Water and Nitrogen Transport in Wheat and Maize: Impacts of Irrigation, Fertilization, and Soil Management
Abstract
1. Introduction
1.1. Global Relevance
1.2. Literature Search and Selection Criteria
2. Water and Nitrogen Transport Mechanisms in Soil–Plant Systems
3. Effects of Irrigation Modes on Water and Nitrogen Dynamics
3.1. Surface Irrigation
3.2. Sprinkler Irrigation
3.3. Micro-Irrigation
3.3.1. Drip Irrigation
3.3.2. Micro-Sprinkler Irrigation
3.4. Subsurface Irrigation
4. Impacts of Fertilization Strategies on Water and Nitrogen Dynamics
| Crop | Experimental Site and Design Description | Types of Nitrogen Fertilizers | Fertilizer Amount | Fertilization Timing | Impact on Water and Nitrogen Migration | Main Conclusions | Reference |
|---|---|---|---|---|---|---|---|
| Winter wheat | Jiangsu Province, China—two years, light loam soil | polymer-coated urea (PCU), sulfur-coated urea (SCU) | / | One-time application vs. two-part application (pre-sowing + greening) | Split application increased the inorganic nitrogen content in the soil after greening and improved nitrogen supply during the critical period. | Compared with multiple conventional urea fertilizations, split application of PCU/SCU can increase yield by 9.96–15.11%, improve nitrogen fertilizer use efficiency by 6.71–10.33%, and reduce fertilization labor. | [73] |
| Winter wheat | Xianyang, Shaanxi Province, China—two years, silt loam | Mixture of ordinary nitrogen fertilizer (ONF) and controlled-release nitrogen fertilizer (CRNF) | 192 (N1)/240 (N2) kg·N·ha−1 | 0%, 30%, 50%, 70%, 100% CRNF replacement ratio | Increased nitrate nitrogen content in the 0–60 cm soil layer from greening to maturity, reduced leaching, promoted nitrogen accumulation and dry matter accumulation during critical periods, and improved nitrogen transport to grains | Using a 70% CRNF blend on top of N2 can increase NUE by 2.8% and yield by 3.0–15.3%. | [81] |
| Winter wheat | Yangzhou, China—two years, sandy loam | Traditional nitrogen fertilizer/controlled-release urea (CRF-60/CRF-80) | / | One-time application before sowing | Increase the inorganic nitrogen content in the soil in the later period, meet the two nitrogen absorption peaks | One fertilization can meet the nitrogen absorption needs of wheat twice, NUE increased by 9.7–12.1%. | [82] |
| Winter wheat | Multan, Pakistan—two years, silty clay loam | Urea + farmyard manure | 150 kg·N·ha−1 | Use throughout the entire growth period | A mixture of 75% urea and 25% farmyard manure will result in nitrogen fixation, while pure urea will lose nitrogen through volatilization and leaching. | With the optimal ratio (75% urea + 25% farmyard manure), the NUE of wheat is 50.37%. | [83] |
| Maize | Fort Collins, Colorado, USA—two years, clay loam | Blood meal, feather meal, fish fertilizer liquid, blue algae nitrogen fertilizer | / | Fish fertilizer liquid and blue algae fertilizer are applied by drip irrigation four times, and blood meal and feather meal are deeply applied before sowing. | Cyanobacteria nitrogen fertilizer increased leaf stomatal conductance and photosynthetic performance, promoting WUE; salicylic acid and iron contained in the fertilizer were significantly positively correlated with iWUE, fWUE, and stomatal exchange characteristics. | Cyano-fertilizer nitrogen fertilizer has a water use efficiency of 42–51%. | [77] |
| Maize | Balcarce, Argentina—two years, Argiudolls | Urea, Urea-Limus, Urea-DMPP, CAN | / | Fertilize once (V4) or apply fertilizer in divided doses (60% V4 + 40% silking period) | Split fertilization and the use of Urea-Limus significantly reduced ammonia volatilization (70% to 80%); there was no significant difference in N2O emissions. | Urea-Limus + split-time fertilization can significantly reduce ammonia volatilization and environmental costs without affecting yield. | [79] |
| Maize | Khuzestan Province, Southwest Iran—pot experiment, 64 days | MgCl2 modified biochar slow-release fertilizer (MBSRF), enriched biochar (EMBC), ammonium nitrate (AN) | / | One-time fertilization (potted plants) | MBSRF slowly releases nitrate/ammonium nitrogen to enhance water retention and nitrogen absorption | The release rate of nitrate and ammonium nitrogen from MBSRF was slower, about 2.5 and 1.5 times lower than that from AN. MBSRF effectively increased plant height, shoot dry weight, root dry weight, chlorophyll content, and leaf area. | [72] |
| Maize | Shaanxi Province, China—two years, silty clay loam | Urea (U), slow-release fertilizer (SRF), urea + slow-release fertilizer (UNS) | 180 kg·N·a−1 | Application during the growth period | UNS increased nitrogen absorption in the late stage under water stress (19.1%) and alleviated the effects of water stress. Both SRF and UNS reduced residual NO3−-N and increased NUE and WP. | UNS helps to stabilize yield and increase efficiency under water stress, SRF significantly increases yield under sufficient irrigation conditions, and W3SRF treatment has the highest yield. | [84] |
| Maize | Lexington, Kentucky, USA—two years, silt loam | Urea ammonium nitrate (UNS) | 0–303 kg·N·ha−1 | Initial one-time fertilization/split-time fertilization | Split nitrogen application improves the matching of nitrogen supply and crop nitrogen demand in time by supplementing nitrogen during the key growth period, enhances the nitrogen absorption capacity of the root system under water conditions, and thus optimizes the water–nitrogen transfer efficiency. | The strategy of applying fertilizer in stages improves nitrogen agronomic efficiency and yield. | [74] |
| Maize | Xinjiang, China—three years, sandy soil | urea | 0–765 kg·N·ha−1 | One-time application before sowing | Nitrogen fertilization promoted the increase in aboveground biomass and LAI, enhanced canopy transpiration and soil water consumption, and to a certain extent accelerated the rate of shallow soil water migration to the root zone. | With increasing nitrogen application, the silking period of maize is delayed by about 1 day, and the maturity period is delayed by 1–2 days. The number of green leaves and leaf area index (LAI) at physiological maturity are increased. | [75] |
| Maize | Ansai District, Northwest Loess Plateau, Shaanxi Province, China—three years, silt loam | Urea, slow-release nitrogen fertilizer | 90, 120, 180, 240, 300 kg·N·ha−1 | Base fertilizer 40% N, jointing fertilizer 60% N | The nitrogen absorption during the silking period increased by 2.3–5.5% under slow-release nitrogen fertilizer treatment; the total nitrogen transport volume of slow-release fertilizer was 9.3–22.9% lower than that of urea, but the nitrogen transport efficiency was higher. | Slow-release nitrogen fertilizer plus medium nitrogen application (180 kg N·ha−1) can achieve higher yields and NUE, and is the preferred strategy for sustainable fertilization management. | [80] |
5. Role of Soil Management Practices in Water and Nitrogen Transport
5.1. Returning Straw to Fields
5.2. Film Mulching
| Crop | Experimental Site and Design Description | Mulch Type | Water–Nitrogen Transport Characteristics | Main Conclusion | Reference |
|---|---|---|---|---|---|
| Maize | Changwu, China—ten years, silt loam | White/black biodegradable film, white/black plastic film | Significant NO3− accumulation in 0–20 cm under NBFM; higher leaching risk; BM degrades in mid-late stage, reducing soil moisture and mineralization | Biodegradable film reduces NO3− accumulation and leaching, improves nitrogen harvest index with no yield loss | [103] |
| Maize | Inner Mongolia, China—two years, sandy loam | Biodegradable film, plastic film, no mulch | Higher Cmic, Nmic, and enzyme activity in PM mid-stage; BM degradation reduces microbial activity; best water–nitrogen coordination under 22.5 mm irrigation + 280 kg·ha−1·N | BM suitable for 22.5 mm irrigation + 280 N, with superior yield and NUE | [102] |
| Wheat | Shaanxi Province, China—two years, silt loam | Ridge plastic mulch/no mulch | RP improves soil water storage and mineral N; significantly increases soil temperature in mid-late stage; lower evapotranspiration | RP 180 kg N·ha−1 optimizes source-sink relationship and enhances W-N coordination | [96] |
| Maize | Shaanxi, China—two years, silt loam | Flat PM, ridge PM, biodegradable mulch, no mulch | PM and BM improve surface water storage, N uptake, and mineral N residue; significantly reduce NH3 and N2O emissions and evapotranspiration | BM reduces emissions while maintaining yield and efficiency, suitable as green alternative | [98] |
| Maize | Jinju, South Korea—two years, coarse loam | Biodegradable film, plastic film, no mulch | High NO3− accumulation under PM; weaker W-N retention under BM280; lowest NO3− accumulation and leaching, highest NUE under BM160 | BM shows better environmental and yield performance under ~200 kg·ha−1·N; model validated | [100] |
| Maize | Inner Mongolia, China—two years, silt loam | Biodegradable film, plastic film, no mulch | Similar soil water under BM and PM before degradation; surface moisture drops sharply after 40% degradation; increased evaporation and 80 cm flux | BM and PM have similar early-stage dynamics; attention needed to surface moisture post-degradation | [97] |
| Maize | Shaanxi, China—three years, silty loam | Long-term plastic mulch (33 years) | Mulched plots have higher soil moisture but lower NO3−; P uptake in early stage inhibited by lower pH | No negative impact on yield/water, but soil acidification from long-term mulching requires attention | [101] |
| Maize | Inner Mongolia, China—two years, silty sandy loam | Straw + plastic mulch, plastic mulch, no mulch | SM increases DNRA gene abundance and microbial N conversion; FM reduces ammonification genes, possibly limiting N availability | SM enhances soil N transformation potential; FM may inhibit some N pathways | [106] |
| Maize | Liaoning, China—two years, brown soil | Plastic mulch, no mulch | Mulching increases soil temperature and moisture; water droplets capture NH3 reducing loss; slight increase in N2O (not significant) | Plastic mulch reduces NH3 volatilization effectively, providing practical N loss mitigation strategy | [99] |
5.3. Biochar
5.4. Summary
6. Interaction Effects of Irrigation, Fertilization, and Soil Management
7. Conclusions and Prospect
- Elucidate microscale mechanisms of water and nitrogen migration under different management practices to improve understanding of process-level dynamics.
- Strengthen integrated understanding of the crop–rhizosphere–soil system, focusing on interactions between roots, microbes, and soil nutrient–water processes.
- Establish an integrated research framework combining field measurements and model simulations to enhance predictive capacity under multi-factor synergistic controls.
- Develop regionally adaptable management strategies for irrigation, fertilization, and soil fertility, tailored to local cropping conditions, to support resource-conserving and environmentally sustainable agriculture.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peng, C.; Zhang, Y.; Liu, K.; Kong, X.; Wu, S.; Yan, H.; Jiang, P. Continuing the Continuous Harvests of Food Production: From the Perspective of the Interrelationships among Cultivated Land Quantity, Quality, and Grain Yield. Hum. Soc. Sci. Commun. 2025, 12, 1–16. [Google Scholar] [CrossRef]
- Cui, J.; Gao, Y.; van Grinsven, H.; Zheng, M.; Zhang, X.; Ren, C.; Ma, T.; Xu, J.; Gu, B. Adaptive Mitigation of Warming-Induced Food Crisis and Nitrogen Pollution. Environ. Sci. Technol. 2025, 59, 3527–3536. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The Impact of Temperature Variability on Wheat Yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Wang, C.; Shen, Y.; Fang, X.; Xiao, S.; Liu, G.; Wang, L.; Gu, B.; Zhou, F.; Chen, D.; Tian, H.; et al. Reducing Soil Nitrogen Losses from Fertilizer Use in Global Maize and Wheat Production. Nat. Geosci. 2024, 17, 1008–1015. [Google Scholar] [CrossRef]
- Giongo, V.; Acosta, A.D.S.; Dossa, Á.A.; Santi, A.; Do Amaral, A.J.; Caierão, E.; Denardin, J.E.; Vieira, O.V.; De Figueirêdo, M.C.B.; Folegatti, M.I.D.S.; et al. How Can the Environmental Impacts of Wheat Cultivation and Wheat Flour Production Be Reduced? A Life Cycle Assessment of Brazilian Wheat. J. Clean. Prod. 2025, 489, 144650. [Google Scholar] [CrossRef]
- Liu, B.-Y.; Zhao, X.; Li, S.-S.; Zhang, X.-Z.; Virk, A.L.; Qi, J.-Y.; Kan, Z.-R.; Wang, X.; Ma, S.-T.; Zhang, H.-L. Meta-Analysis of Management-Induced Changes in Nitrogen Use Efficiency of Winter Wheat in the North China Plain. J. Clean. Prod. 2020, 251, 119632. [Google Scholar] [CrossRef]
- Yang, T.; Zhao, J.; Hong, M.; Ma, M. Appropriate Water and Nitrogen Supply Regulates the Dynamics of Nitrogen Translocation and Enhances Nitrogen Accumulation in Maize Grains. Agric. Water Manag. 2024, 306, 109160. [Google Scholar] [CrossRef]
- You, L.; Ros, G.H.; Chen, Y.; Zhang, F.; de Vries, W. Optimized Agricultural Management Reduces Global Cropland Nitrogen Losses to Air and Water. Nat. Food 2024, 5, 995–1004. [Google Scholar] [CrossRef]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing Yield Gaps through Nutrient and Water Management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef]
- Quemada, M.; Gabriel, J.L. Approaches for Increasing Nitrogen and Water Use Efficiency Simultaneously. Glob. Food Secur. 2016, 9, 29–35. [Google Scholar] [CrossRef]
- Guo, L.; Liu, Y.; Wu, G.-L.; Huang, Z.; Cui, Z.; Cheng, Z.; Zhang, R.-Q.; Tian, F.-P.; He, H. Preferential Water Flow: Influence of Alfalfa (Medicago sativa L.) Decayed Root Channels on Soil Water Infiltration. J. Hydrol. 2019, 578, 124019. [Google Scholar] [CrossRef]
- Zhu, G.; Yong, L.; Zhang, Z.; Sun, Z.; Wan, Q.; Xu, Y.; Ma, H.; Sang, L.; Liu, Y.; Wang, L.; et al. Effects of Plastic Mulch on Soil Water Migration in Arid Oasis Farmland: Evidence of Stable Isotopes. Catena 2021, 207, 105580. [Google Scholar] [CrossRef]
- Khare, D.; Selzner, T.; Leitner, D.; Vanderborght, J.; Vereecken, H.; Schnepf, A. Root System Scale Models Significantly Overestimate Root Water Uptake at Drying Soil Conditions. Front. Plant Sci. 2022, 13, 798741. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Zhao, D.; Di, N.; Li, D.; Zhou, O.; Sun, Y.; Jia, L.; Ding, C.; Xi, B. Matching Root Water Uptake Patterns to Fine Root and Soil Water Distributions. Plant Soil 2024, 495, 499–516. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, R.; Liu, Z.; Ren, B.; Wu, Q.; Zhang, J.; Tang, Y.; Wu, Q. Bioretention System Mediated by Different Dry–Wet Alterations on Nitrogen Removal: Performance, Fate, and Microbial Community. Sci. Total. Environ. 2022, 827, 154295. [Google Scholar] [CrossRef]
- Mair, A.; Dupuy, L.; Ptashnyk, M. Can Root Systems Redistribute Soil Water to Mitigate the Effects of Drought? Field Crops Res. 2023, 300, 109006. [Google Scholar] [CrossRef]
- Baird, J.; Schwenke, G.; Macdonald, B.; Nachimuthu, G.; McPherson, A.; Mercer, C. Efficiency over Excess: Maximising Cotton Lint Yields with Optimum Irrigation and Nitrogen Fertiliser Application. Field Crops Res. 2024, 315, 109484. [Google Scholar] [CrossRef]
- Hao, S.; Liu, X.; Liu, C.; Liu, W. Nitrogen Loss and Migration in Rice Fields under Different Water and Fertilizer Modes. Plants 2024, 13, 562. [Google Scholar] [CrossRef]
- Abdulhamid, Y.; Duan, L.; Yaqiao, S.; Hu, J. Unveiling the Dynamic of Nitrogen through Migration and Transformation Patterns in the Groundwater Level Fluctuation Zone of Different Hyporheic Zone Sediments. Sci. Rep. 2024, 14, 3954. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L.; Zhang, L.; Wang, S.; Sui, X.; Zhang, Z. Alternate Furrow Irrigation and Nitrogen Level Effects on Migration of Water and Nitrate-Nitrogen in Soil and Root Growth of Cucumber in Solar-Greenhouse. Sci. Hortic. 2012, 138, 43–49. [Google Scholar] [CrossRef]
- Zhang, B.; Chen, L.; Jin, S.; Guo, Q.; Hou, J. The Influence of Plants on the Migration and Transformation of Nitrogen in Plant–Soil Systems: A Review. J. Soil Sci. Plant Nutr. 2022, 22, 4084–4102. [Google Scholar] [CrossRef]
- Albrizio, R.; Todorovic, M.; Matic, T.; Stellacci, A.M. Comparing the Interactive Effects of Water and Nitrogen on Durum Wheat and Barley Grown in a Mediterranean Environment. Field Crops Res. 2010, 115, 179–190. [Google Scholar] [CrossRef]
- Feng, H.; Dou, Z.; Jiang, W.; Mahmood, H.; Liao, Z.; Li, Z.; Fan, J. Optimal Water and Nitrogen Regimes Increased Fruit Yield and Water Use Efficiency by Improving Root Characteristics of Drip-Fertigated Greenhouse Tomato (Solanum lycopersicum L.). Agronomy 2024, 14, 2439. [Google Scholar] [CrossRef]
- Olšovská, K.; Sytar, O.; Kováčik, P. Optimizing Nitrogen Application for Enhanced Barley Resilience: A Comprehensive Study on Drought Stress and Nitrogen Supply for Sustainable Agriculture. Sustainability 2024, 16, 2016. [Google Scholar] [CrossRef]
- Ullah, A.; Zhao, C.; Zhang, M.; Sun, C.; Liu, X.; Hu, J.; Zeeshan, M.; Zaid, A.; Dai, T.; Tian, Z. Nitrogen Enhances the Effect of Pre-Drought Priming against Post-Anthesis Drought Stress by Regulating Starch and Protein Formation in Wheat. Physiol. Plant. 2023, 175, e13907. [Google Scholar] [CrossRef]
- Wang, S.; Wang, D.; Liu, T.; Liu, Y.; Luo, M.; Li, Y.; Zhou, W.; Yang, M.; Liang, S.; Li, K. Simulation of Winter Wheat Growth Dynamics and Optimization of Water and Nitrogen Application Systems Based on the AquaCrop Model. Agronomy 2024, 14, 110. [Google Scholar] [CrossRef]
- Corbeels, M.; Chirat, G.; Messad, S.; Thierfelder, C. Performance and Sensitivity of the DSSAT Crop Growth Model in Simulating Maize Yield under Conservation Agriculture. Eur. J. Agron. 2016, 76, 41–53. [Google Scholar] [CrossRef]
- Wang, S.; Liu, T.; Yang, J.; Wu, C.; Zhang, H. Simulation Effect of Water and Nitrogen Transport under Wide Ridge and Furrow Irrigation in Winter Wheat Using HYDRUS-2D. Agronomy 2023, 13, 457. [Google Scholar] [CrossRef]
- Yakoub, A.; Lloveras, J.; Biau, A.; Lindquist, J.L.; Lizaso, J.I. Testing and Improving the Maize Models in DSSAT: Development, Growth, Yield, and N Uptake. Field Crop. Res. 2017, 212, 95–106. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, H. The Development of the DNDC Plant Growth Sub-Model and the Application of DNDC in Agriculture: A Review. Agric. Ecosyst. Environ. 2016, 230, 271–282. [Google Scholar] [CrossRef]
- Yan, F.; Yu, Z.; Shi, Y. Optimized Border Irrigation Delays Winter Wheat Flag Leaf Senescence and Promotes Grain Filling. Front. Plant Sci. 2023, 14, 1051323. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Liu, Y.; Yao, C.; Song, W.; Xu, X.; Zhang, M.; Zhou, X.; Gao, Y.; Wang, Z.; et al. Effects of Micro-Sprinkling with Different Irrigation Amount on Grain Yield and Water Use Efficiency of Winter Wheat in the North China Plain. Agric. Water Manag. 2019, 224, 105736. [Google Scholar] [CrossRef]
- Wang, L.; Leghari, S.J.; Wu, J.; Wang, N.; Pang, M.; Jin, L. Interactive Effects of Biochar and Chemical Fertilizer on Water and Nitrogen Dynamics, Soil Properties and Maize Yield under Different Irrigation Methods. Front. Plant Sci. 2023, 14, 1230023. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Gao, Y.; Sun, C.; Ramos, T.B.; Mu, D.; Xun, Y.; Huang, G.; Xu, X. Assessing Water-Nitrogen Use, Crop Growth and Economic Benefits for Maize in Upper Yellow River Basin: Feasibility Analysis for Border and Drip Irrigation. Agric. Water Manag. 2024, 295, 108771. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, Z.; Guo, Q.; Hu, Z.; Li, J.; Wei, T.; Ding, R.; Cai, T.; Ren, X.; Han, Q.; et al. Ridge–Furrow Rainwater Harvesting Combined with Supplementary Irrigation: Water-Saving and Yield-Maintaining Mode for Winter Wheat in a Semiarid Region Based on 8-Year In-Situ Experiment. Agric. Water Manag. 2022, 259, 107239. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Yang, L.; Kamran, M.; Xue, X.; Dong, Z.; Jia, Z.; Han, Q. Ridge-Furrow Mulching System Regulates Diurnal Temperature Amplitude and Wetting-Drying Alternation Behavior in Soil to Promote Maize Growth and Water Use in a Semiarid Region. Field Crops Res. 2019, 233, 121–130. [Google Scholar] [CrossRef]
- Lian, Y.; Li, C.; Han, P.; Ali, S.; Ren, Y.; Lin, T.; Wang, Z.; Li, S. Impact of Ridge Nitrogen and Furrow Irrigation Strategies to Evaluation Winter Wheat Production and Economic Benefits under Bed-Planting in Semi-Humid Regions. Agric. Water Manag. 2025, 317, 109636. [Google Scholar] [CrossRef]
- Wu, J.; Guan, H.; Wang, Z.; Li, Y.; Fu, G.; Huang, M.; Li, G. Alternative Furrow Irrigation Combined with Topdressing Nitrogen at Jointing Helps Yield Formation and Water Use of Winter Wheat under No-Till Ridge-Furrow Planting System in Semi-Humid Drought-Prone Areas of China. Agronomy 2023, 13, 1390. [Google Scholar] [CrossRef]
- Home, P.G.; Panda, R.K.; Kar, S. Effect of Method and Scheduling of Irrigation on Water and Nitrogen Use Efficiencies of Okra (Abelmoschus esculentus). Agric. Water Manag. 2002, 55, 159–170. [Google Scholar] [CrossRef]
- Oppong Danso, E.; Abenney-Mickson, S.; Sabi, E.B.; Plauborg, F.; Abekoe, M.; Kugblenu, Y.O.; Jensen, C.R.; Andersen, M.N. Effect of Different Fertilization and Irrigation Methods on Nitrogen Uptake, Intercepted Radiation and Yield of Okra Grown in the Keta Sand Spit of Southeast Ghana. Agric. Water Manag. 2015, 147, 34–42. [Google Scholar] [CrossRef]
- Wang, T.; Guo, Z.; Wang, H.; Li, W.; Sheng, W.; Zhang, S.; Zhang, D. Effects of Mixed Saline and Fresh Water Sprinkler Irrigation on the Rhizosphere Soil Microbial Community of Summer Maize. Agriculture 2024, 14, 2237. [Google Scholar] [CrossRef]
- Solgi, S.; Ahmadi, S.H.; Sepaskhah, A.R.; Edalat, M. Wheat Yield Modeling under Water-Saving Irrigation and Climatic Scenarios in Transition from Surface to Sprinkler Irrigation Systems. J. Hydrol. 2022, 612, 128053. [Google Scholar] [CrossRef]
- Rathore, V.S.; Nathawat, N.S.; Bhardwaj, S.; Sasidharan, R.P.; Yadav, B.M.; Kumar, M.; Santra, P.; Yadava, N.D.; Yadav, O.P. Yield, Water and Nitrogen Use Efficiencies of Sprinkler Irrigated Wheat Grown under Different Irrigation and Nitrogen Levels in an Arid Region. Agric. Water Manag. 2017, 187, 232–245. [Google Scholar] [CrossRef]
- Ding, W.; Zhang, G.; Xie, H.; Chang, N.; Zhang, J.; Zhang, J.; Li, G.; Li, H. Balancing High Yields and Low N2O Emissions from Greenhouse Vegetable Fields with Large Water and Fertilizer Input: A Case Study of Multiple-Year Irrigation and Nitrogen Fertilizer Regimes. Plant Soil 2023, 483, 131–152. [Google Scholar] [CrossRef]
- Kiani, M.; Gheysari, M.; Mostafazadeh-Fard, B.; Majidi, M.M.; Karchani, K.; Hoogenboom, G. Effect of the Interaction of Water and Nitrogen on Sunflower under Drip Irrigation in an Arid Region. Agric. Water Manag. 2016, 171, 162–172. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, J.; Dhital, Y.; Ma, K.; Wen, Y.; Wang, Z. Increasing Dissolved Oxygen Concentration of Irrigation Water Is Beneficial to Nitrogen Uptake of Cotton under Mulched Drip Irrigation. Field Crops Res. 2024, 316, 109494. [Google Scholar] [CrossRef]
- Si, Z.; Zain, M.; Mehmood, F.; Wang, G.; Gao, Y.; Duan, A. Effects of Nitrogen Application Rate and Irrigation Regime on Growth, Yield, and Water-Nitrogen Use Efficiency of Drip-Irrigated Winter Wheat in the North China Plain. Agric. Water Manag. 2020, 231, 106002. [Google Scholar] [CrossRef]
- Sandhu, O.; Gupta, R.; Thind, H.; Jat, M.; Sidhu, H.; Singh, Y. Drip Irrigation and Nitrogen Management for Improving Crop Yields, Nitrogen Use Efficiency and Water Productivity of Maize-Wheat System on Permanent Beds in North-West India. Agric. Water Manag. 2019, 219, 19–26. [Google Scholar] [CrossRef]
- Sui, J.; Wang, J.; Gong, S.; Xu, D.; Zhang, Y. Effect of Nitrogen and Irrigation Application on Water Movement and Nitrogen Transport for a Wheat Crop under Drip Irrigation in the North China Plain. Water 2015, 7, 6651–6672. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Dong, Q.G.; Feng, H.; Siddique, K.H.M. Plastic Mulching Significantly Improves Soil Enzyme and Microbial Activities without Mitigating Gaseous N Emissions in Winter Wheat–Summer Maize Rotations. Field Crops Res. 2022, 286, 108630. [Google Scholar] [CrossRef]
- Zhang, X.; Xiao, G.; Bol, R.; Wang, L.; Zhuge, Y.; Wu, W.; Li, H.; Meng, F. Influences of Irrigation and Fertilization on Soil N Cycle and Losses from Wheat–Maize Cropping System in Northern China. Environ. Pollut. 2021, 278, 116852. [Google Scholar] [CrossRef]
- Huang, H.; Shi, Y.; Luo, A.; Xiao, Y.; Liang, J.; He, Z. Effects of Irrigation Frequency on Root Growth, Nutrients Accumulation, Yield, and Water Use Efficiency of Panax notoginseng under Micro-Sprinkler Irrigation. Front. Plant Sci. 2025, 16, 1549506. [Google Scholar] [CrossRef]
- Zang, Z.; Yang, Q.; Liang, J.; Yang, Y.; Li, N.; Wang, H.; Guo, J.; Yang, L. Alternate Micro-Sprinkler Irrigation and Organic Fertilization Decreases Root Rot and Promotes Root Growth of Panax notoginseng by Improving Soil Environment and Microbial Structure in Rhizosphere Soil. Ind. Crop. Prod. 2023, 202, 117091. [Google Scholar] [CrossRef]
- Shen, X.; Liu, J.; Liu, L.; Zeleke, K.; Yi, R.; Zhang, X.; Gao, Y.; Liang, Y. Effects of Irrigation and Nitrogen Topdressing on Water and Nitrogen Use Efficiency for Winter Wheat with Micro-Sprinkling Hose Irrigation in North China. Agric. Water Manag. 2024, 302, 109005. [Google Scholar] [CrossRef]
- Yao, C.; Li, J.; Zhang, Z.; Liu, Y.; Wang, Z.; Sun, Z.; Zhang, Y. Improving Wheat Yield, Quality and Resource Utilization Efficiency through Nitrogen Management Based on Micro-Sprinkler Irrigation. Agric. Water Manag. 2023, 282, 108277. [Google Scholar] [CrossRef]
- Li, J.; Xu, X.; Lin, G.; Wang, Y.; Liu, Y.; Zhang, M.; Zhou, J.; Wang, Z.; Zhang, Y. Micro-Irrigation Improves Grain Yield and Resource Use Efficiency by Co-Locating the Roots and N-Fertilizer Distribution of Winter Wheat in the North China Plain. Sci. Total. Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Huang, C.; Liu, X.; Gao, Y.; Chen, H.; Ma, S.; Qin, A.; Zhang, Y.; Gao, Z.; Song, Y.; Sun, J.; et al. Response of Triticum Vulgare Growth and Nitrogen Allocation to Irrigation Methods and Regimes under Subsoiling Tillage. Agronomy 2024, 14, 858. [Google Scholar] [CrossRef]
- Gonçalves, I.Z.; Barbosa, E.A.A.; Santos, L.N.S.; Nazário, A.A.; Feitosa, D.R.C.; Tuta, N.F.; Matsura, E.E. Water Relations and Productivity of Sugarcane Irrigated with Domestic Wastewater by Subsurface Drip. Agric. Water Manag. 2017, 185, 105–115. [Google Scholar] [CrossRef]
- Li, S.; Tan, D.; Wu, X.; Degré, A.; Long, H.; Zhang, S.; Lu, J.; Gao, L.; Zheng, F.; Liu, X.; et al. Negative Pressure Irrigation Increases Vegetable Water Productivity and Nitrogen Use Efficiency by Improving Soil Water and NO3–-N Distributions. Agric. Water Manag. 2021, 251, 106853. [Google Scholar] [CrossRef]
- Ma, H.; Jiang, P.; Zhang, X.; Liu, R.; Sun, Q.; Wang, L. Regulation of Alfalfa Growth, Water and Nitrogen Utilization and Distribution in Arid Region of Northwest China by Optimizing Irrigation Method. Front. Plant Sci. 2025, 16, 1517398. [Google Scholar] [CrossRef]
- Mo, Y.; Li, G.; Wang, D. A Sowing Method for Subsurface Drip Irrigation that Increases the Emergence Rate, Yield, and Water Use Efficiency in Spring Corn. Agric. Water Manag. 2017, 179, 288–295. [Google Scholar] [CrossRef]
- Gupta, N.; Singh, Y.; Jat, H.S.; Singh, L.K.; Choudhary, K.M.; Sidhu, H.S.; Gathala, M.K.; Jat, M.L. Precise Irrigation Water and Nitrogen Management Improve Water and Nitrogen Use Efficiencies under Conservation Agriculture in the Maize-Wheat Systems. Sci. Rep. 2023, 13, 12060. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, H.S.; Jat, M.L.; Singh, Y.; Sidhu, R.K.; Gupta, N.; Singh, P.; Singh, P.; Jat, H.S.; Gerard, B. Sub-Surface Drip Fertigation with Conservation Agriculture in a Rice-Wheat System: A Breakthrough for Addressing Water and Nitrogen Use Efficiency. Agric. Water Manag. 2019, 216, 273–283. [Google Scholar] [CrossRef]
- Mohammed, A.T.; Irmak, S. Maize Response to Irrigation and Nitrogen under Center Pivot, Subsurface Drip and Furrow Irrigation: Water Productivity, Basal Evapotranspiration and Yield Response Factors. Agric. Water Manag. 2022, 271, 107795. [Google Scholar] [CrossRef]
- De Laporte, A.; Banger, K.; Weersink, A.; Wagner-Riddle, C.; Grant, B.; Smith, W. Economic and Environmental Consequences of Nitrogen Application Rates, Timing and Methods on Corn in Ontario. Agric. Syst. 2021, 188, 103018. [Google Scholar] [CrossRef]
- Pu, Y.; Dai, K.; Li, J.; Wang, Y.; Lin, S.; Liu, M. Optimized Nitrogen Application Rate Based on Soil Residual Nitrogen Significantly Increased the Yield and Biological Nitrogen Fixation of Fresh Faba Bean as Vegetables. Crop Sci. 2025, 65, e70013. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Grey Water Footprint Reduction in Irrigated Crop Production: Effect of Nitrogen Application Rate, Nitrogen Form, Tillage Practice and Irrigation Strategy. Hydrol. Earth Syst. Sci. 2018, 22, 3245–3259. [Google Scholar] [CrossRef]
- Cao, P.; Lu, C.; Yu, Z. Historical Nitrogen Fertilizer Use in Agricultural Ecosystems of the Contiguous United States during 1850–2015: Application Rate, Timing, and Fertilizer Types. Earth Syst. Sci. Data 2018, 10, 969–984. [Google Scholar] [CrossRef]
- Li, Q.; Yang, A.; Wang, Z.; Roelcke, M.; Chen, X.; Zhang, F.; Pasda, G.; Zerulla, W.; Wissemeier, A.H.; Liu, X. Effect of a New Urease Inhibitor on Ammonia Volatilization and Nitrogen Utilization in Wheat in North and Northwest China. Field Crops Res. 2015, 175, 96–105. [Google Scholar] [CrossRef]
- Wan, X.; Wu, W.; Shah, F. Nitrogen Fertilizer Management for Mitigating Ammonia Emission and Increasing Nitrogen Use Efficiencies by 15N Stable Isotopes in Winter Wheat. Sci. Total. Environ. 2021, 790, 147587. [Google Scholar] [CrossRef]
- Hao, T.; Zhu, Q.; Zeng, M.; Shen, J.; Shi, X.; Liu, X.; Zhang, F.; de Vries, W. Impacts of nitrogen fertilizer type and application rate on soil acidification rate under a wheat-maize double cropping system. J. Environ. Manag. 2020, 270, 110888. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Norouzi Masir, M.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Convers. Biorefinery 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, M.; Zheng, G.; Yao, Y.; Tao, R.; Zhu, M.; Ding, J.; Li, C.; Guo, W.; Zhu, X. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crop. Res. 2021, 267, 108163. [Google Scholar] [CrossRef]
- Quinn, D.J.; Poffenbarger, H.J.; Miguez, F.E.; Lee, C.D. Corn optimum nitrogen fertilizer rate and application timing when following a rye cover crop. Field Crops Res. 2023, 291, 108794. [Google Scholar] [CrossRef]
- Zhang, Y.-M.; Xue, J.; Zhai, J.; Zhang, G.-Q.; Zhang, W.-X.; Wang, K.-R.; Ming, B.; Hou, P.; Xie, R.-Z.; Liu, C.-W.; et al. Does nitrogen application rate affect the moisture content of corn grains? J. Integr. Agric. 2021, 20, 2627–2638. [Google Scholar] [CrossRef]
- Petraityte, D.; Ceseviciene, J.; Arlauskiene, A.; Slepetiene, A.; Skersiene, A.; Gecaite, V. Variation of Soil Nitrogen, Organic Carbon, and Waxy Wheat Yield Using Liquid Organic and Mineral Fertilizers. Agriculture 2022, 12, 2016. [Google Scholar] [CrossRef]
- Sukor, A.; Qian, Y.; Davis, J.G. Organic Nitrogen Fertilizer Selection Influences Water Use Efficiency in Drip-Irrigated Sweet Corn. Agriculture 2023, 13, 923. [Google Scholar] [CrossRef]
- Liu, P.; Lin, Y.; Liu, X.; Li, Z.; Fan, Z.; Yan, Z.; Wu, Y.; Zhao, X.; Ren, X.; Chen, X. The response of crop yield, water and nitrogen use efficiency to organic fertilizer addition: A meta-analysis. Eur. J. Agron. 2025, 168, 127628. [Google Scholar] [CrossRef]
- Iglesias, M.P.; Wyngaard, N.; Lewczuk, N.; Sainz Rozas, H.R.; Toribio, M.; García, F.O.; Reussi Calvo, N.I. Balancing yield and environmental impact: The role of split nitrogen application and fertilizer type in corn production. Agric. Ecosyst. Environ. 2025, 392, 109756. [Google Scholar] [CrossRef]
- Xing, Y.; Mi, F.; Wang, X. Effects of different nitrogen fertilizer types and application rates on maize yield and nitrogen use efficiency in Loess Plateau of China. J. Soils Sediments 2022, 22, 1938–1958. [Google Scholar] [CrossRef]
- Ali, M.F.; Han, R.; Lin, X.; Wang, D. Controlled-release nitrogen combined with ordinary nitrogen fertilizer improved nitrogen uptake and productivity of winter wheat. Front. Plant Sci. 2025, 15, 1504083. [Google Scholar] [CrossRef]
- Cui, P.; Chen, Z.; Ning, Q.; Wei, H.; Zhang, H.; Lu, H.; Gao, H.; Zhang, H. One-Time Nitrogen Fertilizer Application Using Controlled-Release Urea Ensured the Yield, Nitrogen Use Efficiencies, and Profits of Winter Wheat. Agronomy 2022, 12, 1792. [Google Scholar] [CrossRef]
- Rehim, A.; Khan, M.; Imran, M.; Bashir, M.A.; Ul-Allah, S.; Khan, M.N.; Hussain, M. Integrated use of farm manure and synthetic nitrogen fertilizer improves nitrogen use efficiency, yield and grain quality in wheat. Ital. J. Agron. 2020, 15, 1360. [Google Scholar] [CrossRef]
- Guo, J.; Fan, J.; Xiang, Y.; Zhang, F.; Yan, S.; Zhang, X.; Zheng, J.; Li, Y.; Tang, Z.; Li, Z. Coupling effects of irrigation amount and nitrogen fertilizer type on grain yield, water productivity and nitrogen use efficiency of drip-irrigated maize. Agric. Water Manag. 2022, 261, 107389. [Google Scholar] [CrossRef]
- Che, Y.; Zhang, B.; Liu, B.; Wang, J.; Zhang, H. Effects of Straw Return Rate on Soil Physicochemical Properties and Yield in Paddy Fields. Agronomy 2024, 14, 1668. [Google Scholar] [CrossRef]
- Soares, D.D.S.; Ramos, M.L.G.; Marchão, R.L.; Maciel, G.A.; Oliveira, A.D.; Malaquias, J.V.; Carvalho, A.M. How diversity of crop residues in long-term no-tillage systems affect chemical and microbiological soil properties. Soil Tillage Res. 2019, 194, 104316. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Yu, Q.; Zhang, Y.; Wang, R.; Li, J.; Wang, X. Ploughing/zero-tillage rotation regulates soil physicochemical properties and improves productivity of erodible soil in a residue return farming system. Land Degrad. Dev. 2021, 32, 1833–1843. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, G.; Wang, D.; Liu, Q.; Xu, M. Investigation into runoff nitrogen loss variations due to different crop residue retention modes and nitrogen fertilizer rates in rice-wheat cropping systems. Agric. Water Manag. 2021, 247, 106729. [Google Scholar] [CrossRef]
- Liu, R.-Z.; Borjigin, Q.; Gao, J.L.; Yu, X.F.; Hu, S.P.; Li, R.-P. Effects of different straw return methods on soil properties and yield potential of maize. Sci. Rep. 2024, 14, 28682. [Google Scholar] [CrossRef]
- Li, J.; Yang, X.; Hou, R.; Ma, Y.; Wang, Y.; Ma, Y.; Zhen, W.; Huang, Y.; Fu, X.; Peng, Z.; et al. Effects of nitrogen fertilizer basal-to-top-dressing ratios on maize straw decomposition, soil carbon and nitrogen, and bacterial community structure in different soil textures on the North China Plain. Front. Microbiol. 2025, 16, 1506155. [Google Scholar] [CrossRef]
- Li, J.; Zhao, J.; Liao, X.; Yi, Q.; Zhang, W.; Lin, H.; Liu, K.; Peng, P.; Wang, K. Long-term returning agricultural residues increases soil microbe-nematode network complexity and ecosystem multifunctionality. Geoderma 2023, 430, 116340. [Google Scholar] [CrossRef]
- Cao, Y.; Zhao, F.; Zhang, Z.; Zhu, T.; Xiao, H. Biotic and abiotic nitrogen immobilization in soil incorporated with crop residue. Soil Tillage Res. 2020, 202, 104664. [Google Scholar] [CrossRef]
- Flower, K.C.; Ward, P.R.; Passaris, N.; Cordingley, N. Uneven crop residue distribution influences soil chemical composition and crop yield under long-term no-tillage. Soil Tillage Res. 2022, 223, 105498. [Google Scholar] [CrossRef]
- Wang, M.; Pendall, E.; Fang, C.; Li, B.; Nie, M. A global perspective on agroecosystem nitrogen cycles after returning crop residue. Agric. Ecosyst. Environ. 2018, 266, 49–54. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Tian, Z.; Yang, J.; Pang, J.; Fang, Y.; Liu, E.; Cai, T.; Ren, X.; Jia, Z. Incorporating straw-derived biochars enhances soil nitrogen accumulation and mitigates nitrogen leaching to facilitates crop productivity of mulching farmland in semiarid regions. Land Degrad. Dev. 2024, 35, 4484–4496. [Google Scholar] [CrossRef]
- Fang, H.; Liu, F.; Gu, X.; Chen, P.; Li, Y.; Li, Y. The effect of source–sink on yield and water use of winter wheat under ridge-furrow with film mulching and nitrogen fertilization. Agric. Water Manag. 2022, 267, 107616. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Šimůnek, J.; Shi, H.; Ding, Z.; Peng, Z. Evaluating the effects of biodegradable film mulching on soil water dynamics in a drip-irrigated field. Agric. Water Manag. 2019, 226, 105788. [Google Scholar] [CrossRef]
- Fang, H.; Li, Y.; Gu, X.; Yu, M.; Chen, P.; Li, Y.; Liu, F. Optimizing the impact of film mulching pattern and nitrogen application rate on maize production, gaseous N emissions, and utilization of water and nitrogen in northwest China. Agric. Water Manag. 2022, 261, 107350. [Google Scholar] [CrossRef]
- Chae, H.G.; Song, H.J.; Bhuiyan, M.S.I.; Kim, P.J.; Lee, J.G. Unexpected high suppression of ammonia volatilization loss by plastic film mulching in Korean maize cropping system. Agric. Ecosyst. Environ. 2022, 335, 108022. [Google Scholar] [CrossRef]
- Leng, X.; Li, X.; Chen, N.; Zhang, J.; Guo, Y.; Ding, Z. Evaluating the effects of biodegradable film mulching and topdressing nitrogen on nitrogen dynamic and utilization in the arid cornfield. Agric. Water Manag. 2021, 258, 107166. [Google Scholar] [CrossRef]
- Li, H.; Wang, L.; Fan, D.; Li, S.; Lu, J.; Penn, C.J.; Wang, Q.-W.; Lin, G.; Sardans, J.; Penuelas, J.; et al. Consequences of 33 Years of Plastic Film Mulching and Nitrogen Fertilization on Maize Growth and Soil Quality. Environ. Sci. Technol. 2023, 57, 9174–9183. [Google Scholar] [CrossRef]
- Chen, N.; Li, X.; Shi, H.; Hu, Q.; Zhang, Y.; Leng, X. Effect of Biodegradable Film Mulching on Crop Yield, Soil Microbial and Enzymatic Activities, and Optimal Levels of Irrigation and Nitrogen Fertilizer for the Zea mays Crops in Arid Region. Sci. Total. Environ. 2021, 776, 145970. [Google Scholar] [CrossRef]
- Wang, K.; Wang, C.; Chen, M.; Misselbrook, T.; Kuzyakov, Y.; Soromotin, A.; Dong, Q.; Feng, H.; Jiang, R. Effects of Plastic Film Mulch Biodegradability on Nitrogen in the Plant–Soil System. Sci. Total. Environ. 2022, 833, 155220. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Gong, X.; Peng, Y.; Wang, Z.; Ji, B. Plastic Film Mulching Improved Rhizosphere Microbes and Yield of Rainfed Spring Wheat. Agric. For. Meteorol. 2018, 263, 130–136. [Google Scholar] [CrossRef]
- Zhao, X.-d.; Qin, X.-r.; Li, T.-l.; Cao, H.-b.; Xie, Y.-h. Effects of Planting Patterns Plastic Film Mulching on Soil Temperature, Moisture, Functional Bacteria and Yield of Winter Wheat in the Loess Plateau of China. J. Integr. Agric. 2023, 22, 1560–1573. [Google Scholar] [CrossRef]
- Dou, Y.; Wen, M.; Yang, C.; Zhao, F.; Ren, C.; Zhang, N.; Liang, Y.; Wang, J. Effects of straw and plastic film mulching on microbial functional genes involved in soil nitrogen cycling. Front. Microbiol. 2023, 14, 1205088. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Jiang, B.; Shen, J.; Zhu, X.; Yi, W.; Li, Y.; Wu, J. Contrasting effects of straw and straw-derived biochar applications on soil carbon accumulation and nitrogen use efficiency in double-rice cropping systems. Agric. Ecosyst. Environ. 2021, 311, 107286. [Google Scholar] [CrossRef]
- Khan, Z.; Yang, X.-J.; Fu, Y.; Joseph, S.; Khan, M.N.; Khan, M.A.; Alam, I.; Shen, H. Engineered biochar improves nitrogen use efficiency via stabilizing soil water-stable macroaggregates and enhancing nitrogen transformation. Biochar 2023, 5, 1–37. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, J.; Chen, P.; Li, H.; Li, W.; Liu, J.; Zong, R.; Wang, D.; Liang, Y.; Wang, Z. Biochar improves water and nitrogen use efficiency of cotton under mulched drip irrigation in arid regions. Ind. Crop. Prod. 2024, 222, 113478. [Google Scholar] [CrossRef]
- Jia, X.; Ma, H.; Yan, W.; Shangguan, Z.; Zhong, Y. Effects of co-application of biochar and nitrogen fertilizer on soil profile carbon and nitrogen stocks and their fractions in wheat field. J. Environ. Manag. 2024, 368, 122140. [Google Scholar] [CrossRef]
- Wu, W.; Han, J.; Gu, Y.; Li, T.; Xu, X.; Jiang, Y.; Li, Y.; Sun, J.; Pan, G.; Cheng, K. Impact of biochar amendment on soil hydrological properties and crop water use efficiency: A global meta-analysis and structural equation model. GCB Bioenergy 2022, 14, 657–668. [Google Scholar] [CrossRef]
- Baiamonte, G.; Minacapilli, M.; Crescimanno, G. Effects of Biochar on Irrigation Management and Water Use Efficiency for Three Different Crops in a Desert Sandy Soil. Sustainability 2020, 12, 7678. [Google Scholar] [CrossRef]
- Li, Z.; Wang, B.; Liu, Z.; Zhang, P.; Yang, B.; Jia, Z. Ridge–furrow planting with film mulching and biochar addition can enhance the spring maize yield and water and nitrogen use efficiency by promoting root growth. Field Crops Res. 2023, 303, 109139. [Google Scholar] [CrossRef]
- Ghazouani, H.; Ibrahimi, K.; Amami, R.; Helaoui, S.; Boughattas, I.; Kanzari, S.; Milham, P.; Ansar, S.; Sher, F. Integrative effect of activated biochar to reduce water stress impact and enhance antioxidant capacity in crops. Sci. Total. Environ. 2023, 905, 166950. [Google Scholar] [CrossRef] [PubMed]
- Yan, Q.; Tian, H.; Huang, Y.; Mu, X.; Tang, G.; Ma, H.; Megharaj, M.; Xu, W.; He, W. Recycled wheat straw biochar enhances nutrient-poor soil: Enzymatic kinetics of carbon, nitrogen, and phosphorus cycling. J. Environ. Manag. 2025, 380, 124950. [Google Scholar] [CrossRef]
- Ma, L.; Huo, Q.; Tian, Q.; Xu, Y.; Hao, H.; Min, W.; Hou, Z. Continuous application of biochar increases 15N fertilizer translocation into soil organic nitrogen and crop uptake in drip-irrigated cotton field. J. Soils Sediments 2023, 23, 1204–1216. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y.; Wu, Z.; Yan, X.; Gunina, A.; Kuzyakov, Y.; Xiong, Z. Effects of six-year biochar amendment on soil aggregation, crop growth, and nitrogen and phosphorus use efficiencies in a rice-wheat rotation. J. Clean. Prod. 2020, 242, 118435. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, J.; Wang, M.; Zhang, H.; Yang, N.; Ma, J.; Cai, H. Effects of irrigation and fertilization with biochar on the growth, yield, and water/nitrogen use of maize on the Guanzhong Plain, China. Agric. Water Manag. 2024, 295, 108786. [Google Scholar] [CrossRef]
- Li, S.; Shangguan, Z. Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions. J. Soils Sediments 2018, 18, 3235–3243. [Google Scholar] [CrossRef]
- Gao, Y.; Shao, G.; Lu, J.; Zhang, K.; Wu, S.; Wang, Z. Effects of biochar application on crop water use efficiency depend on experimental conditions: A meta-analysis. Field Crop. Res. 2020, 249, 107763. [Google Scholar] [CrossRef]
- Bai, J.; Song, J.; Chen, D.; Zhang, Z.; Yu, Q.; Ren, G.; Han, X.; Wang, X.; Ren, C.; Yang, G. Biochar combined with N fertilization and straw return in wheat-maize agroecosystem: Key practices to enhance crop yields and minimize carbon and nitrogen footprints. Agric. Ecosyst. Environ. 2023, 347, 113474. [Google Scholar] [CrossRef]
- Qu, Z.; Chen, Q.; Yin, S.; Feng, H.; Liu, Y.; Li, C. Effects of drip irrigation coupled with controlled release potassium fertilizer on maize growth and soil properties. Agric. Water Manag. 2024, 301, 108948. [Google Scholar] [CrossRef]
- Wang, H.; Li, G.; Huang, W.; Li, Z.; Wang, X.; Gao, Y. Compensation of cotton yield by nitrogen fertilizer in non-mulched fields with deficit drip irrigation. Agric. Water Manag. 2024, 298, 108850. [Google Scholar] [CrossRef]
- Ji, Y.; Ma, J.; Ma, L.; Xu, W.; Ji, Y.; Wang, L.; Feng, Y.; Feng, Z. Combination of water-saving irrigation and controlled-release fertilizer application reduced gaseous nitrogen loss in single-crop paddy soil. J. Environ. Manag. 2025, 377, 124695. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, C.; Xiao, Y.; Lili, Z.; Muhammad, T.; Li, Y. Application of chelated fertilizers to mitigate organic-inorganic fouling in brackish water drip irrigation systems. Agric. Water Manag. 2023, 285, 108355. [Google Scholar] [CrossRef]
- Ren, T.; Fan, P.; Zuo, W.; Liao, Z.; Wang, F.; Wei, Y.; Cai, X.; Liu, G. Biochar-based fertilizer under drip irrigation: More conducive to improving soil carbon pool and promoting nitrogen utilization. Ecol. Indic. 2023, 154, 110583. [Google Scholar] [CrossRef]
- Marcińczyk, M.; Oleszczuk, P. Biochar and engineered biochar as slow- and controlled-release fertilizers. J. Clean. Prod. 2022, 339, 130685. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, Y.; Yang, L.; Yang, Y.; Wang, L.; Wei, Z.; Song, C. Identifying the specific pathways to improve nitrogen fixation of different straw biochar during chicken manure composting based on its impact on the microbial community. Waste Manag. 2023, 170, 8–16. [Google Scholar] [CrossRef]
- Mi, J.; Hou, L.; Hou, Y.; Song, C.; Pan, L.; Wei, Z. Enhancing compost quality: Biochar and zeolite’s role in nitrogen transformation and retention. Sci. Total. Environ. 2025, 963, 178490. [Google Scholar] [CrossRef]
- Li, Y.; Pan, F.; Yao, H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J. Soils Sediments 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
- Yong, T.-W.; Chen, P.; Dong, Q.; Du, Q.; Yang, F.; Wang, X.-C.; Liu, W.-G.; Yang, W.-Y. Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system. J. Integr. Agric. 2018, 17, 664–676. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Yu, Z.; Zhang, Y.; Zhang, Z. Reducing nitrogen application under water saving irrigation reduces greenhouse gas emissions by regulating the population of functional microorganisms, compatible with improving the wheat yield in the North China Plain. Plant Soil 2025, 514, 1007–1025. [Google Scholar] [CrossRef]
- Ye, X.H.; Han, B.; Li, W.; Zhang, X.C.; Zhang, Y.L.; Lin, X.G.; Zou, H.T. Effects of different irrigation methods on nitrous oxide emissions and ammonia oxidizers microorganisms in greenhouse tomato fields. Agric. Water Manag. 2018, 203, 115–123. [Google Scholar] [CrossRef]





| Irrigation Method | Trend of Water Use Efficiency (WUE) | Trend of Nitrogen Use Efficiency (NUE) | Suitable Soil/Climate Conditions | Leaching Risk | Cost |
|---|---|---|---|---|---|
| Surface Irrigation | Low, prone to evaporation and runoff | Low, nitrogen easily lost with water | Clay to loam soils; regions with relatively sufficient rainfall | High | Low |
| Sprinkler Irrigation | Medium, better water distribution | Medium, nitrogen in topsoil may leach | Sandy loam to loam; warm dry or semi-arid regions | Medium | Medium |
| Subsurface Irrigation | High, water supplied directly to root zone, reduced evaporation | High, nitrogen uptake by roots is efficient | Sandy to loam soils; arid or water-scarce regions | Low | High |
| Drip Irrigation/Micro-irrigation | High, precise water control | High, nitrogen can be supplied locally with water | Suitable for various soils; preferred in arid and semi-arid areas | Low | Medium-High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Wang, S.; Wang, A.; Liu, T.; Li, K.; Zhang, M.; Yu, Y.; Cao, J. Water and Nitrogen Transport in Wheat and Maize: Impacts of Irrigation, Fertilization, and Soil Management. Agriculture 2025, 15, 2442. https://doi.org/10.3390/agriculture15232442
Zhao B, Wang S, Wang A, Liu T, Li K, Zhang M, Yu Y, Cao J. Water and Nitrogen Transport in Wheat and Maize: Impacts of Irrigation, Fertilization, and Soil Management. Agriculture. 2025; 15(23):2442. https://doi.org/10.3390/agriculture15232442
Chicago/Turabian StyleZhao, Bo, Shunsheng Wang, Aili Wang, Tengfei Liu, Kaixuan Li, Meng Zhang, Yan Yu, and Jiahao Cao. 2025. "Water and Nitrogen Transport in Wheat and Maize: Impacts of Irrigation, Fertilization, and Soil Management" Agriculture 15, no. 23: 2442. https://doi.org/10.3390/agriculture15232442
APA StyleZhao, B., Wang, S., Wang, A., Liu, T., Li, K., Zhang, M., Yu, Y., & Cao, J. (2025). Water and Nitrogen Transport in Wheat and Maize: Impacts of Irrigation, Fertilization, and Soil Management. Agriculture, 15(23), 2442. https://doi.org/10.3390/agriculture15232442
