The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Deoxynivalenol Content in Wheat Grain
3.2. Quality Characteristics of Wheat Cultivars
3.3. Rheological Properties of the Protein Complex of Tested Wheat Cultivars
3.4. Rheological Properties of the Starch Complex of Tested Wheat Cultivars
3.5. Mixolab Wheat Flour Profiles
3.6. Principal Component Analyses (PCAs)
4. Discussion
4.1. Mycotoxin Content in Grain of Winter Wheat Cultivars
4.2. Influence of Fusarium culmorum Infection on the Grain Quality and Rheological Properties of Dough
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- FAOSTAT. Crops and Livestock Products. FAOSTAT 2023. Available online: https://www.fao.org/faostat/en/#data/qcl (accessed on 15 May 2024).
- Borneo, R.; León, A.E. Whole Grain Cereals: Functional Components and Health Benefits. Food Funct. 2012, 3, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Carson, G.R.; Edwards, N.M. Criteria of Wheat and Flour Quality. In Wheat, 4th ed.; Khan, K., Shewry, P.R., Eds.; AACC International Press: St. Paul, MN, USA, 2009; pp. 97–118. [Google Scholar]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO Estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2020, 60, 2773–2789. [Google Scholar] [CrossRef] [PubMed]
- European Union. Commission Regulation (EU) 2024/1022 of 8 April 2024 Amending Regulation (EU) 2023/915 as Regards Maximum Levels of Deoxynivalenol in Food. Off. J. Eur. Union 2024, 2024/1022, 1–4. [Google Scholar]
- European Union. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006 (Text with EEA Relevance). OJ L 2023, 119, 103–157. [Google Scholar]
- Khalid, A.; Hameed, A.; Tahir, M.F. Wheat Quality: A Review on Chemical Composition, Nutritional Attributes, Grain Anatomy, Types, Classification, and Function of Seed Storage Proteins in Bread Making Quality. Front. Nutr. 2023, 10, 1053196. [Google Scholar] [CrossRef]
- Shewry, P.R.; Hawkesford, M.J.; Piironen, V.; Lampi, A.-M.; Gebruers, K.; Boros, D.; Andersson, A.A.M.; Åman, P.; Rakszegi, M.; Bedo, Z.; et al. Natural Variation in Grain Composition of Wheat and Related Cereals. J. Agric. Food Chem. 2013, 61, 8295–8303. [Google Scholar] [CrossRef]
- Alconada, T.M.; Moure, M.C.; Ortega, L.M. Fusarium Infection in Wheat, Aggressiveness and Changes in Grain Quality: A Review. Vegetos 2019, 32, 441–449. [Google Scholar] [CrossRef]
- Jackowiak, H.; Packa, D.; Wiwart, M.; Perkowski, J. Scanning Electron Microscopy of Fusarium Damaged Kernels of Spring Wheat. Int. J. Food Microbiol. 2005, 98, 113–123. [Google Scholar] [CrossRef]
- McMullen, M.; Jones, R.; Gallenberg, D. Scab of Wheat and Barley: A Re-Emerging Disease of Devastating Impact. Plant Dis. 1997, 81, 1340–1348. [Google Scholar] [CrossRef]
- McMullen, M.; Bergstrom, G.; De Wolf, E.; Dill-Macky, R.; Hershman, D.; Shaner, G.; Van Sanford, D. A Unified Effort to Fight an Enemy of Wheat and Barley: Fusarium Head Blight. Plant Dis. 2012, 96, 1712–1728. [Google Scholar] [CrossRef]
- Papoušková, L.; Capouchová, I.; Kostelanská, M.; Škeříková, A.; Prokinová, E.; Hajšlová, J.; Salava, J.; Faměra, O. Changes in Baking Quality of Winter Wheat with Different Intensity of Fusarium spp. Contamination Detected by Means of New Rheological System. Czech J. Food Sci. 2011, 29, 420–429. [Google Scholar] [CrossRef]
- Gärtner, B.H.; Munich, M.; Kleijer, G.; Mascher, F. Characterisation of Kernel Resistance against Fusarium Infection in Spring Wheat by Baking Quality and Mycotoxin Assessments. Eur. J. Plant Pathol. 2007, 120, 61–68. [Google Scholar] [CrossRef]
- Matthäus, K.; Dänicke, S.; Vahjen, W.; Simon, O.; Wang, J.; Valenta, H.; Meyer, K.; Strumpf, A.; Ziesenib, H.; Flachowsky, G. Progression of Mycotoxin and Nutrient Concentrations in Wheat after Inoculation with Fusarium culmorum. Arch. Anim. Nutr. 2004, 58, 19–35. [Google Scholar] [CrossRef] [PubMed]
- Eggert, K.; Rawel, H.M.; Pawelzik, E. In Vitro Degradation of Wheat Gluten Fractions by Fusarium Graminearum Proteases. Eur. Food Res. Technol. 2011, 233, 697–705. [Google Scholar] [CrossRef]
- Kreuzberger, M.; Limsuwan, S.; Eggert, K.; Karlovsky, P.; Pawelzik, E. Impact of Fusarium Spp. Infection of Bread Wheat (Triticum aestivum L.) on Composition and Quality of Flour in Association with EU Maximum Level for Deoxynivalenol. J. Appl. Bot. Food Qual. 2015, 88, 177185. [Google Scholar] [CrossRef]
- Wang, J.; Wieser, H.; Pawelzik, E.; Weinert, J.; Keutgen, A.J.; Wolf, G.A. Impact of the Fungal Protease Produced by Fusarium Culmorum on the Protein Quality and Breadmaking Properties of Winter Wheat. Eur. Food Res. Technol. 2005, 220, 552–559. [Google Scholar] [CrossRef]
- Koga, S.; Rieder, A.; Ballance, S.; Uhlen, A.K.; Veiseth-Kent, E. Gluten-Degrading Proteases in Wheat Infected by Fusarium Graminearum—Protease Identification and Effects on Gluten and Dough Properties. J. Agric. Food Chem. 2019, 67, 11025–11034. [Google Scholar] [CrossRef]
- Wegulo, S.N. Factors Influencing Deoxynivalenol Accumulation in Small Grain Cereals. Toxins 2012, 4, 1157–1180. [Google Scholar] [CrossRef]
- El Chami, J.; El Chami, E.; Tarnawa, Á.; Kassai, K.M.; Kende, Z.; Jolánkai, M. Effect of Fusarium Infection on Wheat Quality Parameters. Cereal Res. Commun. 2023, 51, 179–187. [Google Scholar] [CrossRef]
- Hareland, G.A. Effects of Pearling on Falling Number and α-Amylase Activity of Preharvest Sprouted Spring Wheat. Cereal Chem. 2003, 80, 232–237. [Google Scholar] [CrossRef]
- Kochiieru, Y.; Mankevičienė, A.; Cesevičienė, J.; Semaškienė, R.; Ramanauskienė, J.; Gorash, A.; Janavičienė, S.; Venslovas, E. The Impact of Harvesting Time on Fusarium Mycotoxins in Spring Wheat Grain and Their Interaction with Grain Quality. Agronomy 2021, 11, 642. [Google Scholar] [CrossRef]
- Žilić, S. Wheat Gluten: Composition and Health Effects. In Gluten; Later, D.B., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2013; Chapter IV; pp. 73–86. ISBN 978-62618-343-8. [Google Scholar]
- Boyacioǧlu, D.; Hettiarachchy, N.S. Changes in Some Biochemical Components of Wheat Grain That Was Infected with Fusarium Graminearum. J. Cereal Sci. 1995, 21, 57–62. [Google Scholar] [CrossRef]
- Horvat, D.; Spanic, V.; Dvojkovic, K.; Simic, G.; Magdic, D.; Nevistic, A. The Influence of Fusarium Infection on Wheat (Triticum aestivum L.) Proteins Distribution and Baking Quality. Cereal Res. Commun. 2015, 43, 61–71. [Google Scholar] [CrossRef]
- Prange, A.; Birzele, B.; Krämer, J.; Meier, A.; Modrow, H.; Köhler, P. Fusarium-Inoculated Wheat: Deoxynivalenol Contents and Baking Quality in Relation to Infection Time. Food Control 2005, 16, 739–745. [Google Scholar] [CrossRef]
- Capouchová, I.; Papoušková, L.; Konvalina, P.; Vepříková, Z.; Dvořáček, V.; Zrcková, M.; Janovská, D.; Škeříková, A.; Pazderů, K. Effect of Fusarium spp. Contamination on Baking Quality of Wheat. In Wheat Improvement, Management and Utilization; Wanyera, R., Owuoche, J., Eds.; InTech: London, UK, 2017; ISBN 978-953-51-3151-9. [Google Scholar]
- Góral, T.; Wiśniewska, H.; Ochodzki, P.; Walentyn-Góral, D. Higher Fusarium Toxin Accumulation in Grain of Winter Triticale Lines Inoculated with Fusarium Culmorum as Compared with Wheat. Toxins 2016, 8, 301. [Google Scholar] [CrossRef]
- ISO 520; Cereals and Pulses—Determination of the Mass of 1 000 Grains. International Organization for Standardization: Geneva, Switzerland, 2010.
- ISO 712; Cereals and Cereal Products—Determination of Moisture Content—Reference Method. International Organization for Standardization: Geneva, Switzerland, 2009.
- ISO 20483; Cereals and Pulses—Determination of the Nitrogen Content and Calculation of the Crude Protein Content—Kjeldahl Method. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21415-2:2015; Wheat and Wheat Flour—Gluten Content Part 2: Determination of Wet Gluten and Gluten Index by Me-Chanical Means. International Organization for Standardization: Geneva, Switzerland, 2015.
- ISO 5529; Wheat—Determination of the Sedimentation Index—Zeleny Test. International Organization for Standardization: Geneva, Switzerland, 2007.
- ISO 2171; Cereals, Pulses and by-Products—Determination of Ash Yield by Incineration. International Organization for Standardization: Geneva, Switzerland, 2023.
- ISO 17718; Wholemeal and Flour from Wheat (Triticum aestivum L.)—Determination of Rheological Behaviour as a Function of Mixing and Temperature Increase. International Organization for Standardization: Geneva, Switzerland, 2013.
- Ozturk, S.; Kahraman, K.; Tiftik, B.; Koksel, H. Predicting the Cookie Quality of Flours by Using Mixolab®. Eur. Food Res. Technol. 2008, 227, 1549–1554. [Google Scholar] [CrossRef]
- Koksel, H.; Kahraman, K.; Sanal, T.; Ozay, D.S.; Dubat, A. Potential Utilization of Mixolab for Quality Evaluation of Bread Wheat Genotypes. Cereal Chem. 2009, 86, 522–526. [Google Scholar] [CrossRef]
- Codină, G.G.; Mironeasa, S.; Bordei, D.; Leahu, A. Mixolab versus Alveograph and Falling Number. Czech J. Food Sci. 2010, 28, 185–191. [Google Scholar] [CrossRef]
- Dubat, A. A New AACC International Approved Method to Measure Rheological Properties of a Dough Sample. CFW 2010, 55, 150–153. [Google Scholar] [CrossRef]
- Bottalico, A.; Perrone, G. Toxigenic Fusarium Species and Mycotoxins Associated with Head Blight in Small-Grain Cereals in Europe. In Mycotoxins in Plant Disease; Logrieco, A., Bailey, J.A., Corazza, L., Cooke, B.M., Eds.; Springer: Dordrecht, The Netherlands, 2002; pp. 611–624. ISBN 978-94-010-3939-0. [Google Scholar]
- Czaban, J.; Wróblewska, B.; Sułek, A.; Mikos, M.; Boguszewska, E.; Podolska, G.; Nieróbca, A. Colonisation of Winter Wheat Grain by Fusarium spp. and Mycotoxin Content as Dependent on a Wheat Variety, Crop Rotation, a Crop Management System and Weather Conditions. Food Addit. Contam. Part A 2015, 32, 874–910. [Google Scholar] [CrossRef]
- Marzec-Schmidt, K.; Börjesson, T.; Suproniene, S.; Jędryczka, M.; Janavičienė, S.; Góral, T.; Karlsson, I.; Kochiieru, Y.; Ochodzki, P.; Mankevičienė, A.; et al. Modelling the Effects of Weather Conditions on Cereal Grain Contamination with Deoxynivalenol in the Baltic Sea Region. Toxins 2021, 13, 737. [Google Scholar] [CrossRef] [PubMed]
- Bryła, M.; Waśkiewicz, A.; Podolska, G.; Szymczyk, K.; Jędrzejczak, R.; Damaziak, K.; Sułek, A. Occurrence of 26 Mycotoxins in the Grain of Cereals Cultivated in Poland. Toxins 2016, 8, 160. [Google Scholar] [CrossRef] [PubMed]
- Stępień, Ł.; Chełkowski, J. Fusarium Head Blight of Wheat: Pathogenic Species and Their Mycotoxins. WMJ 2010, 3, 107–119. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Ban, T.; Anderson, J.A. QTL Mapping and Marker-assisted Selection for Fusarium Head Blight Resistance in Wheat: A Review. Plant Breed. 2009, 128, 1–26. [Google Scholar] [CrossRef]
- Mesterházy, Á. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum and in resistance to Fusarium head blight. Eur. J. Plant Pathol. 2002, 108, 675–684. [Google Scholar] [CrossRef]
- Boutigny, A.-L.; Richard-Forget, F.; Barreau, C. Natural Mechanisms for Cereal Resistance to the Accumulation of Fusarium Trichothecenes. Eur. J. Plant Pathol. 2008, 121, 411–423. [Google Scholar] [CrossRef]
- Foroud, N.A.; Eudes, F. Trichothecenes in Cereal Grains. Int. J. Mol. Sci. 2009, 10, 147–173. [Google Scholar] [CrossRef]
- Siou, D.; Gélisse, S.; Laval, V.; Repinçay, C.; Canalès, R.; Suffert, F.; Lannou, C. Effect of Wheat Spike Infection Timing on Fusarium Head Blight Development and Mycotoxin Accumulation. Plant Pathol. 2014, 63, 390–399. [Google Scholar] [CrossRef]
- Walter, S.; Nicholson, P.; Doohan, F.M. Action and Reaction of Host and Pathogen during Fusarium Head Blight Disease. New Phytol. 2010, 185, 54–66. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and Functions of the Bacterial Microbiota of Plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef]
- Trivedi, P.; Leach, J.E.; Tringe, S.G.; Sa, T.; Singh, B.K. Plant–Microbiome Interactions: From Community Assembly to Plant Health. Nat. Rev. Microbiol. 2020, 18, 607–621. [Google Scholar] [CrossRef] [PubMed]
- Baard, V.; Bakare, O.O.; Daniel, A.I.; Nkomo, M.; Gokul, A.; Keyster, M.; Klein, A. Biocontrol Potential of Bacillus Subtilis and Bacillus Tequilensis against Four Fusarium Species. Pathogens 2023, 12, 254. [Google Scholar] [CrossRef] [PubMed]
- DuPont, F.M.; Vensel, W.H.; Chan, R.; Kasarda, D.D. Characterization of the 1B-Type ω-Gliadins from Triticum aestivum Cultivar Butte. Cereal Chem. 2000, 77, 607–614. [Google Scholar] [CrossRef]
- Szafrańska, A. Comparison of Alpha-Amylase Activity of Wheat Flour Estimated by Traditional and Modern Techniques. Acta Agrophysica 2014, 4, 493–505. [Google Scholar]
- Martínez, M.; Ramírez Albuquerque, L.; Arata, A.F.; Biganzoli, F.; Fernández Pinto, V.; Stenglein, S.A. Effects of Fusarium Graminearum and Fusarium Poae on Disease Parameters, Grain Quality and Mycotoxins Contamination in Bread Wheat (Part I). J. Sci. Food Agric. 2020, 100, 863–873. [Google Scholar] [CrossRef]
- Polišenská, I.; Vaculová, K.; Jirsa, O.; Sedláčková, I.; Frydrych, J. The Effect of Fusarium Culmorum on Yield and Grain Characteristics of Winter Wheat Cultivars. Zemdirb. Agric. 2020, 107, 113–122. [Google Scholar] [CrossRef]
- Packa, D.; Załuski, D.; Graban, Ł.; Lajszner, W.; Hośnik, M. Reakcja Diploidalnych, Tetraploidalnych i Heksaploidalnych Pszenic Na Inokulację Fusarium Culmorum (W.G.Smith) Sacc. Pol. J. Agron. 2013, 12, 38–48. [Google Scholar] [CrossRef]
- Daniel, C.; Triboi, E. Effects of Temperature and Nitrogen Nutrition on the Grain Composition of Winter Wheat: Effects on Gliadin Content and Composition. J. Cereal Sci. 2000, 32, 45–56. [Google Scholar] [CrossRef]
- Daniel, C.; Triboï, E. Changes in Wheat Protein Aggregation during Grain Development: Effects of Temperatures and Water Stress. Eur. J. Agron. 2002, 16, 1–12. [Google Scholar] [CrossRef]
- Ponts, N. Mycotoxins Are a Component of Fusarium Graminearum Stress-Response System. Front. Microbiol. 2015, 6, 1234. [Google Scholar] [CrossRef]
- Peršić, V.; Božinović, I.; Varnica, I.; Babić, J.; Španić, V. Impact of Fusarium Head Blight on Wheat Flour Quality: Examination of Protease Activity, Technological Quality and Rheological Properties. Agronomy 2023, 13, 662. [Google Scholar] [CrossRef]
Cultivar | Breeding Place | Resistance to FHB * | Height (cm) | Wheat Quality Group | Flowering, Maturing (Days from 1st January) |
---|---|---|---|---|---|
KWS Ozon | KWS Lochow GmbH | 7.1 | 83 | B | 151 203 |
Legenda | Poznańska Plant Breeding | 7.9 | 115 | A | 151 203 |
Muszelka | DANKO Plant Breeding | 6.5 | 80 | B | 150 202 |
Pokusa | Strzelce Plant Breeding | 7.9 | 97 | A | 150 202 |
Tonacja | Strzelce Plant Breeding | 7.8 | 104 | A | 152 204 |
Sailor | DANKO Plant Breeding | 7.7 | 101 | A | 150 203 |
Month | Temperature (°C) | Precipitation (mm) | ||
---|---|---|---|---|
Growing Season | ||||
2019 | 2020 | 2019 | 2020 | |
March | 5.5 | 4.5 | 22.7 | 25.3 |
April | 9.6 | 8.5 | 35.5 | 11.9 |
May | 12.9 | 11.1 | 86.1 | 112.7 |
June | 21.7 | 18.4 | 38.7 | 189.5 |
July | 18.6 | 18.6 | 33.9 | 49.8 |
Parameter/Factor | A (Cultivar) | B (Inoculation) | A × B | V (%) |
---|---|---|---|---|
Thousand kernel weight | *** | *** | * | 6.28 |
Protein content | *** | ** | *** | 3.29 |
Gluten content | *** | n.s. | *** | 4.43 |
Zeleny sedimentation index | *** | *** | *** | 4.24 |
Ash content | *** | *** | *** | 7.55 |
Water absorption | *** | *** | *** | 3.49 |
Time T1 | *** | *** | *** | 4.45 |
Stability | *** | *** | *** | 5.36 |
Slope α | *** | *** | *** | 3.85 |
Protein weakening, C2 | ** | *** | ** | 5.63 |
C1–C2 | *** | *** | *** | 4.40 |
Slope β | *** | *** | *** | 4.02 |
Slope γ | *** | *** | *** | 7.92 |
C3 | *** | *** | *** | 3.44 |
C4 | *** | *** | *** | 2.54 |
C5 | *** | *** | *** | 4.83 |
C3–C2 | *** | *** | *** | 3.47 |
C3–C4 | *** | *** | *** | 2.54 |
C5–C4 | *** | *** | *** | 3.12 |
Parameter | Inoculation | Cultivar | Mean | |||||
---|---|---|---|---|---|---|---|---|
Sailor | Legenda | KWS Ozon | Pokusa | Muszelka | Tonacja | |||
Thousand kernel weight (g) | Control | 42.15 a | 38.93 a | 47.51 a | 46.92 a | 46.84 a | 41.67 a | 44.00 B |
Fusarium | 38.52 b | 33.24 b | 43.52 a | 43.73 b | 42.15 b | 36.17 b | 39.56 A | |
Average | 40.3 AB | 36.08 B | 45.51 A | 45.32 A | 44.49 A | 38.92 B | ||
Protein content (%) | Control | 13.9 b | 12.9 b | 13.1 a | 13.4 b | 13.3 b | 11.9 a | 13.1 B |
Fusarium | 14.8 a | 16.4 a | 13.2 a | 14.3 a | 14.1 a | 12.4 a | 14.2 A | |
Average | 14.4 A | 14.6 A | 13.1 D | 13.9 B | 13.6 C | 12.1 E | ||
Gluten content (%) | Control | 29.4 b | 35.6 a | 28.6 a | 29.6 b | 28.5 a | 28.8 a | 30.08 A |
Fusarium | 30.5 a | 34.2 b | 27.4 a | 31.8 a | 28.7 a | 30.0 a | 30.43 A | |
Average | 30.0 A | 34.9 A | 28.0 B | 30.7 A | 28.6 B | 29.4 A | ||
Zeleny sedimentation index (cm3) | Control | 48 a | 45 a | 52 a | 55 a | 47 a | 46 | 48.8 A |
Fusarium | 45 a | 51 a | 34 b | 46 b | 42 a | 44 a | 43.6 B | |
Average | 47.0 A | 48.0 A | 43.0 A | 50.7 A | 44.5 A | 45.5 A | ||
Ash content (%) | Control | 1.42 b | 1.48 a | 1.51 b | 1.27 b | 1.41 b | 1.45 b | 1.42 B |
Fusarium | 1.56 a | 1.59 a | 1.91 a | 1.71 a | 1.71 a | 1.58 a | 1.68 A | |
Average | 1.49 B | 1.53 B | 1.71 A | 1.49 B | 1.56 B | 1.52 B |
Parameter | Inoculation | Cultivar | Mean | |||||
---|---|---|---|---|---|---|---|---|
Sailor | Legenda | KWS Ozon | Pokusa | Muszelka | Tonacja | |||
Water absorption (%) | Control | 60.5 b | 61.4 b | 62.6 b | 62.1 a | 61.8 b | 62.9 b | 61.9 B |
Fusarium | 64.6 a | 63.4 a | 66.4 a | 66.7 b | 66.8 a | 64.9 a | 65.5 A | |
Average | 62.6 A | 62.4 A | 64.5 A | 64.4 A | 64.3 A | 63.9 A | ||
Time T1 (min) | Control | 3.37 b | 4.4 a | 5.0 a | 4.1 a | 5.4 a | 8.2 a | 5.0 A |
Fusarium | 4.0 a | 2.6 b | 1.9 b | 3.9 a | 1.2 b | 3.2 b | 2.8 B | |
Average | 3.66 B | 3.50 B | 3.47 C | 4.00 B | 3.25 D | 5.65 A | ||
Stability (min) | Control | 11.0 a | 9.0 a | 10.3 a | 8.4 a | 9.8 a | 11.8 a | 10.1 A |
Fusarium | 7.7 b | 8.2 b | 7.0 b | 6.2 b | 5.3 b | 5.2 b | 6.6 B | |
Average | 9.3 A | 8.6 A | 8.6 A | 7.3 B | 7.6 B | 8.5 A | ||
Slope α (Nm min−1) | Control | −0.102 b | −0.088 a | −0.101 b | −0.083 b | −0.090 a | −0.091 b | −0.092 B |
Fusarium | −0.082 a | −0.091 a | −0.091 a | −0.070 a | −0.090 a | −0.060 a | −0.080 A | |
Average | −0.092 B | −0.090 B | −0.096 B | −0.076 A | −0.090 B | −0.075 A | ||
Protein weakening, C2 (Nm) | Control | 0.53 a | 0.42 a | 0.46 a | 0.40 a | 0.47 a | 0.55 a | 0.47 A |
Fusarium | 0.21 b | 0.22 b | 0.17 b | 0.18 b | 0.15 b | 0.13 b | 0.18 B | |
Average | 0.36 A | 0.32 B | 0.31 B | 0.29 C | 0.31 B | 0.33 B | ||
C1–C2 (Nm) | Control | 0.58 b | 0.66 b | 0.63 b | 0.67 b | 0.62 b | 0.55 b | 0.62 B |
Fusarium | 0.91 a | 0.89 a | 0.94 a | 0.95 a | 0.97 a | 0.97 a | 0.94 A | |
Average | 0.74 B | 0.77 B | 0.78 A | 0.81 A | 0.79 A | 0.76 AB |
Parameter | Inoculation | Cultivar | Mean | |||||
---|---|---|---|---|---|---|---|---|
Sailor | Legenda | KWS Ozon | Pokusa | Muszelka | Tonacja | |||
Slope β (Nm/min) | Control | 0.658 a | 0.602 a | 0.587 a | 0.673 a | 0.782 a | 0.699 a | 0.667 A |
Fusarium | 0.583 b | 0.563 b | 0.087 b | 0.419 b | 0.518 b | 0.602 b | 0.462 B | |
Average | 0.621 B | 0.583 C | 0.337 E | 0.546 D | 0.650 A | 0.651 A | ||
Slope γ (Nm/min) | Control | 0.129 b | −0.138 b | −0.111 b | −0.111 b | −0.089 a | −0.071 a | −0.108 B |
Fusarium | −0.089 a | −0.111 a | −0.499 a | −0.069 a | −0.052 a | −0.089 a | −0.152 A | |
Average | −0.109 B | −0.125 B | −0.305 A | −0.090 C | −0.071 C | −0.080 C | ||
C3 (Nm) | Control | 2.02 a | 1.99 a | 1.81 a | 1.84 a | 2.06 a | 2.09 a | 1.97 A |
Fusarium | 1.50 b | 1.43 b | 0.47 b | 1.47 b | 1.43 b | 1.20 b | 1.25 B | |
Average | 1.76 A | 1.71 A | 1.14 C | 1.66 B | 1.74 A | 1.64 B | ||
C4 (Nm) | Control | 1.56 a | 1.320 a | 0.72 a | 0.97 a | 1.50 a | 1.79 a | 1.31 A |
Fusarium | 0.88 b | 0.72 b | 0.20 b | 0.86 a | 0.73 b | 0.41 b | 0.63 B | |
Average | 1.22 A | 1.02 D | 0.46 F | 0.92 E | 1.12 B | 1.10 C | ||
C5 (Nm) | Control | 2.67 a | 1.97 a | 1.10 a | 1.61 a | 2.56 a | 2.91 a | 2.14 A |
Fusarium | 1.47 b | 1.20 b | 0.01 b | 1.28 b | 1.05 b | 0.62 b | 0.94 B | |
Average | 2.07 A | 1.59 C | 0.55 E | 1.44 D | 1.81 B | 1.77 B | ||
C3–C2 (Nm) | Control | 1.50 a | 1.58 a | 1.35 a | 1.43 a | 1.59 a | 1.54 a | 1.50 A |
Fusarium | 1.29 b | 1.20 b | 0.30 a | 1.29 a | 1.28 b | 1.07 b | 1.07 B | |
Average | 1.39 A | 1.39 A | 0.82 B | 1.36 A | 1.43 A | 1.30 A | ||
C3–C4 (Nm) | Control | 0.46 b | 0.68 a | 1.09 a | 0.87 a | 0.56 b | 0.29 b | 0.66 A |
Fusarium | 0.62 a | 0.71 a | 0.27 b | 0.61 b | 0.70 a | 0.79 a | 0.62 B | |
Average | 0.54 D | 0.69 B | 0.68 B | 0.74 A | 0.63 C | 0.54 D | ||
C5–C4 (Nm) | Control | 1.11 a | 0.65 a | 0.39 a | 0.63 a | 1.06 a | 1.11 a | 0.83 A |
Fusarium | 0.59 b | 0.48 a | −0.20 b | 0.42 a | 0.32 b | 0.21 b | 0.30 B | |
Average | 0.851 A | 0.569 C | 0.097 D | 0.525 C | 0.690 B | 0.663 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aleksandrowicz, E.; Dziedzic, K.; Szafrańska, A.; Podolska, G. The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars. Agriculture 2025, 15, 666. https://doi.org/10.3390/agriculture15060666
Aleksandrowicz E, Dziedzic K, Szafrańska A, Podolska G. The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars. Agriculture. 2025; 15(6):666. https://doi.org/10.3390/agriculture15060666
Chicago/Turabian StyleAleksandrowicz, Edyta, Krzysztof Dziedzic, Anna Szafrańska, and Grażyna Podolska. 2025. "The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars" Agriculture 15, no. 6: 666. https://doi.org/10.3390/agriculture15060666
APA StyleAleksandrowicz, E., Dziedzic, K., Szafrańska, A., & Podolska, G. (2025). The Influence of Fusarium culmorum on the Technological Value of Winter Wheat Cultivars. Agriculture, 15(6), 666. https://doi.org/10.3390/agriculture15060666