Parameter Calibration and Experimental Verification of the Discrete Element Model of the Edible Sunflower Seed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Material Intrinsic Parameters
2.2. Determination of Contact Parameters
2.2.1. Determination of Static Friction Coefficient
2.2.2. Determination of Rolling Friction Coefficient
2.2.3. Determination of Restitution Coefficient
2.3. Determination of Mechanical Properties
2.3.1. Determination of the Seed Repose Angle
2.3.2. Determination of Seed Suspension Velocity
2.4. Construction of Discrete Element Model
2.5. Parameter Calibration of the Seed Model
2.6. EDEM–Fluent Coupling Verification of the Seed Model
3. Results
3.1. Parameter Calibration Results of the Seed Model
3.2. EDEM–Fluent Coupling Verification Results of Seed Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- USDAFAS. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/compositeViz (accessed on 22 January 2025).
- Feng, J.H.; Jan, C.C.; Seiler, G. Breeding, production, and supply chain of confection sunflower in China. Oilseeds Crops Fats Lipids 2022, 29, 11. [Google Scholar] [CrossRef]
- Mu, J.; Wang, P.; Liu, Y.; Cui, J.; Chen, Y.; Wan, S.; Chen, G. Effects of Different Harvesting Periods on the Commerciality and Yield of Edible Sunflower. Crops 2024, 5, 146–151. [Google Scholar]
- Suthar, V.; Asare, M.A.; Sahu, P.; Gupta, R.K. Sunflower oil-based polyurethane/graphene composite: Synthesis and properties. J. Thermoplast. Compos. Mater. 2024, 37, 1667–1689. [Google Scholar] [CrossRef]
- Han, C.; Song, D.; Zhu, X.F.; Zhu, X.L.; Yuan, P.; Diao, H. Design and Experiment of Principle Machine for In-situ Harvesting of Edible Sunflower discs on Stalks. Trans. Chin. Soc. Agric. Mach. 2022, 53, 181–192, 222. [Google Scholar]
- Lian, G.; Ma, L.; Feng, W.; Wei, X.; Cheng, Y.; Zong, W. Design and experiment of the cleaning device with double-layer vibrating air-sieve for edible sunflower seeds. Trans. CSAE 2023, 39, 55–65. [Google Scholar]
- Ma, Z.; Li, Y.; Xu, L. Summarize of Particle Movements Research in Agricultural Engineering Realm. Trans. Chin. Soc. Agric. Mach. 2013, 44, 22–29. [Google Scholar]
- Zeng, Z.; Ma, X.; Cao, X.; Li, Z.; Wang, X. Critical Review of Applications of Discrete Element Method in Agricultural Engineering. Trans. Chin. Soc. Agric. Mach. 2021, 52, 1–20. [Google Scholar]
- Liang, R.; Chen, X.; Jiang, P.; Zhang, B.; Meng, H.; Peng, X.; Kan, Z. Calibration of the simulation parameters of the particulate materials in film mixed materials. Int. J. Agric. Biol. Eng. 2020, 13, 29–36. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, X.; Jin, X.; Ma, X.; Hu, B.; Zhang, X. Calibration and Analysis of Seeding Parameters of Cyperus esculentus Seeds Based on Discrete Element Simulation. Trans. Chin. Soc. Agric. Mach. 2023, 54, 58–69. [Google Scholar]
- Ma, W.; You, Y.; Wang, D.; Yin, S.; Huan, X. Parameter Calibration of Alfalfa Seed Discrete Element Model Based on RSM and NSGA-Ⅱ. Trans. Chin. Soc. Agric. Mach. 2020, 51, 136–144. [Google Scholar]
- Shi, L.; Ma, Z.; Zhao, W.; Yang, X.; Sun, B.; Zhang, J. Calibration of simulation parameters of flaxed seeds using discrete element method and verification of seed-metering test. Trans. CSAE 2019, 35, 25–33. [Google Scholar]
- Markauskas, D.; Ramírez-Gómez, Á.; Kačianauskas, R.; Zdancevičius, E. Maize grain shape approaches for DEM modelling. Comput. Electron. Agric. 2015, 118, 247–258. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, R.; Chen, T.; Fu, J.; Yuan, H. Calibration of Simulation Parameters of Mung Bean Seeds Using Discrete Element Method and Verification of Seed-metering Test. Trans. Chin. Soc. Agric. Mach. 2022, 53, 71–79. [Google Scholar]
- Ghodki, B.M.; Patel, M.; Namdeo, R.; Carpenter, G. Calibration of discrete element model parameters: Soybeans. Comput. Part. Mech. 2019, 6, 3–10. [Google Scholar] [CrossRef]
- Hao, J.; Wei, W.; Huang, P.; Qin, J.; Zhao, J. Calibration and experimental verification of discrete element parameters of oil sunflower seeds. Trans. CSAE 2021, 37, 36–44. [Google Scholar]
- Li, F.; Tao, Y.; Chen, J. Discrete Element Parameter Calibration of Sunflower Seeds Based on Stacking Experiment. J. Agric. Mech. Res. 2024, 46, 209–215. [Google Scholar]
- Aorigele; Zhang, W.; Wang, S.; Liu, W.; Yu, Z. Measurement of Physical Contact Parameters and Discrete Element Simulation Calibration of Sunflower Seeds. J. Agric. Mech. Res. 2023, 45, 139–147. [Google Scholar]
- Wang, S.; Yu, Z.; Aorigele; Zhang, W. Study on the modeling method of sunflower seed particles based on the discrete element method. Comput. Electron. Agric. 2022, 198, 107012. [Google Scholar] [CrossRef]
- Yu, X.; Geng, D.; Du, R.; Jin, C.; Yang, S.; Lu, X. Design and Experiment of Wheat planter by Pneumatic Conveying with no-tillage. Trans. Chin. Soc. Agric. Mach. 2018, 49, 141–148. [Google Scholar]
- Zhang, X.; Wang, Y.; Zhang, L.; Peng, C.; Fan, G. Design and Experiment of Wheat Pneumatic Centralized Seeding Distributing System. Trans. Chin. Soc. Agric. Mach. 2018, 49, 59–67. [Google Scholar]
- Mu, G.; Lv, H.; Zhang, T.; Zheng, W.; Zhang, W.; Lv, Z. Gas-Solid Coupling Simulation and Experimental Optimization of Throwing Device of Sweet Potato Seedling Recycling Machine. Trans. Chin. Soc. Agric. Mach. 2021, 52, 213–222. [Google Scholar]
- Hou, H.; Cui, Q.; Guo, Y.; Zhang, Y.; Sun, D.; Lai, S.; Liu, J. Design and test of air-sweeping suspension velocity testing device for cleaning threshed materials of grain and oil crops. Trans. CSAE 2018, 34, 43–49. [Google Scholar]
- Yang, Q.; Li, Z.; Li, H.; He, J.; Wang, Q.; Lu, C. Numerical Analysis of Particle Motion in Pneumatic Centralized Fertilizer Distribution Device Based on CFD-DEM. Trans. Chin. Soc. Agric. Mach. 2019, 50, 81–89. [Google Scholar]
- Guzman, L.; Chen, Y.; Landry, H. Coupled CFD-DEM simulation of seed flow in an air seeder distributor tube. Processes 2020, 8, 1597. [Google Scholar] [CrossRef]
- Arzu, Y.; Vedat, D.; Adnan, D. Comparison of computational fluid dynamics-based simulations and visualized seed trajectories in different seed tubes. Turk. J. Agric. For. 2020, 44, 599–611. [Google Scholar]
- El-Sayed, A.S.; Yahaya, R.; Wacker, P.; Kutzbach, H.D. Characteristic attributes of the peanut (Arachis hypogaea L.) for its separation. Int. Agrophysics 2001, 15, 225–230. [Google Scholar]
- Jin, W.; Zhang, X.; Ding, Y.; Bai, S.; Liu, W.; Zhou, X. Experiment on Suspension Separation of Residual Film and Impurity Based on EDEM-Fluent Coupling. Trans. Chin. Soc. Agric. Mach. 2022, 53, 89–98. [Google Scholar]
- Li, H.; Li, Y.; Tang, Z.; Xu, L. Numerical Simulation of Material Motion on Vibrating Screen of Air-and-screen Cleaning Device Based on CFD-DEM. Trans. Chin. Soc. Agric. Mach. 2012, 43, 79–84. [Google Scholar]
- Li, H.; Li, Y.; Tang, Z.; Xu, L.; Zhao, Z. Numerical simulation and analysis of vibration screening based on EDEM. Trans. CSAE 2011, 27, 117–121. [Google Scholar]
- Wen, X.; Jia, H.; Zhang, S.; Yuan, H.; Wang, G.; Chen, T. Test of Suspension Velocity of Granular Fertilizer Based on EDEM-Fluent Coupling. Trans. Chin. Soc. Agric. Mach. 2020, 51, 69–77. [Google Scholar]
- Wu, B. Study on the Physical and Mechanical Properties of Frozen Maize Grains. Master’s Thesis, Northeast Agricultural University, Harbin, China, 2019. [Google Scholar]
- Hou, Z.; Dai, N.; Chen, Z.; Qiu, Y.; Zhang, X. Measurement and calibration of physical property parameters for Agropyron seeds in a discrete element simulation. Trans. CSAE 2020, 36, 46–54. [Google Scholar]
- Tang, H. Design and Mechanism Analysis of Ripple Surface Pickup Finger Maize Precision Seed Metering Device. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2018. [Google Scholar]
- Yu, Q.; Liu, Y.; Chen, X.; Sun, K.; Lai, Q. Calibration and Experiment of Simulation Parameters for Panax notoginseng Seeds Based on DEM. Trans. Chin. Soc. Agric. Mach. 2020, 51, 123–132. [Google Scholar]
- Zhang, Z.; Zeng, C.; Xing, Z.; Xu, P.; Guo, Q.; Shi, R.; Wang, Y. Discrete element modeling and parameter calibration of safflower biomechanical properties. Int. J. Agric. Biol. Eng. 2024, 17, 37–46. [Google Scholar] [CrossRef]
- Du, X.; Han, C.; Shen, J.; Diao, H.; Song, D.; Zhang, S. Optimization design and test of jujube picker. J. Chin. Agric. Mech. 2022, 43, 43–50. [Google Scholar]
Materials | Range of Static Friction Coefficient | Middle Value of Static Friction Coefficient | Average Value of Static Friction Coefficient |
---|---|---|---|
seed–seed | 0.527–0.716 | 0.622 | 0.653 |
seed–steel | 0.375–0.586 | 0.481 | 0.432 |
Materials | Range of Rolling Friction Coefficient | Middle Value of Rolling Friction Coefficient | Average Value of Rolling Friction Coefficient |
---|---|---|---|
seed–seed | 0.042–0.126 | 0.104 | 0.985 |
seed–steel | 0.032–0.103 | 0.062 | 0.074 |
Materials | Range of Restitution Coefficient | Middle Value of Restitution Coefficient | Average Value of Restitution Coefficient |
---|---|---|---|
seed–seed | 0.234–0.340 | 0.286 | 0.295 |
seed–steel | 0.291–0.457 | 0.374 | 0.381 |
Symbol | Parameter | Code | |
---|---|---|---|
−1 | 1 | ||
X1 | Poisson’s ratio of the seed | 0.414 | 0.470 |
X2 | Density of seed/kg·m−3 | 348.57 | 421.54 |
X3 | Shear modulus of seed/Pa | 1 × 107 | 6 × 107 |
X4 | Restitution coefficient of seed–seed | 0.234 | 0.340 |
X5 | Static friction coefficient of seed–seed | 0.527 | 0.716 |
X6 | Rolling friction coefficient of seed–seed | 0.042 | 0.126 |
X7 | Restitution coefficient of seed–steel | 0.291 | 0.457 |
X8 | Static friction coefficient of seed–steel | 0.375 | 0.586 |
X9 | Rolling friction coefficient of seed–steel | 0.020 | 0.103 |
Serial Number | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | Simulated Repose Angle/(°) |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 34.09 |
2 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | 38.88 |
3 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | −1 | 33.41 |
4 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 1 | 32.67 |
5 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 1 | 39.34 |
6 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 1 | 35.90 |
7 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 | 30.18 |
8 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | 35.93 |
9 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 1 | 29.71 |
10 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | −1 | 31.35 |
11 | 1 | −1 | 1 | 1 | 1 | −1 | −1 | −1 | 1 | 29.89 |
12 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | −1 | 31.99 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 35.15 |
Source | Effect | Contribution Rate/% | Sum of Squares | F-Values | p-Values |
---|---|---|---|---|---|
Model | 120.4600 | 56.4900 | 0.0175 * | ||
X1 | −2.8200 | 19.7279 | 23.8600 | 100.6900 | 0.0098 ** |
X2 | 0.3200 | 0.2540 | 0.3072 | 1.3000 | 0.3729 |
X3 | 0.3033 | 0.2283 | 0.2760 | 1.1700 | 0.3933 |
X4 | −1.4533 | 5.2398 | 6.3400 | 26.7400 | 0.0354 * |
X5 | 1.1267 | 3.1490 | 3.8100 | 16.0700 | 0.0570 |
X6 | 5.2933 | 69.5088 | 84.0600 | 354.7800 | 0.0028 ** |
X7 | −0.3067 | 0.2333 | 0.2821 | 1.1900 | 0.3891 |
X8 | 0.4033 | 0.4036 | 0.4880 | 2.0600 | 0.2877 |
X9 | 0.5900 | 0.8635 | 1.0400 | 4.4100 | 0.1706 |
Test No. | X1 | X4 | X6 | Y1/(°) | re1/% |
---|---|---|---|---|---|
1 | 0.47 | 0.34 | 0.042 | 32.058 | 10.604 |
2 | 0.456 | 0.3135 | 0.063 | 33.653 | 6.154 |
3 | 0.442 | 0.287 | 0.084 | 34.883 | 2.726 |
4 | 0.428 | 0.2605 | 0.105 | 36.192 | 0.926 |
5 | 0.414 | 0.234 | 0.126 | 37.139 | 3.566 |
Code | X1 | X4 | X6 |
---|---|---|---|
−1 | 0.414 | 0.234 | 0.084 |
0 | 0.428 | 0.2605 | 0.105 |
1 | 0.442 | 0.287 | 0.126 |
Test No. | X1 | X4 | X6 | Y1/(°) | re1/% |
---|---|---|---|---|---|
1 | −1 | −1 | 0 | 36.381 | 1.453 |
2 | 1 | −1 | 0 | 35.852 | −0.022 |
3 | −1 | 1 | 0 | 36.025 | 0.460 |
4 | 1 | 1 | 0 | 35.09 | −2.147 |
5 | −1 | 0 | −1 | 35.155 | −1.966 |
6 | 1 | 0 | −1 | 34.946 | −2.549 |
7 | −1 | 0 | 1 | 37.105 | 3.472 |
8 | 1 | 0 | 1 | 36.821 | 2.680 |
9 | 0 | −1 | −1 | 35.163 | −1.944 |
10 | 0 | 1 | −1 | 34.733 | −3.143 |
11 | 0 | −1 | 1 | 36.95 | 3.040 |
12 | 0 | 1 | 1 | 36.309 | 1.252 |
13 | 0 | 0 | 0 | 36.231 | 1.035 |
14 | 0 | 0 | 0 | 36.183 | 0.901 |
15 | 0 | 0 | 0 | 36.005 | 0.404 |
Data Sources | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Model | 7.8600 | 9 | 0.8733 | 25.2200 | 0.0012 ** |
X1 | 0.4787 | 1 | 0.4787 | 13.8200 | 0.0137 * |
X4 | 0.5990 | 1 | 0.5990 | 17.2900 | 0.0088 ** |
X6 | 6.4600 | 1 | 6.4600 | 186.4800 | <0.0001 ** |
X1 × 4 | 0.0412 | 1 | 0.0412 | 1.1900 | 0.3251 |
X1 × 6 | 0.0014 | 1 | 0.0014 | 0.0406 | 0.8482 |
X4X6 | 0.0111 | 1 | 0.0111 | 0.3214 | 0.5953 |
X12 | 0.0066 | 1 | 0.0066 | 0.1911 | 0.6803 |
X42 | 0.2502 | 1 | 0.2502 | 7.2300 | 0.0434 * |
X62 | 0.0303 | 1 | 0.0303 | 0.8748 | 0.3926 |
Residual | 0.1732 | 5 | 0.0346 | ||
Lack of Fit | 0.1448 | 3 | 0.0483 | 3.4000 | 0.2353 |
Pure error | 0.0284 | 2 | 0.0142 | ||
Total | 8.0300 | 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Xu, Y.; Han, C.; Yang, B.; Luo, Y.; Qiu, S.; Huang, X.; Mao, H. Parameter Calibration and Experimental Verification of the Discrete Element Model of the Edible Sunflower Seed. Agriculture 2025, 15, 292. https://doi.org/10.3390/agriculture15030292
Zhu X, Xu Y, Han C, Yang B, Luo Y, Qiu S, Huang X, Mao H. Parameter Calibration and Experimental Verification of the Discrete Element Model of the Edible Sunflower Seed. Agriculture. 2025; 15(3):292. https://doi.org/10.3390/agriculture15030292
Chicago/Turabian StyleZhu, Xuefeng, Yang Xu, Changjie Han, Binning Yang, Yan Luo, Shilong Qiu, Xiaona Huang, and Hanping Mao. 2025. "Parameter Calibration and Experimental Verification of the Discrete Element Model of the Edible Sunflower Seed" Agriculture 15, no. 3: 292. https://doi.org/10.3390/agriculture15030292
APA StyleZhu, X., Xu, Y., Han, C., Yang, B., Luo, Y., Qiu, S., Huang, X., & Mao, H. (2025). Parameter Calibration and Experimental Verification of the Discrete Element Model of the Edible Sunflower Seed. Agriculture, 15(3), 292. https://doi.org/10.3390/agriculture15030292