The Role of Foliar-Applied Silicon in Improving the Growth and Productivity of Early Potatoes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Plant Growth Conditions
2.2. Experimental Design and Treatments
2.3. Data Collection
2.4. Data Analysis
3. Results
3.1. Plant Height and Above-Ground Biomass
3.2. Assimilation Area and Chlorophyll Content in Leaves
3.3. Indicator Analysis of Plant Growth
3.4. Tuber Yield and Marketable Yield Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Carrão, H.; Nauman, G.; Barbosa, P. Mapping global patterns of drought risk: An empirical framework based on sub-national estimates of hazard, exposure and vulnerability. Glob. Environ. Change 2016, 39, 108–124. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. Agron. Sustain. Dev. 2009, 29, 185–212. [Google Scholar] [CrossRef]
- Wach, D.; Skowron, P. An overview of plant responses to the drought stress at morphological, physiological and biochemical levels. Pol. J. Agron. 2022, 50, 25–34. [Google Scholar]
- Bhupenchandra, I.; Devi, S.; Basumatary, A.; Dutta, S.; Singh, L.K.; Kalita, P.; Bora, S.S.; Devi, R.; Saikia, A.; Sharma, P.; et al. Biostimulants: Potential and prospects in agriculture. Int. Res. J. Pure Appl. Chem. 2020, 21, 20–35. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Moosa, A.; Ali, H.A.; Bermejo, N.F.; Munné-Bosch, S. Biostimulants: A sufficiently effective tool for sustainable agriculture in the era of climate change? Plant Physiol. Biochem. 2024, 211, 108699. [Google Scholar] [CrossRef]
- Nunes da Silva, M.; Machado, J.; Osorio, J.; Duarte, R.; Santos, C.S. Non-essential elements and their role in sustainable agriculture. Agronomy 2022, 12, 888. [Google Scholar] [CrossRef]
- Mittal, U.; Kumar, V.; Kukreja, S.; Singh, B.; Pandey, N.K.; Goutam, U. Role of beneficial elements in developing resilience to abiotic and biotic stresses in plants: Present status and future prospects. J. Plant Growth Regul. 2023, 42, 3789–3813. [Google Scholar] [CrossRef]
- Singhal, R.K.; Fahad, S.; Kumar, E.; Choyal, P.; Javed, T.; Jinger, D.; Singh, P.; Saha, D.; MD, P.; Bose, B.; et al. Beneficial elements: New players in improving nutrient use efficiency and abiotic stress tolerance. Plant Growth Regul. 2023, 100, 237–265. [Google Scholar] [CrossRef]
- Zargar, S.M.; Mahajan, R.; Bhat, J.A.; Nazir, M.; Deshmukh, R. Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 2019, 9, 73. [Google Scholar] [CrossRef]
- Achire, M.L.; Mundada, P.S.; Nikam, T.D.; Bapat, V.A.; Penna, S. Multifaceted role of silicon in mitigating environmental stresses in plants. Plant Physiol. Biochem. 2021, 169, 291–310. [Google Scholar] [CrossRef] [PubMed]
- Kovács, S.; Kutasy, E.; Csajbók, J. The multiple role of silicon nutrition in alleviating environmental stresses in sustainable crop production. Plants 2022, 11, 1223. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.R.; Anwar, Z.; Shahbaz, U.; Skalicky, M.; Ijaz, A.; Tariq, M.S.; Zulfiqar, U.; Brestic, M.; Alabdallah, N.M.; Alsubeie, M.S.; et al. Potential role of silicon in plants against biotic and abiotic stresses. Silicon 2023, 15, 3283–3303. [Google Scholar] [CrossRef]
- Khanum, S.; Tawaha, A.R.M.; Karimirad, R.; Al-Tawaha, A.R. Beneficial effect of supplementation silicon on the plant under abiotic and biotic stress. Silicon 2023, 15, 2481–2491. [Google Scholar] [CrossRef]
- Thakral, V.; Raturi, G.; Sudhakaran, S.; Mandlik, R.; Sharma, Y.; Shivaraj, S.M.; Tripathi, D.K.; Sonah, H.; Deshmukh, R. Silicon, a quasi-essential element: Availability in soil, fertilizer regime, optimum dosage, and uptake in plants. Plant Physiol. Biochem. 2024, 208, 108459. [Google Scholar] [CrossRef]
- Mir, R.A.; Bhat, B.A.; Yousuf, H.; Islam, S.T.; Raza, A.; Rizvi, M.A.; Charagh, S.; Albaqami, M.; Sofi, P.A.; Zargar, S.M. Multidimensional role of silicon to activate resilient plant growth and to mitigate abiotic stress. Front. Plant Sci. 2022, 13, 819658. [Google Scholar] [CrossRef]
- Savvas, D.; Ntatsi, G. Biostimulant activity of silicon in horticulture. Sci. Hort. 2015, 196, 66–81. [Google Scholar] [CrossRef]
- Laane, H.M. The effect of foliar sprays with different silicon compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef]
- Shivaraj, S.M.; Mandlik, R.; Bhat, J.A.; Raturi, G.; Elbaum, R.; Alexander, L.; Tripathi, D.K.; Deshmukh, R.; Sonah, H. Outstanding questions on the beneficial role of silicon in crop plants. Plant Cell. Physiol. 2022, 63, 4–18. [Google Scholar] [CrossRef]
- De Souza Júnior, J.P.; de Melo Prado, R.; Ferreira Diniz, J.; de Farias Guedes, V.H.; da Silva, J.L.F.; Roque, C.G.; de Cássia Felix Alvarez, R. Foliar application of innovative sources of silicon in soyabean, cotton, and maize. J. Soil Sci. Plant Nutr. 2022, 22, 3200–3211. [Google Scholar] [CrossRef]
- Malik, M.A.; Wani, A.H.; Mir, S.H.; Rehman, I.U. Elucidating role of silicon in drought stress tolerance in plants. Plant Physiol. Biochem. 2021, 165, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.; Ilahi, H.; Adnan, M.; Wahid, F.; Rehman, F.; Ullah, A.; Ullah, A.; Zia, A.; Raza, M.A. Application of silicon: A useful way to mitigate drought stress: An overview. Curr. Rese. Agric. Far. 2021, 2, 9–15. [Google Scholar] [CrossRef]
- Wang, M.; Wang, R.; Mur, L.A.J.; Ruan, J.; Shen, Q.; Guo, S. Function of silicon in plant drought stress response. Hort. Res. 2021, 8, 254. [Google Scholar] [CrossRef] [PubMed]
- Verma, K.K.; Song, X.-P.; Lin, B.; Guo, D.-J.; Singh, M.; Rajput, V.D.; Singh, R.K.; Singh, P.; Sharma, A.; Malviya, M.K.; et al. Silicon induces drought tolerance in crop plants: Physiological adaptation strategies. Silicon 2022, 14, 2473–2487. [Google Scholar] [CrossRef]
- Irfan, M.; Maqsood, M.A.; Rehman, H.u.; Mahboob, W.; Sarwar, N.; Hafeez, O.B.A.; Hussain, S.; Ercisli, S.; Akhtar, M.; Aziz, T. Silicon nutrition in plants under water-deficit conditions: Overview and prospects. Water 2023, 15, 739. [Google Scholar] [CrossRef]
- Ahmad, M.; El-Saeid, M.H.; Akram, M.A.; Ahmad, H.R.; Haroon, H.; Hussain, A. Silicon fertilization—A tool to boost up drought tolerance in wheat (Triticum aestivum L.) crop for better yield. J. Plant Nutr. 2016, 39, 1283–1291. [Google Scholar] [CrossRef]
- Kowalska, J.; Tyburski, J.; Jakubowska, M.; Krzymińska, J. Effect of different form of silicon on growth of spring wheat cultivated in organic farming system. Silicon 2021, 13, 211–217. [Google Scholar] [CrossRef]
- Laane, H.M. The effects of the application of foliar sprays with stabilized silicic acids: An overview of the results from 2003-2004. Silicon 2017, 9, 803–807. [Google Scholar] [CrossRef]
- Neeru, J.; Shaliesh, C.; Vaishali, T.; Purav, S.; Manoherlal, R. Role of orthosilicic acid (OSA) based formulation in improving plant growth and development. Silicon 2019, 11, 2407–2411. [Google Scholar] [CrossRef]
- Alayafi, A.H.; Al-Solaimani, S.G.M.; Abd El-Wahed, M.H.; Alghabari, F.M.; Sabagh, A.E. Silicon supplementation enhances productivity, water use efficiency and salinity tolerance in maize. Front. Plant Sci. 2022, 13, 953451. [Google Scholar] [CrossRef]
- Dorneles, A.O.S.; Pereira, A.S.; Possebom, G.; Sasso, V.M.; Rossato, I.V.; Tabaldi, L.A. Growth of potato genotypes under different silicon concentrations. Adv. Hort. Sci. 2018, 32, 289–295. [Google Scholar]
- Crusciol, C.A.C.; Pulz, A.L.; Lemos, L.B.; Soratto, R.P.; Lima, G.P.P. Effect of silicon and drought stress on tuber yield and leaf biochemical characteristics in potato. Crop Sci. 2009, 49, 949–954. [Google Scholar] [CrossRef]
- Pilon, C.; Soratto, R.P.; Broetto, F.; Fernandes, A.M. Foliar or soil application of silicon alleviate water-deficit stress of potato plants. Agron. J. 2014, 106, 2325–2334. [Google Scholar] [CrossRef]
- Soltani, M.; Kafi, M.; Nezami, A.; Taghiyari, H.R. Effect of silicon application at nano and micro scales on the growth and nutrient uptake of potato minitubers (Solanum tuberosum var. Agria) in greenhouse conditions. BioNanoScience 2018, 8, 218–228. [Google Scholar] [CrossRef]
- Saadatian, B.; Kafi, M.; Bannayan, M.; Hammami, H. Effect of foliar spraying nano and ionized silicon on physiological characteristics and yield of potato (Solanum tuberosum L.) mini-tuber. Silicon 2022, 14, 8067–8079. [Google Scholar] [CrossRef]
- Soratto, R.P.; Fernandes, A.M.; Crusciol, C.A.C.; Souza-Schlick, G.D. Yield, tuber quality, and disease incidence on potato crops as affected by silicon leaf application. Pesq. Agropec. Bras. 2012, 47, 1000–1006. (In Portuguese) [Google Scholar] [CrossRef]
- Kafi, M.; Nabati, J.; Saadatian, B.; Oskoucian, A.; Shabahang, J. Potato response to silicon (micro- and nanoparticles) and potassium as affected by salinity stress. Ital. J. Agron. 2019, 14, 162–169. [Google Scholar] [CrossRef]
- Seleiman, M.F.; Al-Selwey, W.A.; Ibrahim, A.A.; Shady, M.; Alsadon, A.A. Foliar application of ZnO and SiO2 nanoparticles mitigate water deficit and enhance potato yield and quality traits. Agronomy 2023, 13, 466. [Google Scholar] [CrossRef]
- George, T.S.; Taylor, M.A.; Dodd, I.C.; White, P.J. Climate change and consequences for potato production: A review for tolerance to emerging abiotic stress. Potato Res. 2017, 60, 239–268. [Google Scholar] [CrossRef]
- Hijmans, R.J. The effect of climate change on global potato production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Raymundo, R.; Asseng, S.; Robertson, R.; Petsakos, A.; Hoogenboom, G.; Quiroz, R.; Hareau, G.; Wolf, J. Climate change impact on global potato production. Eur. J. Agron. 2018, 100, 87–98. [Google Scholar] [CrossRef]
- Chang, D.C.; Jin, Y.I.; Nam, J.H.; Cheon, C.G.; Cho, J.H.; Kim, S.J.; Yu, H.-S. Early drought effect on canopy development and tuber growth of potato cultivars with different maturities. Field Crops Res. 2015, 215, 156–162. [Google Scholar] [CrossRef]
- Wagg, C.; Hann, S.; Kupriyanovich, Y.; Li, S. Timing of short period water stress determines potato plant growth, yield and tuber quality. Agric. Water Manag. 2021, 247, 106731. [Google Scholar] [CrossRef]
- Li, S.; Kupriyanovich, Y.; Wagg, C.; Zheng, F.; Hann, A. Water deficit duration affects potato plant growth, yield and tuber quality. Agriculture 2023, 13, 2007. [Google Scholar] [CrossRef]
- Rykaczewska, K. The impact of high temperature during growing season on potato cultivars with different response to environmental stresses. Am. J. Plant Sci. 2013, 4, 2386–2393. [Google Scholar] [CrossRef]
- Kim, Y.-U.; Seo, B.-S.; Choi, D.-H.; Ban, H.-Y.; Lee, B.-W. Impact of high temperature on the marketable tuber yield and related traits of potato. Eur. J. Agron. 2017, 89, 46–52. [Google Scholar] [CrossRef]
- Zhang, G.; Tang, R.; Niu, S.; Si, H.; Yang, Q.; Bizimungu, B.; Regan, S.; Li, X.-Q. Effect of earliness on heat stress tolerance in fifty potato cultivars. Am. J. Potato Res. 2020, 97, 23–32. [Google Scholar] [CrossRef]
- Vulavala, V.K.R.; Elbaum, R.; Yermiyabu, U.; Fogelman, E.; Kuma, A.; Ginzberg, I. Silicon fertilization of potato: Expression of putative transporters and tuber skin quality. Planta 2016, 243, 217–229. [Google Scholar] [CrossRef]
- Puppe, D.; Busse, J.; Stein, M.; Kaczorek, D.; Buhtz, C.; Schaller, J. Silica accumulation in potato (Solanum tuberosum L.) plants and implications for potato yield performance—Results from field experiments in Northeast Germany. Biology 2024, 13, 828. [Google Scholar] [CrossRef]
- Luz, J.M.Q.; Rodrigues, C.R.; Gonçalves, M.V.; Coelho, L. The effect of silicon on potatoes in Minas Gerais, Brazil. In Proceedings of the 4th International Conference on Silicon in Agriculture, Durban, South Africa, 26–31 October 2008; p. 60. [Google Scholar]
- Nyawade, S.; Gitari, H.I.; Karanja, N.N.; Gachene, C.K.K.; Schulte-Geldermann, E.; Sharma, K.; Parker, M.L. Enhancing climate resilience of rain-red potato through legume intercropping and silicon application. Front. Sustain. Food Syst. 2020, 4, 566345. [Google Scholar] [CrossRef]
- Trawczyński, C. Assess of tuber yield and quality after foliar application of silicon and microelements. Agron. Sci. 2021, 76, 9–20. (In Polish) [Google Scholar] [CrossRef]
- Wadas, W. Possibility of increasing early potato yield with foliar application of silicon. Agron. Sci. 2022, 77, 61–75. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Science (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Nowacki, W. (Ed.) Characteristic of Native Potato Cultivars Register, 25th ed.; Plant Breeding Acclimatization Institute-National Research Institute: Jadwisin, Poland, 2022; p. 45. [Google Scholar]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants: BBCH Monograph; Open Agrar Repositorium: Quedlinburg, Germany, 2018; pp. 1–204. [Google Scholar]
- Wadas, W.; Kalinowski, K. Effect of titanium on growth of very early-maturing potato cultivars. Acta Sci. Pol. Hortorum Cultus 2017, 16, 125–138. [Google Scholar] [CrossRef]
- Pietkiewicz, S. An indicator-based analysis of plant growth. Wiad. Bot. 1985, 29, 29–42. (In Polish) [Google Scholar]
- Wadas, W. Potato (Solanum tuberosum L.) growth in response to foliar silicon application. Agronomy 2021, 11, 2423. [Google Scholar] [CrossRef]
- De Oliveira, R.L.L.; de Mello Prado, R.; Felisberto, G.; Cruz, F.J.R. Different sources of silicon foliar spraying on the growth and gas exchange in sorghum. J. Soil Sci. Plant Nutr. 2019, 19, 948–953. [Google Scholar] [CrossRef]
- De Silva, V.F.; Moraes, J.C.; Melo, B.A. Influence of silicon on the development, productivity and infestation by insect pests in potato crops. Cienc. Agrotec. 2010, 34, 1465–1469. [Google Scholar] [CrossRef]
- Tavanti, T.R.; Melo, A.A.; Moreira, L.D.K.; Sanchez, D.E.J.; Silva, R.D.S.; Silva, R.M.D.; Reis, A.R.D. Micronutrient fertilization enhances ROS scavenging system for alleviation of abiotic stress in plants. Plant Physiol. Biochem. 2021, 160, 386–396. [Google Scholar] [CrossRef]
- Gupta, S.; Kaur, N.; Kant, K.; Jindal, P.; Ali, A.; Naeem, M. Calcium: A master regulator of stress tolerance in plants. S. Afr. J. Bot. 2023, 163, 580–594. [Google Scholar] [CrossRef]
- Hill, D.; Nelson, C.; Hammond, J.; Bell, L. Morphological of potato (Solanum tuberosum L.) in response to drought stress: Paving the way forward. Front. Plant Sci. 2021, 11, 597554. [Google Scholar] [CrossRef]
- Boguszewska-Mańkowska, D.; Pieczyński, M.; Wyrzykowska, A.; Kalaji, H.M.; Sieczko, L.; Szweykowska-Kulińska, Z.; Zagdańska, B. Divergent strategies displayed by potato (Solanum tuberosum L.) cultivars to cope with soil drought. J. Agro. Crop Sci. 2018, 204, 13–30. [Google Scholar] [CrossRef]
- Mushtaq, N.; Altaf, M.A.; Ning, J.; Shu, H.; Fu, H.; Lu, X.; Cheng, S.; Wang, Z. Silicon improves the drought tolerance in pepper plants through the induction of secondary metabolites, GA biosynthesis pathway, and suppression of chlorophyll degradation. Plant Physiol. Biochem. 2024, 214, 108919. [Google Scholar] [CrossRef] [PubMed]
- Zrůst, J.; Hlušek, J.; Jůzl, M.; Přichystalová, V. Relationship between certain chosen growth characteristics of very early potato varieties. Rostl. Výr. 1999, 45, 503–509. (In Czech) [Google Scholar]
- Udding, J.; Gelang-Alfredsson, G.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll content and SPAD-502 chlorophyll meter readings. Photosynth. Res. 2007, 91, 37–46. [Google Scholar] [CrossRef]
- Wadas, W.; Dębski, H. Effect of silicon foliar application on the assimilation area and photosynthetic pigment contents of potato (Solanum tuberosum L.). Appl. Ecol. Environ. Res. 2022, 20, 1369–1384. [Google Scholar] [CrossRef]
- Cao, B.; Ma, Q.; Zhao, Q.; Wang, L.; Xu, K. Effect of silicon on absorbed light allocation, antioxidant enzymes and ultrastructure of chloroplasts in tomato leaves under simulated drought stress. Sci. Hort. 2015, 194, 53–62. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, W.; Kang, Y.; Shi, M.; Yang, X.; Li, H.; Yu, H.; Wang, Y.; Qin, S. Application of different iron fertilizers for improving the photosynthesis and tuber quality of potato (Solanum tuberosum L.) and enhancing iron biofortification. Chem. Biol. Technol. Agric. 2022, 9, 79. [Google Scholar] [CrossRef]
- Pilon, C.; Soratto, R.; Moreno, L.A. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Sci. 2013, 53, 1605–1614. [Google Scholar] [CrossRef]
- Ramírez, D.A.; Yactayo, W.; Gutiérrez, R.; Mares, V.; De Mendiburu, F.; Posadas, A.; Quiroz, R. Chlorophyll concentration in leaves is an indicator of potato tuber yield in water-shortage conditions. Sci. Hort. 2014, 168, 202–209. [Google Scholar] [CrossRef]
- Rolando, J.L.; Ramirez, D.A.; Yactayo, W.; Monneveux, P.; Quiroz, R. Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environ. Exp. Bot. 2015, 110, 27–35. [Google Scholar] [CrossRef]
- Van Delden, A.; Pecio, A.; Haverkot, A.J. Temperature response of early foliar expansion of potato and wheat. Ann. Bot. 2000, 86, 355–369. [Google Scholar] [CrossRef]
- Howlader, O.; Hoque, M.A. Growth analysis and yield performance of four potato (Solanum tuberosum L.) varieties. Bangladesh J. Agric. Res. 2018, 43, 267–280. [Google Scholar] [CrossRef]
- Camargo, D.C.; Montoya, F.; Moreno, M.A.; Ortega, J.F.; Córcoles, J.I. Impact of water deficit on light interception, radiation use efficiency and leaf area index in a potato crop (Solanum tuberosum L.). J. Agric. Sci. 2016, 154, 662–673. [Google Scholar] [CrossRef]
- Schittenhelm, S.; Sourell, H.; Lopmeier, F.-J. Drought resistance of potato cultivars with contrasting canopy architecture. Eur. J. Agron. 2006, 24, 193–202. [Google Scholar] [CrossRef]
- Rizvi, S.; Mushtaq, F.; Hussain, K.; Farwah, S.; Afroza, B.; Hussain, S.M.; Saleem, S. Correlation analysis for various growth and yield attributing traits in potato (Solanum tuberosum L.) genotypes. Int. J. Chem. Stud. 2020, 8, 1738–1740. [Google Scholar] [CrossRef]
- Ascione, S.; Ruggiero, C.; Vitale, C. Contribution of growth components on relative, plant crop and tuber growth rate of nine potato cultivars in southern Italy. Int. J. Sci. 2013, 2, 1–11. [Google Scholar]
Plant Growth Traits | Total Yield | Marketable Yield | ||||
---|---|---|---|---|---|---|
2020 | 2021 | 2022 | 2020 | 2021 | 2022 | |
Plant height | −0.7227 ** | −0.4406 | −0.8146 ** | −0.7306 ** | −0.5745 | −0.7684 ** |
Stem weight | −0.6776 * | −0.3152 | −0.7013 * | −0.6825 * | −0.4059 | −0.6688 * |
Leaf weight | 0.5947 * | 0.5624 | 0.4720 | 0.6037 * | 0.4602 | 0.5705 |
Leaf area | 0.5027 | 0.2502 | 0.4362 | 0.5059 | 0.5292 | 0.5237 |
ChlSPAD | −0.5860 * | 0.2656 | 0.2409 | −0.6164 * | −0.2236 | 0.2346 |
Leaf area index (LAI) | 0.5039 | 0.2510 | 0.4314 | 0.5069 | 0.5362 | 0.5192 |
Specific leaf area (SLA) | 0.0502 | −0.6336 * | −0.3843 | 0.0661 | −0.6028 * | −0.3692 |
Leaf area ratio (LAR) | 0.7905 ** | 0.6094 * | 0.8356 ** | 0.7961 ** | 0.6992 * | 0.8393 ** |
Leaf weight ratio (LWR) | 0.8060 ** | 0.6435 * | 0.8186 ** | 0.8224 ** | 0.7696 ** | 0.8466 ** |
Tuber number per plant | 0.9660 ** | 0.8651 ** | 0.8403 ** | 0.9654 ** | 0.7793 ** | 0.7681 ** |
Tuber weight per plant | 0.9721 ** | 0.5783 * | 0.9936 ** | 0.9782 ** | 0.6719 * | 0.9630 ** |
Plant Growth Traits | Total Yield | Marketable Yield | ||||||
---|---|---|---|---|---|---|---|---|
Control | Actisil | Krzemix | Optysil | Control | Actisil | Krzemix | Optysil | |
Plant height | −0.2202 | −0.4748 | −0.3713 | −0.3678 | −0.1974 | −0.4829 | −0.3443 | −0.2886 |
Stem weight | 0.1600 | −0.3284 | −0.1803 | −0.1190 | 0.1675 | −0.3556 | −0.1588 | 0.3364 |
Leaf weight | 0.8394 ** | 0.8378 ** | 0.8521 ** | 0.8740 ** | 0.8394 ** | 0.8251 ** | 0.8666 ** | 0.8576 ** |
Leaf area | 0.8098 ** | 0.7476 * | 0.7878 * | 0.7223 * | 0.8156 ** | 0.7238 * | 0.7842 * | 0.7295 * |
ChlSPAD | 0.9296 ** | 0.8738 ** | 0.7302 * | 0.6842 * | 0.9419 ** | 0.8888 ** | 0.7367 * | 0.6839 * |
Leaf area index (LAI) | 0.8109 ** | 0.7488 * | 0.7846 * | 0.7229 * | 0.8170 ** | 0.7252 * | 0.7806 * | 0.7300 * |
Specific leaf area (SLA) | −0.4051 | −0.5637 | −0.1508 | −0.5467 | −0.3870 | −0.5854 | −0.1872 | −0.4729 |
Leaf area ratio (LAR) | 0.3456 | 0.4712 | 0.6629 | 0.3948 | 0.3377 | 0.4826 | 0.6407 | 0.3865 |
Leaf weight ratio (LWR) | 0.4763 | 0.6853 * | 0.6719 * | 0.6070 | 0.4631 | 0.7018 * | 0.6838 * | 0.5617 |
Tuber number per plant | 0.7328 * | 0.7593 * | 0.8310 ** | 0.8215 ** | 0.7544 * | 0.7153 * | 0.7806 * | 0.7727 * |
Tuber weight per plant | 0.9954 ** | 0.9934 ** | 0.9820 ** | 0.9945 ** | 0.9967 ** | 0.9941 ** | 0.9894 ** | 0.9940 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wadas, W.; Kondraciuk, T. The Role of Foliar-Applied Silicon in Improving the Growth and Productivity of Early Potatoes. Agriculture 2025, 15, 556. https://doi.org/10.3390/agriculture15050556
Wadas W, Kondraciuk T. The Role of Foliar-Applied Silicon in Improving the Growth and Productivity of Early Potatoes. Agriculture. 2025; 15(5):556. https://doi.org/10.3390/agriculture15050556
Chicago/Turabian StyleWadas, Wanda, and Tomasz Kondraciuk. 2025. "The Role of Foliar-Applied Silicon in Improving the Growth and Productivity of Early Potatoes" Agriculture 15, no. 5: 556. https://doi.org/10.3390/agriculture15050556
APA StyleWadas, W., & Kondraciuk, T. (2025). The Role of Foliar-Applied Silicon in Improving the Growth and Productivity of Early Potatoes. Agriculture, 15(5), 556. https://doi.org/10.3390/agriculture15050556