Enhancing Peanut Crop Quality Under Arsenic Stress Through Agronomic Amendments
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation and Evaluation of Fungal and Bacterial Strains
2.2. Fungal-Bacterial Compatibility Tests
2.3. Arsenic Tolerance Assay
2.4. Setup of Peanut Growth Assays and Physiological Measurements Under As Exposure
2.4.1. Preparation of Substrates
2.4.2. Plant Bioassays and Treatment with As
2.4.3. Growth and Photosynthesis
2.4.4. Osmotic Potential
2.4.5. Peanut As Concentration and Translocation
2.4.6. Determination of ROS Production
2.4.7. Oxidative Stress Marker
2.4.8. Antioxidants Enzymatic Assay
2.4.9. Gene Expression Analysis Using qRT-PCR
2.4.10. Statistical Analysis
3. Results
3.1. Bacterial Coexistence and Arsenic Tolerance on Selected Microorganisms
3.2. Response of Peanut Growing on Different Amendments and Exposed to As
3.2.1. Growth and Nodulation
3.2.2. Photosynthetic Efficiency and Photosynthetic Pigment Levels
3.2.3. Impact of Osmotic Potential on Peanut Exposed to As Growing Under Different Amendments
3.2.4. Arsenic and Translocation Factor of Peanut Plants Growing Under Different Amendments
3.2.5. Markers of ROS Production and Oxidative Damage
Activity of NAPH Oxidase in Peanut Roots
In Situ Histochemical Detection of Superoxide Anion (O2˙−) in Peanut Leaves
In Situ Histochemical Detection (Leaves) and Quantification (Roots) of Hydrogen Peroxide (H2O2) in Peanut
Oxidative Damage of Peanut Roots
3.2.6. Specific Activity of Antioxidant Enzymes
3.2.7. Differential Expressions of Genes Involved in Arsenic Homeostasis Across Growth Conditions
4. Discussion
4.1. Effect of As on the Growth of Pleurotus djamor and Pseudomonas fluorescens 1.2
4.2. Role of Amendments in Peanut Growth Under As
4.3. Photosynthetic Pigments and Efficiency
4.4. Osmotic Status
4.5. Arsenic Accumulation and Translocation
4.6. ROS Production and Oxidative Damage
4.7. Antioxidant Enzyme Responses
4.8. Gene Expression Related to As Homeostasis
4.9. Framing the Role of E vs. SMS-Based Amendments
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| APX | Ascorbate peroxidase |
| As | Arsenic |
| BNF | Biological nitrogen fixation |
| CAT | Catalase |
| CFU | Colony-forming units |
| DHAR | Dehydroascorbate reductase |
| EDTA | Ethylenediaminetetraacetic acid |
| GPX/PRX | Glutathione peroxidase or peroxiredoxin |
| GR | Glutathione reductase |
| GST | Glutathione S-transferase |
| KI | Potassium iodide |
| MDHAR | Monodehydroascorbate reductase |
| NBT | Nitroblue tetrazolium |
| PDA | Potato dextrose agar |
| PGPB | Plant growth-promoting bacteria |
| PVP | Polyvinylpyrrolidone |
| ROS | Reactive oxygen species |
| SMS | Spent mushroom substrate |
| SOD | Superoxide dismutase |
| TBARs | Thiobarbituric-reactive substances |
| TCA | Trichloroacetic acid |
| TY | Tryptone-yeast extract |
References
- Nocelli, N.; Bogino, P.C.; Banchio, E.; Giordano, W. Roles of Extracellular Polysaccharides and Biofilm Formation in Heavy Metal Resistance of Rhizobia. Materials 2016, 9, 418. [Google Scholar] [CrossRef]
- Anguita, J.M.; Rojas, C.; Pastén, P.A.; Vargas, I.T. A New Aerobic Chemolithoautotrophic Arsenic Oxidizing Microorganism Isolated from a High Andean Watershed. Biodegradation 2018, 29, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, M.K.; Yadav, P.; Shukla, A.; Srivastava, S. Utilizing the Potential of Microorganisms for Managing Arsenic Contamination: A Feasible and Sustainable Approach. Front. Environ. Sci. 2018, 6, 24. [Google Scholar] [CrossRef]
- Abbas, G.; Murtaza, B.; Bibi, I.; Shahid, M.; Niazi, N.K.; Khan, M.I.; Amjad, M.; Hussain, M. Natasha Arsenic Uptake, Toxicity, Detoxification, and Speciation in Plants: Physiological, Biochemical, and Molecular Aspects. Int. J. Environ. Res. Public Health 2018, 15, 59. [Google Scholar] [CrossRef]
- Alka, S.; Shahir, S.; Ibrahim, N.; Chai, T.-T.; Mohd Bahari, Z.; Abd Manan, F. The Role of Plant Growth Promoting Bacteria on Arsenic Removal: A Review of Existing Perspectives. Environ. Technol. Innov. 2020, 17, 100602. [Google Scholar] [CrossRef]
- Bécher Quinodóz, F.; Maldonado, L.; Blarasin, M.; Matteoda, E.; Lutri, V.; Cabrera, A.; Albo, J.G.; Giacobone, D. The Development of a Conceptual Model for Arsenic Mobilization in a Fluvio-Eolian Aquifer Using Geochemical and Statistical Methods. Environ. Earth Sci. 2019, 78, 206. [Google Scholar] [CrossRef]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Farfán Torres, E.M.; Taylor, S.; Frangie, S.; Herkovits, J.; et al. Arsenic in Argentina: Occurrence, Human Health, Legislation and Determination. Sci. Total Environ. 2019, 676, 756–766. [Google Scholar] [CrossRef]
- Gunes, A.; Inal, A.; Bagci, E.G.; Kadioglu, Y.K. Combined Effect of Arsenic and Phosphorus on Mineral Element Concentrations of Sunflower. Commun. Soil Sci. Plant Anal. 2010, 41, 361–372. [Google Scholar] [CrossRef]
- Malik, J.A.; Goel, S.; Sandhir, R.; Nayyar, H. Uptake and Distribution of Arsenic in Chickpea: Effects on Seed Yield and Seed Composition. Commun. Soil Sci. Plant Anal. 2011, 42, 1728–1738. [Google Scholar] [CrossRef]
- Finnegan, P.; Chen, W. Arsenic Toxicity: The Effects on Plant Metabolism. Front. Physiol. 2012, 3, 182. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Rafiq, M.; Bakhat, H.F.; Imran, M.; Abbas, T.; Bibi, I.; Dumat, C. Arsenic Behaviour in Soil-Plant System: Biogeochemical Reactions and Chemical Speciation Influences. In Enhancing Cleanup of Environmental Pollutants; Springer Nature: Berlin/Heidelberg, Germany, 2017; pp. 97–140. [Google Scholar]
- Rafiq, M.; Shahid, M.; Shamshad, S.; Khalid, S.; Niazi, N.K.; Abbas, G.; Saeed, M.F.; Ali, M.; Murtaza, B. A Comparative Study to Evaluate Efficiency of EDTA and Calcium in Alleviating Arsenic Toxicity to Germinating and Young Vicia faba L. Seedlings. J. Soils Sediments 2018, 18, 2271–2281. [Google Scholar] [CrossRef]
- Anjum, N.A.; Ahmad, I.; Pacheco, M.; Duarte, A.C.; Pereira, E.; Umar, S.; Ahmad, A.; Iqbal, M. Modulation of Glutathione, Its Redox Couple and Related Enzymes in Plants Under Abiotic Stresses. In Oxidative Stress in Plants: Causes, Consequences and Tolerance; Anjum, N.A., Umar, S., Ahmad, A., Eds.; IK International Publishing House: New Delhi, India, 2011; pp. 467–498. [Google Scholar]
- Pourrut, B.; Shahid, M.; Douay, F.; Dumat, C.; Pinelli, E. Molecular Mechanisms Involved in Lead Uptake, Toxicity and Detoxification in Higher Plants. In Heavy Metal Stress in Plants; Gupta, D.K., Corpas, F.J., Palma, J.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 121–147. ISBN 978-3-642-38469-1. [Google Scholar]
- Rahman, A.; Mostofa, M.G.; Alam, M.M.; Nahar, K.; Hasanuzzaman, M.; Fujita, M. Calcium Mitigates Arsenic Toxicity in Rice Seedlings by Reducing Arsenic Uptake and Modulating the Antioxidant Defense and Glyoxalase Systems and Stress Markers. Biomed Res. Int. 2015, 2015, 340812. [Google Scholar] [CrossRef]
- Shahid, M.; Rafiq, M.; Niazi, N.K.; Dumat, C.; Shamshad, S.; Khalid, S.; Bibi, I. Arsenic Accumulation and Physiological Attributes of Spinach in the Presence of Amendments: An Implication to Reduce Health Risk. Environ. Sci. Pollut. Res. Int. 2017, 24, 16097–16106. [Google Scholar] [CrossRef]
- Peralta, J.M.; Travaglia, C.N.; Gil, R.A.; Furlan, A.; Castro, S.; Bianucci, E.C. An Effective Rhizoinoculation Restraints Arsenic Translocation in Peanut and Maize Plants Exposed to a Realistic Groundwater Metalloid Dose. In Environmental Arsenic in a Changing World; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Peralta, J.M.; Travaglia, C.N.; Romero-Puertas, M.C.; Furlan, A.; Castro, S.; Bianucci, E. Unraveling the Impact of Arsenic on the Redox Response of Peanut Plants Inoculated with Two Different Bradyrhizobium sp. Strains. Chemosphere 2020, 259, 127410. [Google Scholar] [CrossRef] [PubMed]
- Peralta, J.M.; Bianucci, E.; Romero-Puertas, M.C.; Furlan, A.; Castro, S.; Travaglia, C. Targeting Redox Metabolism of the Maize-Azospirillum brasilense Interaction Exposed to Arsenic-Affected Groundwater. Physiol. Plant 2021, 173, 1189–1206. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, J.A.; Hasanuzzaman, M.; Nahar, K.; Bhuyan, M.H.M.B.; Fujita, M. Insights into Citric Acid-Induced Cadmium Tolerance and Phytoremediation in Brassica juncea L.: Coordinated Functions of Metal Chelation, Antioxidant Defense and Glyoxalase Systems. Ecotoxicol. Environ. Saf. 2018, 147, 990–1001. [Google Scholar] [CrossRef] [PubMed]
- Gratão, P.L.; Alves, L.R.; Lima, L.W. Heavy Metal Toxicity and Plant Productivity: Role of Metal Scavengers. In Plant-Metal Interactions; Srivastava, S., Srivastava, A.K., Suprasanna, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 49–60. ISBN 978-3-030-20732-8. [Google Scholar]
- Gill, S.S.; Tuteja, N. Reactive Oxygen Species and Antioxidant Machinery in Abiotic Stress Tolerance in Crop Plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef]
- Gusman, G.S.; Oliveira, J.A.; Farnese, F.S.; Cambraia, J. Mineral Nutrition and Enzymatic Adaptation Induced by Arsenate and Arsenite Exposure in Lettuce Plants. Plant Physiol. Biochem. 2013, 71, 307–314. [Google Scholar] [CrossRef]
- Rao, M.J.; Duan, M.; Zhou, C.; Jiao, J.; Cheng, P.; Yang, L.; Wei, W.; Shen, Q.; Ji, P.; Yang, Y.; et al. Antioxidant Defense System in Plants: Reactive Oxygen Species Production, Signaling, and Scavenging During Abiotic Stress-Induced Oxidative Damage. Horticulturae 2025, 11, 477. [Google Scholar] [CrossRef]
- Talukdar, D. Arsenic-Induced Oxidative Stress in the Common Bean Legume, Phaseolus vulgaris L. Seedlings and Its Amelioration by Exogenous Nitric Oxide. Physiol. Mol. Biol. Plants 2013, 19, 69–79. [Google Scholar] [CrossRef]
- Mishra, B.; Chand, S.; Singh Sangwan, N. ROS Management Is Mediated by Ascorbate-Glutathione-α-Tocopherol Triad in Co-Ordination with Secondary Metabolic Pathway under Cadmium Stress in Withania somnifera. Plant Physiol. Biochem. 2019, 139, 620–629. [Google Scholar] [CrossRef]
- Kang, B.G.; Kim, W.T.; Yun, H.S.; Chang, S.C. Use of Plant Growth-Promoting Rhizobacteria to Control Stress Responses of Plant Roots. Plant Biotechnol. Rep. 2010, 4, 179–183. [Google Scholar] [CrossRef]
- Majeed, A.; Muhammad, Z.; Ahmad, H. Plant Growth Promoting Bacteria: Role in Soil Improvement, Abiotic and Biotic Stress Management of Crops. Plant Cell Rep. 2018, 37, 1599–1609. [Google Scholar] [CrossRef]
- Teiba, I.I.; El-Bilawy, E.H.; Elsheery, N.I.; Rastogi, A. Microbial Allies in Agriculture: Harnessing Plant Growth-Promoting Microorganisms as Guardians against Biotic and Abiotic Stresses. Horticulturae 2024, 10, 12. [Google Scholar] [CrossRef]
- Wahab, A.; Batool, F.; Abdi, G.; Muhammad, M.; Ullah, S.; Zaman, W. Role of Plant Growth-Promoting Rhizobacteria in Sustainable Agriculture: Addressing Environmental and Biological Challenges. J. Plant Physiol. 2025, 307, 154455. [Google Scholar] [CrossRef] [PubMed]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef]
- Alzate Zuluaga, M.Y.; Fattorini, R.; Cesco, S.; Pii, Y. Plant-Microbe Interactions in the Rhizosphere for Smarter and More Sustainable Crop Fertilization: The Case of PGPR-Based Biofertilizers. Front. Microbiol. 2024, 15, 1440978. [Google Scholar] [CrossRef] [PubMed]
- Renganathan, P.; Astorga-Eló, M.; Gaysina, L.A.; Puente, E.O.R.; Sainz-Hernández, J.C. Nitrogen Fixation by Diazotrophs: A Sustainable Alternative to Synthetic Fertilizers in Hydroponic Cultivation. Sustainability 2025, 17, 5922. [Google Scholar] [CrossRef]
- De Zutter, N.; Ameye, M.; Bekaert, B.; Verwaeren, J.; De Gelder, L.; Audenaert, K. Uncovering New Insights and Misconceptions on the Effectiveness of Phosphate Solubilizing Rhizobacteria in Plants: A Meta-Analysis. Front. Plant Sci. 2022, 13, 858804. [Google Scholar] [CrossRef]
- Fabra, A.; Castro, S.; Taurian, T.; Angelini, J.; Ibañez, F.; Dardanelli, M.; Tonelli, M.; Bianucci, E.; Valetti, L. Interaction among Arachis hypogaea L. (Peanut) and Beneficial Soil Microorganisms: How Much Is It Known? Crit. Rev. Microbiol. 2010, 36, 179–194. [Google Scholar] [CrossRef]
- Ground-Nuts: Seed, Not Roasted or Otherwise Cooked, Whether or Not Shelled or Broken in Italy Trade. Available online: https://oec.world/en/profile/bilateral-product/ground-nuts-seed-not-roasted-or-otherwise-cooked-whether-or-not-shelled-or-broken/reporter/ita (accessed on 30 September 2025).
- Stalker, H.T. Peanut (Arachis hypogaea L.). Field Crops Res. 1997, 53, 205–217. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Babalola, O.O. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents. Int. J. Environ. Res. Public Health 2017, 14, 94. [Google Scholar] [CrossRef]
- Mishra, J.; Singh, R.; Arora, N.K. Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms. Front. Microbiol. 2017, 8, 1706. [Google Scholar] [CrossRef]
- Peralta, J.M.; Travaglia, C.; Romero-Puertas, M.C.; Molina-Moya, E.; Furlan, A.; Castro, S.; Bianucci, E.; Peralta, J.M.; Travaglia, C.; Romero-Puertas, M.C.; et al. Decoding the Antioxidant Mechanisms Underlying Arsenic Stress in Roots of Inoculated Peanut Plants. Plant Growth Regul. 2022, 97, 77–90. [Google Scholar] [CrossRef]
- Bianucci, E.; Godoy, A.; Furlan, A.; Peralta, J.M.; Hernández, L.E.; Carpena-Ruiz, R.O.; Castro, S. Arsenic Toxicity in Soybean Alleviated by a Symbiotic Species of Bradyrhizobium. Symbiosis 2018, 74, 167–176. [Google Scholar] [CrossRef]
- Chen, M.; Zheng, X.; Chen, L.; Li, X. Cadmium-Resistant Oyster Mushrooms from North China for Mycoremediation. Pedosphere 2018, 28, 848–855. [Google Scholar] [CrossRef]
- Chaurasia, P.K.; Nagraj; Sharma, N.; Kumari, S.; Yadav, M.; Singh, S.; Mani, A.; Yadava, S.; Bharati, S.L. Fungal Assisted Bio-Treatment of Environmental Pollutants with Comprehensive Emphasis on Noxious Heavy Metals: Recent Updates. Biotechnol. Bioeng. 2023, 120, 57–81. [Google Scholar] [CrossRef]
- Cheng, X.; ChiQuan, H.; Shi, Z.; Chen, X.; Oh, K.; Xia, L.; Liu, X.; Xiong, P.; Muo, Q. Effect of Spent Mushroom Substrate on Strengthening the Phytoremediation Potential of Ricinus communis to Cd- and Zn-Polluted Soil. Int. J. Phytoremediat. 2018, 20, 1389–1399. [Google Scholar] [CrossRef]
- Kulshreshtha, S. Removal of Pollutants Using Spent Mushrooms Substrates. Environ. Chem. Lett. 2019, 17, 833–847. [Google Scholar] [CrossRef]
- Jindo, K.; Sánchez-Monedero, M.A.; Mastrolonardo, G.; Audette, Y.; Higashikawa, F.S.; Silva, C.A.; Akashi, K.; Mondini, C. Role of Biochar in Promoting Circular Economy in the Agriculture Sector. Part 2: A Review of the Biochar Roles in Growing Media, Composting and as Soil Amendment. Chem. Biol. Technol. Agric. 2020, 7, 16. [Google Scholar] [CrossRef]
- Kinigopoulou, V.; Hatzigiannakis, E.; Guitonas, A.; Oikonomou, E.K.; Samaras, P. Utilization of Biobed for the Efficient Treatment of Olive Oil Mill Wastewater. Desalination Water Treat. 2021, 223, 167–179. [Google Scholar] [CrossRef]
- Aiduang, W.; Jatuwong, K.; Kiatsiriroat, T.; Kamopas, W.; Tiyayon, P.; Jawana, R.; Xayyavong, O.; Lumyong, S. Spent Mushroom Substrate-Derived Biochar and Its Applications in Modern Agricultural Systems: An Extensive Overview. Life 2025, 15, 317. [Google Scholar] [CrossRef] [PubMed]
- Kim Oanh, N.T.; Permadi, D.A.; Hopke, P.K.; Smith, K.R.; Dong, N.P.; Dang, A.N. Annual Emissions of Air Toxics Emitted from Crop Residue Open Burning in Southeast Asia over the Period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [Google Scholar] [CrossRef]
- Medina, E.; Paredes, C.; Bustamante, M.A.; Moral, R.; Moreno-Caselles, J. Relationships between Soil Physico-Chemical, Chemical and Biological Properties in a Soil Amended with Spent Mushroom Substrate. Geoderma 2012, 173–174, 152–161. [Google Scholar] [CrossRef]
- Ngan, N.M.; Riddech, N. Use of Spent Mushroom Substrate as an Inoculant Carrier and an Organic Fertilizer and Their Impacts on Roselle Growth (Hibiscus sabdariffa L.) and Soil Quality. Waste Biomass Valor. 2021, 12, 3801–3811. [Google Scholar] [CrossRef]
- Leong, Y.K.; Ma, T.-W.; Chang, J.-S.; Yang, F.-C. Recent Advances and Future Directions on the Valorization of Spent Mushroom Substrate (SMS): A Review. Bioresour. Technol. 2022, 344, 126157. [Google Scholar] [CrossRef]
- Raman, J.; Jang, K.-Y.; Oh, Y.-L.; Oh, M.; Im, J.-H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and Nutritional Value of Prominent Pleurotus spp.: An Overview. Mycobiology 2020, 49, 1–14. [Google Scholar] [CrossRef]
- Corral-Bobadilla, M.; González-Marcos, A.; Vergara-González, E.P.; Alba-Elías, F. Bioremediation of Waste Water to Remove Heavy Metals Using the Spent Mushroom Substrate of Agaricus bisporus. Water 2019, 11, 454. [Google Scholar] [CrossRef]
- Mohamadhasani, F.; Rahimi, M. Growth Response and Mycoremediation of Heavy Metals by Fungus Pleurotus spp. Sci. Rep. 2022, 12, 19947. [Google Scholar] [CrossRef]
- Llimós, M.; Bistué, M.; Marcelino, J.; Poschenrieder, C.; Martos, S. A Native Zn-Solubilising Bacterium from Mine Soil Promotes Plant Growth and Facilitates Phytoremediation. J. Soils Sediments 2021, 21, 2301–2314. [Google Scholar] [CrossRef]
- Taurian, T.; Ibáñez, F.; Angelini, J.; Tonelli, M.L.; Fabra, A. Endophytic Bacteria and Their Role in Legumes Growth Promotion. In Bacteria in Agrobiology: Plant Probiotics; Maheshwari, D.K., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 141–168. ISBN 978-3-642-27515-9. [Google Scholar]
- Anzuay, M.S.; Prenollio, A.; Ludueña, L.M.; Morla, F.D.; Cerliani, C.; Lucero, C.; Angelini, J.G.; Taurian, T. Enterobacter sp. J49: A Native Plant Growth-Promoting Bacteria as Alternative to the Application of Chemical Fertilizers on Peanut and Maize Crops. Curr. Microbiol. 2023, 80, 85. [Google Scholar] [CrossRef]
- Somasegaran, P.; Hoben, H.J. Quantifying the Growth of Rhizobia. In Handbook for Rhizobia: Methods in Legume-Rhizobium Technology; Somasegaran, P., Hoben, H.J., Eds.; Springer: New York, NY, USA, 1994; pp. 47–57. ISBN 978-1-4613-8375-8. [Google Scholar]
- Lechner, B.E.; Albertó, E. Search for New Naturally Occurring Strains of Pleurotus to Improve Yields. Pleurotus albidus as a Novel Proposed Species for Mushroom Production. Rev. Iberoam. Micol. 2011, 28, 148–154. [Google Scholar] [CrossRef]
- Vincent, J.M. A Manual for the Practical Study of Root-Nodule Bacteria; International Biological Programme; Blackwell Scientific: Oxford, UK, 1970; ISBN 978-0-632-06410-6. [Google Scholar]
- Hoagland, D.R. The Water-Culture Method for Growing Plants Without Soil; Arnon, D.I., Ed.; College of Agriculture, University of California: Berkeley, CA, USA, 1950. [Google Scholar]
- Boote, K.J. Growth Stages of Peanut (Arachis hypogaea L.). Peanut Sci. 1982, 9, 35–40. [Google Scholar] [CrossRef]
- Vernon, L.P. Spectrophotometric Determination of Chlorophylls and Pheophytins in Plant Extracts. Anal. Chem. 1960, 32, 1144–1150. [Google Scholar] [CrossRef]
- Mackinney, G. Absorption of Light by Chlorophyll Solutions. J. Biol. Chem. 1941, 140, 315–322. [Google Scholar] [CrossRef]
- Ortega-Villasante, C.; Rellán-Álvarez, R.; Del Campo, F.F.; Carpena-Ruiz, R.O.; Hernández, L.E. Cellular Damage Induced by Cadmium and Mercury in Medicago sativa. J. Exp. Bot. 2005, 56, 2239–2251. [Google Scholar] [CrossRef]
- Sobrino-Plata, J.; Ortega-Villasante, C.; Laura Flores-Cáceres, M.; Escobar, C.; Del Campo, F.F.; Hernández, L.E. Differential Alterations of Antioxidant Defenses as Bioindicators of Mercury and Cadmium Toxicity in Alfalfa. Chemosphere 2009, 77, 946–954. [Google Scholar] [CrossRef]
- Singh, R.P.; Agrawal, M. Effects of Sewage Sludge Amendment on Heavy Metal Accumulation and Consequent Responses of Beta vulgaris Plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef]
- Sagi, M.; Fluhr, R. Superoxide Production by Plant Homologues of the Gp91(Phox) NADPH Oxidase. Modulation of Activity by Calcium and by Tobacco Mosaic Virus Infection. Plant Physiol. 2001, 126, 1281–1290. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Frahry, G.; Schopfer, P. NADH-Stimulated, Cyanide-Resistant Superoxide Production in Maize Coleoptiles Analyzed with a Tetrazolium-Based Assay. Planta 2001, 212, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Alexieva, V.; Sergiev, I.; Mapelli, S.; Karanov, E. The Effect of Drought and Ultraviolet Radiation on Growth and Stress Markers in Pea and Wheat. Plant Cell Environ. 2001, 24, 1337–1344. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in Isolated Chloroplasts I. Kinetics and Stoichiometry of Fatty Acid Peroxidation. Arch. Biochem. Biophys. 2022, 726, 109248. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, C.O.; Fridovich, I. Isozymes of Superoxide Dismutase from Wheat Germ. Biochim. Biophys. Acta (BBA)—Protein Struct. 1973, 317, 50–64. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in Vitro. Methods Enzymol. 1984, 105, 121–126. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. Infostat, Versión Beta. InfoStat Versión 2020. Centro de Transferencia InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. Available online: http://www.infostat.com.ar (accessed on 6 October 2025).
- Rodriguez, N.J.; Peralta, J.M.; Furlan, A.L.; Ludueña, L.; Anzuay, M.S.; Taurian, T.; Castro, S.M.; Bianucci, E.C. Libro de Resúmenes de Las XXVII Jornadas Científicas Sociedad de Biología de Córdoba-CONICET. Available online: https://www.sbcor.org.ar/_files/ugd/fa77a0_f47c1afbd42b41fb8b915f61e48c0132.pdf (accessed on 3 October 2025).
- Firincă, C.; Zamfir, L.-G.; Constantin, M.; Răut, I.; Capră, L.; Popa, D.; Jinga, M.-L.; Baroi, A.M.; Fierăscu, R.C.; Corneli, N.O.; et al. Microbial Removal of Heavy Metals from Contaminated Environments Using Metal-Resistant Indigenous Strains. J. Xenobiotics 2024, 14, 51–78. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Xie, L. Pleurotus pulmonarius Strain: Arsenic(III)/Cadmium(II) Accumulation, Tolerance, and Simulation Application in Environmental Remediation. Int. J. Environ. Res. Public Health 2023, 20, 5056. [Google Scholar] [CrossRef]
- Pramparo, R.d.P.; Vezza, M.E.; Wevar Oller, A.L.; Talano, M.A.; Agostini, E. Assessing the Impact of Arsenic on Symbiotic and Free-Living PGPB: Plant Growth Promoting Traits, Bacterial Compatibility and Adhesion on Soybean Seed. World J. Microbiol. Biotechnol. 2024, 41, 20. [Google Scholar] [CrossRef]
- Singh, G.; Singh, N.; Marwaha, T.S. Crop Genotype and a Novel Symbiotic Fungus Influences the Root Endophytic Colonization Potential of Plant Growth Promoting Rhizobacteria. Physiol. Mol. Biol. Plants 2009, 15, 87–92. [Google Scholar] [CrossRef]
- Stoeva, N.; Bineva, T. Oxidative Changes and Photosynthesis in Oat Plants Grown in AS-Contaminated Soil. Bulg. J. Plant Physiol. 2003, 29, 87–95. [Google Scholar]
- Lin, M.-C.; Lin, H.-Y.; Cheng, H.-H.; Chen, Y.-C.; Liao, C.-M.; Shao, K.-T. Risk Assessment of Arsenic Exposure from Consumption of Cultured Milkfish, Chanos chanos (Forsskål), from the Arsenic-Contaminated Area in Southwestern Taiwan. Bull. Environ. Contam. Toxicol. 2005, 75, 637–644. [Google Scholar] [CrossRef]
- Bianucci, E.; Furlan, A.; Castro, S. Importance of Glutathione in the Legume-Rhizobia Symbiosis. In Glutathione in Plant Growth, Development, and Stress Tolerance; Hossain, M.A., Mostofa, M.G., Diaz-Vivancos, P., Burritt, D.J., Fujita, M., Tran, L.-S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 373–396. ISBN 978-3-319-66682-2. [Google Scholar]
- Bianucci, E.; Furlan, A.; Tordable, M.D.C.; Hernández, L.E.; Carpena-Ruiz, R.O.; Castro, S. Antioxidant Responses of Peanut Roots Exposed to Realistic Groundwater Doses of Arsenate: Identification of Glutathione S-Transferase as a Suitable Biomarker for Metalloid Toxicity. Chemosphere 2017, 181, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Bianucci, E.; Peralta, J.M.; Furlan, A.; Hernández, L.E.; Castro, S. Arsenic in Wheat, Maize, and Other Crops. In Arsenic in Drinking Water and Food; Srivastava, S., Ed.; Springer: Singapore, 2019; pp. 279–306. ISBN 978-981-13-8587-2. [Google Scholar]
- Glick, B.R. Using Soil Bacteria to Facilitate Phytoremediation. Biotechnol. Adv. 2010, 28, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Olanrewaju, O.S.; Ayangbenro, A.S.; Glick, B.R.; Babalola, O.O. Plant Health: Feedback Effect of Root Exudates-Rhizobiome Interactions. Appl. Microbiol. Biotechnol. 2019, 103, 1155–1166. [Google Scholar] [CrossRef] [PubMed]
- Pajuelo, E.; Rodríguez-Llorente, I.D.; Lafuente, A.; Caviedes, M.Á. Legume–Rhizobium Symbioses as a Tool for Bioremediation of Heavy Metal Polluted Soils. In Biomanagement of Metal-Contaminated Soils; Khan, M.S., Zaidi, A., Goel, R., Musarrat, J., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 95–123. ISBN 978-94-007-1914-9. [Google Scholar]
- Glick, B.R. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica 2012, 2012, 963401. [Google Scholar] [CrossRef]
- Lafuente, A.; Pérez-Palacios, P.; Doukkali, B.; Molina-Sánchez, M.D.; Jiménez-Zurdo, J.I.; Caviedes, M.A.; Rodríguez-Llorente, I.D.; Pajuelo, E. Unraveling the Effect of Arsenic on the Model Medicago–Ensifer Interaction: A Transcriptomic Meta-Analysis. New Phytol. 2015, 205, 255–272. [Google Scholar] [CrossRef]
- Pajuelo, E.; Rodríguez-Llorente, I.D.; Dary, M.; Palomares, A.J. Toxic Effects of Arsenic on Sinorhizobium–Medicago sativa Symbiotic Interaction. Environ. Pollut. 2008, 154, 203–211. [Google Scholar] [CrossRef]
- Farnese, F.S.; Oliveira, J.A.; Lima, F.S.; Leão, G.A.; Gusman, G.S.; Silva, L.C. Evaluation of the Potential of Pistia stratiotes L. (Water Lettuce) for Bioindication and Phytoremediation of Aquatic Environments Contaminated with Arsenic. Braz. J. Biol. 2014, 74, S108–S112. [Google Scholar] [CrossRef]
- Anjum, S.A.; Tanveer, M.; Hussain, S.; Ashraf, U.; Khan, I.; Wang, L. Alteration in Growth, Leaf Gas Exchange, and Photosynthetic Pigments of Maize Plants Under Combined Cadmium and Arsenic Stress. Water Air Soil Pollut. 2017, 228, 13. [Google Scholar] [CrossRef]
- Päivöke, A.E.A.; Simola, L.K. Arsenate Toxicity to Pisum sativum: Mineral Nutrients, Chlorophyll Content, and Phytase Activity. Ecotoxicol. Environ. Saf. 2001, 49, 111–121. [Google Scholar] [CrossRef]
- Singh, N.; Ma, L.Q.; Srivastava, M.; Rathinasabapathi, B. Metabolic Adaptations to Arsenic-Induced Oxidative Stress in Pteris vittata L. and Pteris ensiformis L. Plant Sci. 2006, 170, 274–282. [Google Scholar] [CrossRef]
- Gupta, S.; Thokchom, S.D.; Kapoor, R. Arbuscular Mycorrhiza Improves Photosynthesis and Restores Alteration in Sugar Metabolism in Triticum aestivum L. Grown in Arsenic Contaminated Soil. Front. Plant Sci. 2021, 12, 640379. [Google Scholar] [CrossRef]
- Aamlid, T.S.; Landschoot, P.J. Effect of Spent Mushroom Substrate on Seed Germination of Cool-Season Turfgrasses. HortScience 2007, 42, 161–167. [Google Scholar] [CrossRef]
- Mandal, S.M.; Pati, B.R.; Das, A.K.; Ghosh, A.K. Characterization of a Symbiotically Effective Rhizobium Resistant to Arsenic: Isolated from the Root Nodules of Vigna mungo (L.) Hepper Grown in an Arsenic-Contaminated Field. J. Gen. Appl. Microbiol. 2008, 54, 93–99. [Google Scholar] [CrossRef]
- Marwa, E.M.M.; Meharg, A.A.; Rice, C.M. Risk Assessment of Potentially Toxic Elements in Agricultural Soils and Maize Tissues from Selected Districts in Tanzania. Sci. Total Environ. 2012, 416, 180–186. [Google Scholar] [CrossRef]
- Panigrahi, D.P.; Sagar, A.; Dalal, S.; Randhawa, G.S. Arsenic Resistance and Symbiotic Efficiencies of Alfalfa and Cowpea Rhizobial Strains Isolated from Arsenic Free Agricultural Fields. Eur. J. Exp. Biol. 2013, 3, 322–333. Available online: https://www.primescholars.com/articles/arsenic-resistance-and-symbiotic-efficiencies-of-alfalfa-and-cowpea-rhizobial-strains-isolated-from-arsenic-free-agricultural-fiel.pdf (accessed on 6 October 2025).
- Dawar, K.; Khan, A.U.; Al-Mutairi, M.; Alotaibi, M.O.; Mian, I.A.; Muhammad, A.; Alam, S.S.; Shoaib, S.; Ghoneim, A.M. Utilizing Spent Mushroom Substrate Biochar to Improve Zea mays L. Growth and Biochemical Resilience against Cadmium and Chromium Toxicity. Sci. Rep. 2025, 15, 17511. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.Y.; McGrath, S.P.; Zhao, F.J. Rapid Reduction of Arsenate in the Medium Mediated by Plant Roots. New Phytol. 2007, 176, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.-J.; McGrath, S.P. Biofortification and Phytoremediation. Curr. Opin. Plant Biol. 2009, 12, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, M.; Ae, N.; Prasad, M.N.V.; Freitas, H. Potential of Siderophore-Producing Bacteria for Improving Heavy Metal Phytoextraction. Trends Biotechnol. 2010, 28, 142–149. [Google Scholar] [CrossRef]
- Khatoon, Z.; Orozco-Mosqueda, M.d.C.; Santoyo, G. Microbial Contributions to Heavy Metal Phytoremediation in Agricultural Soils: A Review. Microorganisms 2024, 12, 1945. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, J.; Mahajan, J.; Kumar, R.; Arora, S. Oxidative Stress—Implications, Source and Its Prevention. Environ. Sci. Pollut. Res. Int. 2014, 21, 1599–1613. [Google Scholar] [CrossRef] [PubMed]
- Hernández, I.; Munné-Bosch, S. Linking Phosphorus Availability with Photo-Oxidative Stress in Plants. J. Exp. Bot. 2015, 66, 2889–2900. [Google Scholar] [CrossRef] [PubMed]
- Diamantis, I.; Dedousi, M.; Melanouri, E.-M.; Dalaka, E.; Antonopoulou, P.; Adelfopoulou, A.; Papanikolaou, S.; Politis, I.; Theodorou, G.; Diamantopoulou, P. Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties. Microorganisms 2024, 12, 1807. [Google Scholar] [CrossRef]
- Jambon, I.; Thijs, S.; Weyens, N.; Vangronsveld, J. Harnessing Plant-Bacteria-Fungi Interactions to Improve Plant Growth and Degradation of Organic Pollutants. J. Plant Interact. 2018, 13, 119–130. [Google Scholar] [CrossRef]
- Tariq, A.; Farhat, F. Insights into Microbe Assisted Remediation in Plants: A Brief Account on Mechanisms and Multi-Omic Strategies against Heavy Metal Toxicity. Stress Biol. 2025, 5, 4. [Google Scholar] [CrossRef]
- Song, W.-Y.; Mendoza-Cózatl, D.G.; Lee, Y.; Schroeder, J.I.; Ahn, S.-N.; Lee, H.-S.; Wicker, T.; Martinoia, E. Phytochelatin–Metal(Loid) Transport into Vacuoles Shows Different Substrate Preferences in Barley and Arabidopsis. Plant Cell Environ. 2014, 37, 1192–1201. [Google Scholar] [CrossRef]
- Park, J.; Song, W.-Y.; Ko, D.; Eom, Y.; Hansen, T.H.; Schiller, M.; Lee, T.G.; Martinoia, E.; Lee, Y. The Phytochelatin Transporters AtABCC1 and AtABCC2 Mediate Tolerance to Cadmium and Mercury. Plant J. 2012, 69, 278–288. [Google Scholar] [CrossRef]
- Wang, Y.; Narayanan, M.; Shi, X.; Chen, X.; Li, Z.; Natarajan, D.; Ma, Y. Plant Growth-Promoting Bacteria in Metal-Contaminated Soil: Current Perspectives on Remediation Mechanisms. Front. Microbiol. 2022, 13, 966226. [Google Scholar] [CrossRef]
- Dabrowska, M.; Debiec-Andrzejewska, K.; Andrunik, M.; Bajda, T.; Drewniak, L. The Biotransformation of Arsenic by Spent Mushroom Compost—An Effective Bioremediation Agent. Ecotoxicol. Environ. Saf. 2021, 213, 112054. [Google Scholar] [CrossRef]
- Koo, N.; Jo, H.-J.; Lee, S.-H.; Kim, J.-G. Using Response Surface Methodology to Assess the Effects of Iron and Spent Mushroom Substrate on Arsenic Phytotoxicity in Lettuce (Lactuca sativa L.). J. Hazard. Mater. 2011, 192, 381–387. [Google Scholar] [CrossRef]







| Shoot Length (cm) | Root Length (cm) | Shoot Dry Weight (g) | Root Dry Weight (g) | % Change in Total (DW) | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Growth Conditions | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | % |
| AP | 20.90 ± 0.95 a1 | 16.17 ± 0.73 b2 | ↓23 | 17.60 ± 1.66 ab1 | 14.50 ± 0.65 a1 | ↓18 | 2.01 ± 0.18 a1 | 1.16 ± 0.23 c2 | ↓42 | 0.28 ± 0.03 a1 | 0.21 ± 0.02 ab1 | ↓25 | ↓40 |
| H | 23.90 ± 1.35 a1 | 17.97 ± 0.60 ab2 | ↓24 | 19.00 ± 1.15 a1 | 15.30 ± 1.09 a2 | ↓20 | 1.81 ± 0.13 a1 | 1.42 ± 0.10 bc2 | ↓21 | 0.26 ± 0.02 ab1 | 0.25 ± 0.03 ab1 | ↓4 | ↓19 |
| HB | 21.33 ± 1.50 a1 | 16.25 ± 0.75 a2 | ↓24 | 16.00 ± 0.95 ab1 | 14.17 ± 0.95 a1 | ↓11 | 1.93 ± 0.25 a1 | 1.36 ± 0.07 bc2 | ↓29 | 0.31 ± 0.02 a1 | 0.22 ± 0.03 ab1 | ↓29 | ↓29 |
| B | 23.13 ± 1.23 a1 | 16.73 ± 0.59 b2 | ↓28 | 19.20 ± 1.28 a1 | 16.00 ± 0.71 a1 | ↓17 | 2.04 ± 0.12 a1 | 1.76 ± 0.12 ab1 | ↓14 | 0.25 ± 0.03 ab1 | 0.29 ± 0.05 a1 | ↑16 | ↓10 |
| E | 26.17 ± 0.44 a1 | 17.63 ± 0.24 ab2 | ↓36 | 16.50 ± 0.29 ab1 | 16.00 ± 0.98 a1 | ↓3 | 1.86 ± 0.07 a1 | 1.88 ± 0.13 a1 | ↑2 | 0.19 ± 0.004 bc1 | 0.25 ± 0.03 ab1 | ↓31 | ↑4 |
| HA | 23.60 ± 1.29 a1 | 19.13 ± 0.85 a2 | ↓19 | 14.80 ± 0.75 b1 | 14.75 ± 0.95 a1 | ↓0.3 | 1.27 ± 0.11 b1 | 1.25 ± 0.13 c1 | ↓2 | 0.16 ± 0.02 c1 | 0.16 ± 0.01 b1 | Ø | ↓1.5 |
| Nodules Numbers | Nodules Dry Weight (g Plant) | N Content (mg g−1 DW) | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Growth Conditions | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % |
| AP | 55.50 ± 2.99 a1 | 18.50 ± 2.78 c2 | ↓67 | 0.081 ± 0.003 a1 | 0.025 ± 0.003 b2 | ↓69 | 13.56 ± 0.21 b1 | 11.38± 0.003 b2 | ↓16 |
| H | 38.40 ± 3.11 bc1 | 23.50 ± 2.51 bc2 | ↓39 | 0.064 ± 0.005 ab1 | 0.038 ± 0.005 b2 | ↓41 | 14.42 ± 1.56 ab1 | 14.19 ± 1.30 a1 | ↓2 |
| HB | 26.00 ± 2.48 c2 | 22.50 ± 3.73 bc1 | ↓13 | 0.046 ± 0.011 b1 | 0.041 ± 0.004 b1 | ↓11 | 14.40 ± 0.85 ab1 | 13.50 ± 0.50 a1 | ↓6 |
| B | 55.60 ± 5.74 bc1 | 32.25 ± 1.18 ab2 | ↓42 | 0.064 ± 0.005 ab1 | 0.038 ± 0.006 b2 | ↓41 | 15.94 ± 1.64 ab1 | 14.94 ± 0.67 a1 | ↓6 |
| E | 35.00 ± 3.79 ab1 | 32.00 ± 5.03 ab1 | ↓9 | 0.047 ± 0.012 b1 | 0.061 ± 0.007 a1 | ↑30 | 17.19 ± 0.68 a1 | 16.50 ± 0.76 a1 | ↓4 |
| HA | 40.60 ± 2.48 b1 | 38.67 ± 5.78 a1 | ↓5 | 0.035 ± 0.009 b1 | 0.042 ± 0.004 b1 | ↑20 | 15.75 ± 0.37 ab1 | 15.50 ± 1.06 a1 | ↓2 |
| Photosynthetic Efficiency (Fv Fm−1) | ||
|---|---|---|
| Growth Condition | 0 μM As | 20 μM As |
| AP | 0.779 ± 0.018 ab1 | 0.780 ± 0.025 abc1 |
| H | 0.755 ± 0.021 b1 | 0.732 ± 0.019 c1 |
| HB | 0.745 ± 0.023 b1 | 0.756 ± 0.023 bc1 |
| B | 0.786 ± 0.011 ab1 | 0.795 ± 0.006 ab1 |
| E | 0.825 ± 0.011 a1 | 0.816 ± 0.004 a1 |
| HA | 0.767 ± 0.026 b1 | 0.740 ± 0.016 c1 |
| Pigment Content (mg g−1 DW) | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Growth Condition | Chlorophyll a | Chlorophyll b | Total Chlorophyll | Carotenoids | ||||||||
| 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | 0 µM As | 20 µM As | % | |
| AP | 3.29 ± 0.35 b1 | 4.51 ± 0.85 a1 | ↑37 | 2.12 ± 0.17 b1 | 2.56 ± 0.37 a1 | ↑20 | 5.42 ± 0.52 b1 | 7.07 ± 1.22 a1 | ↑30 | 0.73 E2 ± 0.07 b1 | 0.97 E2 ± 0.17 a1 | ↑33 |
| H | 5.10 ± 0.54 a1 | 2.88 ± 0.26 b2 | ↓43 | 3.30 ± 0.29 a1 | 2.04 ± 0.16 ab2 | ↓38 | 8.39 ± 0.81 a1 | 4.92 ± 0.41 b2 | ↓41 | 1.06 E2 ± 0.12 a1 | 0.61 E2 ± 0.05 c2 | ↓42 |
| HB | 2.95 ± 0.40 b1 | 2.55 ± 0.33 b1 | ↓13 | 2.11 ± 0.24 b1 | 1.78 ± 0.19 b1 | ↓15 | 5.06 ± 0.63 b1 | 4.33 ± 0.52 b1 | ↓14 | 0.65 E2 ± 0.09 b1 | 0.54 E2 ± 0.07 c1 | ↓17 |
| B | 5.14 ± 0.32 a1 | 3.17 ± 0.36 ab2 | ↓38 | 3.12 ± 0.18 a1 | 2.07 ± 0.23 ab2 | ↓33 | 8.26 ± 0.43 a1 | 5.24 ± 0.58 ab2 | ↓36 | 1.05 E2 ± 0.06 a1 | 0.69 E2 ± 0.69 bc2 | ↓34 |
| E | 3.50 ± 0.19 b1 | 4.54 ± 0.23 a1 | ↑29 | 2.35 ± 0.08 b1 | 2.42 ± 0.28 a1 | ↑2 | 5.84 ± 0.84 b1 | 7.13 ± 0.50 a1 | ↑22 | 0.72 E2 ± 0.11 b1 | 0.93 E2 ± 0.07 ab1 | ↑29 |
| HA | 3.18 ± 0.90 b1 | 3.48 ± 0.90 ab1 | ↑9 | 2.18 ± 0.95 b1 | 3.18 ± 0.95 ab1 | ↑45 | 5.36 ± 0.27 b1 | 5.89 ± 0.51 ab1 | ↑9 | 0.68 E2 ± 0.04 b1 | 0.72 E2 ± 0.05 abc1 | ↑6 |
| Osmotic Potential (Ψs) | |||
|---|---|---|---|
| Growth Condition | 0 µM As | 20 µM As | % |
| AP | −0.800 ± 0.022 c1 | −0.698 ± 0.017 a2 | ↓12.8 |
| H | −0.665 ± 0.041 bc1 | −0.533 ± 0.053 a1 | ↓19.8 |
| HB | −0.574 ± 0.047 ab1 | −0.647 ± 0.051 a1 | ↑12.7 |
| B | −0.545 ± 0.061 ab1 | −0.639 ± 0.049 a1 | ↑17.2 |
| E | −0.516 ± 0.067 ab1 | −0.627 ± 0.046 a1 | ↑21.5 |
| HA | −0.477 ± 0.060 a1 | −0.621 ± 0.055 a1 | ↑30.1 |
| Shoot | Root | Nodules | ||
|---|---|---|---|---|
| Growth Condition | µg g−1 DW | Translocation Factor | ||
| AP | 13.41 ± 1.21 a | 143.12 ± 1.92 a | 127.42 ± 3.01 a | 0.09 ± 0.01 a |
| H | 7.24 ± 1.81 bc | 103.14 ± 9.99 cd | 44.11 ± 2.62 c | 0.07 ± 0.02 a |
| HB | 4.65 ± 0.55 c | 130.62 ± 2.95 ab | 60.29 ± 0.62 b | 0.04 ± 0.01 b |
| B | 8.73 ± 1.59 b | 121.81 ± 2.57 bc | 56.65 ± 0.95 b | 0.07 ± 0.01 a |
| E | ND | 55.69 ± 9.45 e | 59.62 ± 6.24 b | 0 c |
| HA | ND | 98.3 ± 4.32 d | 127.53 ± 2.64 a | 0 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martos, S.; Ye, M.; Riofrío, A.; Tolrà, R.; Bianucci, E. Enhancing Peanut Crop Quality Under Arsenic Stress Through Agronomic Amendments. Agriculture 2025, 15, 2300. https://doi.org/10.3390/agriculture15212300
Martos S, Ye M, Riofrío A, Tolrà R, Bianucci E. Enhancing Peanut Crop Quality Under Arsenic Stress Through Agronomic Amendments. Agriculture. 2025; 15(21):2300. https://doi.org/10.3390/agriculture15212300
Chicago/Turabian StyleMartos, Soledad, Mengchen Ye, Antonio Riofrío, Roser Tolrà, and Eliana Bianucci. 2025. "Enhancing Peanut Crop Quality Under Arsenic Stress Through Agronomic Amendments" Agriculture 15, no. 21: 2300. https://doi.org/10.3390/agriculture15212300
APA StyleMartos, S., Ye, M., Riofrío, A., Tolrà, R., & Bianucci, E. (2025). Enhancing Peanut Crop Quality Under Arsenic Stress Through Agronomic Amendments. Agriculture, 15(21), 2300. https://doi.org/10.3390/agriculture15212300

