), 799. https://doi.org/10.3390/agriculture15080799