Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Quality Control
2.2. Pedigree File and Fixed Effects
2.3. Phenotypic Analyses of Fixed Effects
2.4. Random Regression Models and Estimation of Variance Components
2.5. Polynomial Order Comparison
2.6. Genetic Parameters
2.7. Estimated Breeding Values and Genetic Trends
3. Results and Discussion
3.1. Descriptive Statistics
3.2. Phenotypic Analyses of Fixed Effects
3.3. Polynomial Order and Fixed Effects
3.4. Variance Components
3.5. Genetic Parameters
3.6. Genetic Trends for MUN
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MUN | Milk urea nitrogen |
RRM | Random regression model |
NABC | Iranian National Animal Breeding Center |
DIM | Days in milk |
IBD | Identity by descent |
HTD | herd–year–month of test day |
AYS | Age–year–season |
AIC | Akaike information criterion |
BIC | Bayesian information criterion |
References
- Perrault, E.E. Melanie DuPuis: Nature’s perfect food: How milk became America’s drink. Agric. Hum. Values 2011, 28, 583–584. [Google Scholar] [CrossRef]
- Oita, A.; Malik, A.; Kanemoto, K.; Geschke, A.; Nishijima, S.; Lenzen, M. Substantial nitrogen pollution embedded in international trade. Nat. Geosci. 2016, 9, 111–115. [Google Scholar] [CrossRef]
- Uwizeye, A.; de Boer, I.J.M.; Opio, C.I.; Schulte, R.P.O.; Falcucci, A.; Tempio, G.; Teillard, F.; Casu, F.; Rulli, M.; Galloway, J.N. Nitrogen emissions along global livestock supply chains. Nature Food 2020, 1, 437–446. [Google Scholar] [CrossRef]
- Yu, C.; Huang, X.; Chen, H.; Godfray, H.C.J.; Wright, J.S.; Hall, J.W.; Gong, P.; Ni, S.; Qiao, S.; Huang, G. Managing nitrogen to restore water quality in China. Nature 2019, 567, 516–520. [Google Scholar] [CrossRef] [PubMed]
- Spek, J.W.; Bannink, A.; Gort, G.; Hendriks, W.H.; Dijkstra, J. Interaction between dietary content of protein and sodium chloride on milk urea concentration, urinary urea excretion, renal recycling of urea, and urea transfer to the gastrointestinal tract in dairy cows. J. Dairy Sci. 2013, 96, 5734–5745. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Mukhtar, Z.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef]
- Wattiaux, M.A.; Uddin, M.E.; Letelier, P.; Jackson, R.D.; Larson, R.A. Invited Review: Emission and mitigation of greenhouse gases from dairy farms: The cow, the manure, and the field. Appl. Anim. Sci. 2019, 35, 238–254. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.A. Evaluating greenhouse gas emissions from dairy manure management practices using survey data and lifecycle tools. J. Clean. Prod. 2017, 143, 169–179. [Google Scholar] [CrossRef]
- Thomann, R.V.; Collier, J.R.; Butt, A.; Casman, E.; Linker, L.C. Response of the Chesapeake Bay Water Quality Model to Loading Scenarios; (a report of the modeling Subcommittee, Chesapeake Bay Program Office, Annapolis, MD). Technology transfer report; Environmental Protection Agency: Annapolis, MD, USA, 1994. [Google Scholar]
- Müller, C.B.M.; Görs, S.; Derno, M.; Tuchscherer, A.; Wimmers, K.; Zeyner, A.; Kuhla, B. Differences between Holstein dairy cows in renal clearance rate of urea affect milk urea concentration and the relationship between milk urea and urinary nitrogen excretion. Sci. Total Environ. 2021, 755, 143198. [Google Scholar] [CrossRef]
- Ma, L.; Luo, H.; Brito, L.F.; Chang, Y.; Chen, Z.; Lou, W.; Zhang, F.; Wang, L.; Guo, G.; Wang, Y. Estimation of genetic parameters and single-step genome-wide association studies for milk urea nitrogen in Holstein cattle. J. Dairy Sci. 2023, 106, 352–363. [Google Scholar] [CrossRef]
- Ishler, V. Interpretation of Milk Urea Nitrogen (MUN) Values; Penn State Extension, DAS: University Park, PA, USA, 2008; pp. 2001–2134. [Google Scholar]
- Bittante, G. Effects of breed, farm intensiveness, and cow productivity on infrared predicted milk urea. J. Dairy Sci. 2022, 105, 5084–5096. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.G.; Young, A.J. The association between milk urea nitrogen and DHI production variables in western commercial dairy herds. J. Dairy Sci. 2003, 86, 3008–3015. [Google Scholar] [CrossRef]
- Barros, T.; Quaassdorff, M.A.; Aguerre, M.J.; Colmenero, J.J.O.; Bertics, S.J.; Crump, P.M.; Wattiaux, M.A. Effects of dietary crude protein concentration on late-lactation dairy cow performance and indicators of nitrogen utilization. J. Dairy Sci. 2017, 100, 5434–5448. [Google Scholar] [CrossRef]
- Nousiainen, J.; Shingfield, K.J.; Huhtanen, P. Evaluation of milk urea nitrogen as a diagnostic of protein feeding. J. Dairy Sci. 2004, 87, 386–398. [Google Scholar] [CrossRef] [PubMed]
- Wattiaux, M.; Aguere, M.; Powell, J. Background and overview on the contribution of dairy nutrition to addressing environmental concerns in Wisconsin: Nitrogen, phosphorus, and methane. In La Ganadéría ante el Agotamiento de los Paradigas Dominantes; Universidad Autoónoma Chapingo: Chapingo, Mexico, 2011; pp. 111–139. [Google Scholar]
- Hojman, D.; Kroll, O.; Adin, G.; Gips, M.; Hanochi, B.; Ezra, E. Relationships between milk urea and production, nutrition, and fertility traits in Israeli dairy herds. J. Dairy Sci. 2004, 87, 1001–1011. [Google Scholar] [CrossRef] [PubMed]
- Kohn, R. Use of milk or blood urea nitrogen to identify feed management inefficiencies and estimate nitrogen excretion by dairy cattle and other animals. In Proceedings of the Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 30–31 January 2007. [Google Scholar]
- Wattiaux, M.A.; Ranathunga, S.D. Milk urea Nitrogen as a tool to assess efficiency of Nitrogen utilization in dairy cows. In Proceedings of the Four-State Dairy Nutrition and Management Conference, Dubuque, IA, USA, 15–16 June 2016. [Google Scholar]
- Kohn, R.; High, J. Milk urea nitrogen: Theory and practice. In Proceedings of the Maryland Nutrition Conference for Feed Manufacturers, College Park, MD, USA, 20–23 March 1997; pp. 83–90. Available online: https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b7d8dfbad73fa57a994703edcb6767b40a54ddef (accessed on 9 January 2025).
- Wood, G.M.; Boettcher, P.J.; Jamrozik, J.; Jansen, G.B.; Kelton, D.F. Estimation of genetic parameters for concentrations of milk urea nitrogen. J. Dairy Sci. 2003, 86, 2462–2469. [Google Scholar] [CrossRef]
- Mitchell, R.G.; Rogers, G.W.; Dechow, C.D.; Vallimont, J.E.; Cooper, J.B.; Sander-Nielsen, U.; Clay, J.S. Milk urea nitrogen concentration: Heritability and genetic correlations with reproductive performance and disease. J. Dairy Sci. 2005, 88, 4434–4440. [Google Scholar] [CrossRef] [PubMed]
- Wenninger, A.; Distl, O. Analysis of Environmental and Genetic Influences on the Urea and Acetone Content in Milk from the Breeds German Spotted Cattle and German Brown Cattle. DTW—Dtsch. Tierarztl. Wochenschr. 1993, 100, 405–410. [Google Scholar]
- Stoop, W.M.; Bovenhuis, H.; Van Arendonk, J.A.M. Genetic parameters for milk urea nitrogen in relation to milk production traits. J. Dairy Sci. 2007, 90, 1981–1986. [Google Scholar] [CrossRef]
- Mucha, S.; Strandberg, E. Genetic analysis of milk urea nitrogen and relationships with yield and fertility across lactation. J. Dairy Sci. 2011, 94, 5665–5672. [Google Scholar] [CrossRef]
- Bobbo, T.; Penasa, M.; Rossoni, A.; Cassandro, M. Genetic aspects of milk urea nitrogen and new indicators of nitrogen efficiency in dairy cows. J. Dairy Sci. 2020, 103, 9207–9212. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, H.R.; Brito, L.F.; Lourenco DA, L.; Silva, F.F.; Jamrozik, J.; Schaeffer, L.R.; Schenkel, F.S. Invited review: Advances and applications of random regression models: From quantitative genetics to genomics. J. Dairy Sci. 2019, 102, 7664–7683. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y. Genetic Analyses of Different Nitrogen Use Efficiency Proxies and Their Relationships with Other Traits for Holstein Cows. Ph.D. Thesis, Gembloux Agro-Bio Tech—Université de Liège, Gembloux, Belgium, 2023. [Google Scholar]
- Chen, Y.; Atashi, H.; Vanderick, S.; Mota, R.R.; Soyeurt, H.; Hammami, H.; Gengler, N. Genetic analysis of milk urea concentration and its genetic relationship with selected traits of interest in dairy cows. J. Dairy Sci. 2021, 104, 12741–12755. [Google Scholar] [CrossRef]
- Simpson, G.L.; Bates, D.M.; Oksanen, J.; R Core Team. Permute: Functions for Generating Restricted Permutations of Data, R package version 0.9-7; R Core Team: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Bryan, J. R Packages; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2023. [Google Scholar]
- Misztal, I.; Tsuruta, S.; Lourenco, D.A.L.; Masuda, Y.; Aguilar, I.; Legarra, A.; Vitezica, Z. Manual for BLUPF90 Family of Programs; University of Georgia: Athens, GA, USA, 2018. [Google Scholar]
- Hyndman, R.; Booth, H.; Tickle, L.; Maindonald, J.; Wood, S.; Team, R.C.; Hyndman, M.R. Demography: Forecasting Mortality, Fertility, Migration and Population Data, R package version 1.22; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Sargolzaei, M.; Iwaisaki, H.; Colleau, J.J. CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006. [Google Scholar]
- Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 1922, 56, 330–338. [Google Scholar] [CrossRef]
- Li, J.; Gao, H.; Madsen, P.; Li, R.; Liu, W.; Bao, P.; Xue, G.; Gao, Y.; Di, X.; Su, G. Impact of the order of Legendre polynomials in random regression model on genetic evaluation for milk yield in dairy cattle population. Front. Genet. 2020, 11, 586155. [Google Scholar] [CrossRef]
- Jamrozik, J.; Schaeffer, L.R. Estimates of genetic parameters for a test day model with random regressions for yield traits of first lactation Holsteins. J. Dairy Sci. 1997, 80, 762–770. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H.; Wickham, H. Getting Started with Ggplot2. In ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; pp. 11–31. [Google Scholar]
- Auguie, B.; Antonov, A. gridExtra: Miscellaneous Functions for “Grid” Graphics, R package version 2.3; R Core Team: Vienna, Austria, 2017. [Google Scholar]
- Atashi, H.; Chen, Y.; Vanderick, S.; Hubin, X.; Gengler, N. Single-step genome-wide association analyses for milk urea concentration in Walloon Holstein cows. J. Dairy Sci. 2024, 107, 3020–3031. [Google Scholar] [CrossRef]
- Ruban, S.; Viktor, D.; Mykhailo, M.; Oleksandr, O.B.; Oleksandr, V.B.; Lesia, K. Characteristics of Lactation Curve and Reproduction in Dairy Cattle. Acta Univ. Agric. Silvic. Mendel. Brun. 2022, 70, 373–381. (In Czech) [Google Scholar] [CrossRef]
- Abdouli, H.; Rekik, B.; Haddad-Boubaker, A. Non-nutritional factors associated with milk urea concentrations under Mediterranean conditions. World J. Agric. Sci. 2008, 4, 183–188. [Google Scholar]
- Wattiaux, M.A.; Nordheim, E.V.; Crump, P. Statistical evaluation of factors and interactions affecting dairy herd improvement milk urea nitrogen in commercial Midwest dairy herds. J. Dairy Sci. 2005, 88, 3020–3035. [Google Scholar] [CrossRef]
- Fatehi, F.; Zali, A.; Honarvar, M.; Dehghan-Banadaky, M.; Young, A.J.; Ghiasvand, M.; Eftekhari, M. Review of the relationship between milk urea nitrogen and days in milk, parity, and monthly temperature mean in Iranian Holstein cows. J. Dairy Sci. 2012, 95, 5156–5163. [Google Scholar] [CrossRef] [PubMed]
- Kauffman, A.J.; St-Pierre, N.R. The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows. J. Dairy Sci. 2001, 84, 2284–2294. [Google Scholar] [CrossRef] [PubMed]
- Doska, M.C.; Silva, D.F.F.D.; Horst, J.A.; Valloto, A.A.; Rossi Junior, P.; Almeida, R.D. Sources of variation in milk urea nitrogen in Paraná dairy cows. Rev. Bras. De Zootec. 2012, 41, 692–697. [Google Scholar] [CrossRef]
- Kessler, E.C.; Bruckmaier, R.M.; Gross, J.J. Milk urea nitrogen concentration is higher in Brown Swiss than in Holstein dairy cows despite identical feeding. J. Anim. Physiol. Anim. Nutr. 2020, 104, 1671–1677. [Google Scholar] [CrossRef]
- Kgole, M.L.; Visser, C.; Banga, C.B. Environmental factors influencing milk urea nitrogen in South African Holstein cattle. S. Afr. J. Anim. Sci. 2012, 42, 459–463. [Google Scholar] [CrossRef]
- Mutsvangwa, T.; Davies, K.L.; McKinnon, J.J.; Christensen, D.A. Effects of dietary crude protein and rumen-degradable protein concentrations on urea recycling, nitrogen balance, omasal nutrient flow, and milk production in dairy cows. J. Dairy Sci. 2016, 99, 6298–6310. [Google Scholar] [CrossRef] [PubMed]
- Guliński, P.; Salamończyk, E.; Młynek, K. Improving nitrogen use efficiency of dairy cows in relation to urea in milk—A review. Anim. Sci. Pap. Rep. 2016, 34, 5–24. [Google Scholar]
- Beatson, P.R.; Meier, S.; Cullen, N.G.; Eding, H. Genetic variation in milk urea nitrogen concentration of dairy cattle and its implications for reducing urinary nitrogen excretion. Animal 2019, 13, 2164–2171. [Google Scholar] [CrossRef]
- Garcia-Muniz, J.G.; Lopez-Villalobos, N.; Burke, J.L.; Sandbrok, T.; Vazquez-Pelaez, C.G. Spatial-time correlation between milk urea with milk components and somatic cell score of bulk milk samples from farms supplying milk for cheese and milk powder manufacturing. Proc. N. Z. Soc. Anim. Prod. 2013, 73, 108–113. [Google Scholar]
- Miglior, F.; Sewalem, A.; Jamrozik, J.; Bohmanova, J.; Lefebvre, D.M.; Moore, R.K. Genetic analysis of milk urea nitrogen and lactose and their relationships with other production traits in Canadian Holstein cattle. J. Dairy Sci. 2007, 90, 2468–2479. [Google Scholar] [CrossRef]
- Van den Berg, I.; Ho, P.N.; Luke, T.D.W.; Haile-Mariam, M.; Bolormaa, S.; Pryce, J.E. The use of milk mid-infrared spectroscopy to improve genomic prediction accuracy of serum biomarkers. J. Dairy Sci. 2021, 104, 2008–2017. [Google Scholar] [CrossRef]
- Van den Berg, I.; Ho, P.N.; Haile-Mariam, M.; Beatson, P.R.; O’Connor, E.; Pryce, J.E. Genetic parameters of blood urea nitrogen and milk urea nitrogen concentration in dairy cattle managed in pasture-based production systems of New Zealand and Australia. Anim. Prod. Sci. 2021, 61, 1833–1842. [Google Scholar] [CrossRef]
Variable | Original Pedigree File | Final Pedigree File |
---|---|---|
Total number of individuals | 3,309,990 | 235,277 |
Number of founder animals | 301,264 | 12,877 |
Total number of sires | 30,697 | 9040 |
Total number of dams | 1,602,686 | 177,027 |
Number of individuals with progeny | 1,633,383 | 186,067 |
Number of individuals with no progeny | 1,676,607 | 49,210 |
Number of full-sib groups | 78,277 | 2272 |
Number of inbred animals | 2,490,798 | 235,277 |
1 Average inbreeding coefficients | 0.0400 | 0.0407 |
1 Average inbreeding coefficients in the inbreds | 0.0530 | 0.0409 |
1 Maximum of inbreeding coefficients | 0.474 | 0.4272 |
Number of animals with known sire | 165,189 | 7182 |
Number of animals with known sire and dam | 2,744,774 | 211,379 |
NRPL | NC | Mean (mg/dL) | SD (mg/dL) | CV (%) |
---|---|---|---|---|
3 | 5500 | 14.05 | 2.73 | 19.45 |
4 | 5709 | 14.28 | 2.68 | 18.77 |
5 | 5912 | 14.25 | 2.63 | 18.47 |
6 | 6548 | 14.27 | 2.51 | 17.61 |
7 | 7116 | 14.3 | 2.49 | 17.41 |
8 | 8077 | 14.28 | 2.57 | 18.05 |
9 | 8396 | 14.27 | 2.42 | 16.95 |
10 | 4924 | 14.23 | 2.4 | 16.89 |
Total | 52,219 | 14.27 | 2.47 | 17.95 |
FIX EFFECTS | n Levels | p-Value |
---|---|---|
Season | 4 | <0.001 |
State | 19 | <0.001 |
HTD | 5249 | <0.001 |
AC | 24 | <0.001 |
BY | 6 | <0.001 |
Herd | 297 | <0.001 |
CY | 5 | <0.001 |
AYS | 351 | <0.001 |
DIM | 301 | <0.001 |
Model | nFE | nAE | nPE | Ve | −2logL | AIC | BIC |
---|---|---|---|---|---|---|---|
3 | 3 | 3 | 3 | 4.756 | 1,545,711.4 | 1,545,737.4 | 1,545,877.2 |
2 | 2 | 2 | 2 | 4.869 | 1,548,058.0 | 1,548,072.0 | 1,548,147.3 |
1 | 1 | 1 | 1 | 4.967 | 1,550,453.7 | 1,550,459.7 | 1,550,491.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortazavi, M.; Zandi, M.B.; Pahlavan, R.; Eskandari Nasab, M.; Rojas de Oliveira, H. Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models. Agriculture 2025, 15, 357. https://doi.org/10.3390/agriculture15040357
Mortazavi M, Zandi MB, Pahlavan R, Eskandari Nasab M, Rojas de Oliveira H. Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models. Agriculture. 2025; 15(4):357. https://doi.org/10.3390/agriculture15040357
Chicago/Turabian StyleMortazavi, Mehridokht, Mohammad Bagher Zandi, Rostam Pahlavan, Moradpasha Eskandari Nasab, and Hinayah Rojas de Oliveira. 2025. "Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models" Agriculture 15, no. 4: 357. https://doi.org/10.3390/agriculture15040357
APA StyleMortazavi, M., Zandi, M. B., Pahlavan, R., Eskandari Nasab, M., & Rojas de Oliveira, H. (2025). Estimation of Genetic Parameters for Milk Urea Nitrogen in Iranian Holstein Cattle Using Random Regression Models. Agriculture, 15(4), 357. https://doi.org/10.3390/agriculture15040357