Estimate the Pre-Flowering Specific Leaf Area of Rice Based on Vegetation Indices and Texture Indices Derived from UAV Multispectral Imagery
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Design
2.2. Data Collection and Processing
2.2.1. UAV Image Acquisition and Processing
2.2.2. Specific Leaf Area Measurement
2.3. Feature Extraction from Remote Sensing Images
2.3.1. Vegetation Indices
2.3.2. Texture Indices
2.3.3. Background Removal
2.4. Feature Selection
2.5. Model Construction and Accuracy Verification
2.6. Machine Learning Regression Algorithms
2.6.1. Random Forest (RF)
2.6.2. XGBoost
2.6.3. Gradient Boosting Decision Tree (GBDT)
2.6.4. Partial Least Squares Regression (PLSR)
3. Results
3.1. Statistical Analysis of SLA
3.2. Correlation Analysis
3.3. Selection of Remote Sensing Variables
3.4. Model Construction and Validation
3.5. Validate the Optimal Inversion Model
4. Discussion
4.1. The Impact of Various Remote Sensing Variables to SLA
4.2. Performance of the Optimal Estimation Model
4.3. Limitations and Prospects for Future Research
5. Conclusions
- (1)
- VIs, TIs, and their fusion features (VIs + TIs) can all effectively estimate SLA, with fusion features performing the best. However, the accuracy of the fusion model in this research is only slightly higher than that of the single-feature models, which means that in rice SLA estimation, using only VIs or TIs combined with machine learning can already achieve high accuracy. This result highlights the synergistic mechanisms of multi-source remote sensing features under complex canopy conditions and provides new methods to improve the stability of SLA estimation. The findings can be used to construct SLA estimation models applicable to various critical growth phases prior to flowering (tillering stage, jointing stage, heading stage), various densities, and different nitrogen management strategies.
- (2)
- The RF model, selected through RFE, performed optimally, demonstrating high accuracy across VIs, TIs, and the integrated feature set (test set R2 > 0.90, RPD > 3.0). It also showed strong generalization ability across different densities and nitrogen management strategies. The model’s strength lies in its capacity to accurately capture nonlinear relationships and feature interactions, thereby enabling it to extract relevant information from diverse sources, effectively mitigate noise interference, and thus enhance the overall accuracy of SLA estimation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Teng, X.; Tan, Y.; Zhang, Y.; Zhang, H.; Xiao, D.; Luo, S. Spatio-temporal mapping of leaf area index in rice: Spectral indices and multi-scale texture comparison derived from different sensors. Front. Plant Sci. 2024, 15, 1445490. [Google Scholar]
- Garnier, E.; Shipley, B.; Roumet, C.; Laurent, G. A standardized protocol for the determination of specific leaf area and leaf dry matter content. Funct. Ecol. 2001, 15, 688–695. [Google Scholar] [CrossRef]
- Li, Z.; Zhan, C.; Hu, S.; Ning, L.; Wu, L.; Guo, H. Implementation of a dynamic specific leaf area (SLA) into a land surface model (LSM) incorporated crop-growth model. Comput. Electron. Agric. 2023, 213, 108238. [Google Scholar] [CrossRef]
- Abdi, A.; Kapourchal, S.A.; Vazifedoust, M.; Rezaei, M. A novel satellite-based methodology for retrieving specific leaf area of rice (Hashemi cultivar) at field scale. Environ. Eng. Manag. J. 2022, 21, 2093. [Google Scholar]
- Pierce, L.L.; Running, S.W.; Walker, J. Regional–scale relationships of leaf area index to specific leaf area and leaf nitrogen content. Ecol. Appl. 1994, 4, 313–321. [Google Scholar] [CrossRef]
- Witkowski, E.T.F.; Lamont, B.B. Leaf specific mass confounds leaf density and thickness. Oecologia 1991, 88, 486–493. [Google Scholar] [CrossRef]
- VAN Arendonk, J.J.C.M.; Niemann, G.J.; Boon, J.J.; Lambers, H. Effects of nitrogen supply on the anatomy and chemical composition of leaves of four grass species belonging to the genus Poa, as determined by image--processing analysis and pyrolysis–mass spectrometry. Plant Cell Environ. 1997, 20, 881–897. [Google Scholar] [CrossRef]
- Knops, J.M.; Reinhart, K. Specific leaf area along a nitrogen fertilization gradient. Am. Midl. Nat. 2000, 144, 265–272. [Google Scholar] [CrossRef]
- Göhler, M.; Mai, J.; Cuntz, M. Use of eigendecomposition in a parameter sensitivity analysis of the Community Land Model. J. Geophys. Res. Biogeosci. 2013, 118, 904–921. [Google Scholar] [CrossRef]
- Ma, H.; Huang, J.; Zhu, D.; Liu, J.; Su, W.; Zhang, C.; Fan, J. Estimating regional winter wheat yield by assimilation of time series of HJ-1 CCD NDVI into WOFOST–ACRM model with Ensemble Kalman Filter. Math. Comput. Model. 2013, 58, 759–770. [Google Scholar] [CrossRef]
- Zhang, Z.; Barlage, M.; Chen, F.; Li, Y.; Helgason, W.; Xu, X.; Liu, X.; Li, Z. Joint modeling of crop and irrigation in the central United States using the Noah--MP land surface model. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002159. [Google Scholar] [CrossRef]
- Silva, L.d.Á.; Omena-Garcia, R.P.; Condori-Apfata, J.A.; Costa, P.M.d.A.; Silva, N.M.; DaMatta, F.M.; Zsögön, A.; Araújo, W.L.; de Toledo Picoli, E.A.; Sulpice, R.; et al. Specific leaf area is modulated by nitrogen via changes in primary metabolism and parenchymal thickness in pepper. Planta 2021, 253, 16. [Google Scholar] [CrossRef]
- Gilardelli, C.; Confalonieri, R.; Cappelli, G.A.; Bellocchi, G. Sensitivity of WOFOST-based modelling solutions to crop parameters under climate change. Ecol. Model. 2018, 368, 1–14. [Google Scholar] [CrossRef]
- Zhang, Y.; Homma, K.; Shi, L.; Wang, Y.; Qiao, H.; Zha, Y. Improving crop modeling by simultaneously incorporating dynamic specific leaf area and leaf area index: A two-year experiment. Agric. Syst. 2025, 227, 104357. [Google Scholar] [CrossRef]
- Terashima, I.; Miyazawa, S.-I.; Hanba, Y.T. Why are sun leaves thicker than shade leaves?—Consideration based on analyses of CO2 diffusion in the leaf. J. Plant Res. 2001, 114, 93–105. [Google Scholar] [CrossRef]
- Yao, H.; Zhang, Y.; Yi, X.; Zhang, X.; Zhang, W. Cotton responds to different plant population densities by adjusting specific leaf area to optimize canopy photosynthetic use efficiency of light and nitrogen. Field Crops Res. 2016, 188, 10–16. [Google Scholar] [CrossRef]
- Ji, W.; LaZerte, S.E.; Waterway, M.J.; Lechowicz, M.J. Functional ecology of congeneric variation in the leaf economics spectrum. New Phytol. 2019, 225, 196–208. [Google Scholar] [CrossRef]
- Zhou, H.; Zhou, G.; He, Q.; Zhou, L.; Ji, Y.; Zhou, M. Environmental explanation of maize specific leaf area under varying water stress regimes. Environ. Exp. Bot. 2020, 171, 103932. [Google Scholar] [CrossRef]
- Ač, A.; Malenovský, Z.; Olejníčková, J.; Gallé, A.; Rascher, U.; Mohammed, G. Meta-analysis assessing potential of steady-state chlorophyll fluorescence for remote sensing detection of plant water, temperature and nitrogen stress. Remote Sens. Environ. 2015, 168, 420–436. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K. Retrieval of specific leaf area from landsat-8 surface reflectance data using statistical and physical models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3529–3536. [Google Scholar] [CrossRef]
- Chauhan, S.; Srivastava, H.S.; Patel, P. Wheat crop biophysical parameters retrieval using hybrid-polarized RISAT-1 SAR data. Remote Sens. Environ. 2018, 216, 28–43. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Q.; Yi, X.; Ma, L.; Zhang, L.; Huang, C.; Zhang, Z.; Lv, X. Estimation of Cotton Leaf Area Index (LAI) Based on Spectral Transformation and Vegetation Index. Remote Sens. 2022, 14, 136. [Google Scholar] [CrossRef]
- Osco, L.P.; Marcato, J., Jr.; Marques Ramos, A.P.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Luo, S.; Jiang, X.; He, Y.; Li, J.; Jiao, W.; Zhang, S.; Xu, F.; Han, Z.; Sun, J.; Yang, J.; et al. Multi-dimensional variables and feature parameter selection for aboveground biomass estimation of potato based on UAV multispectral imagery. Front. Plant Sci. 2022, 13, 948249. [Google Scholar] [CrossRef]
- Gong, Y.; Yang, K.; Lin, Z.; Fang, S.; Wu, X.; Zhu, R.; Peng, Y. Remote estimation of leaf area index (LAI) with unmanned aerial vehicle (UAV) imaging for different rice cultivars throughout the entire growing season. Plant Methods 2021, 17, 88. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Zhang, Y.; Yin, Q.; Wang, W.; Zhou, G.; Huo, Z. Combining texture, color, and vegetation index from unmanned aerial vehicle multispectral images to estimate winter wheat leaf area index during the vegetative growth stage. Remote Sens. 2023, 15, 5715. [Google Scholar] [CrossRef]
- Sibanda, M.; Mutanga, O.; Rouget, M.; Kumar, L. Estimating biomass of native grass grown under complex management treatments using worldview-3 spectral derivatives. Remote Sens. 2017, 9, 55. [Google Scholar] [CrossRef]
- Jamali, M.; Soufizadeh, S.; Yeganeh, B.; Emam, Y. Wheat leaf traits monitoring based on machine learning algorithms and high-resolution satellite imagery. Ecol. Inform. 2023, 74, 101967. [Google Scholar] [CrossRef]
- de Paula, R.G.; da Silva, M.F.; Amaral, C.; de Sousa Paula, G.; da Silva, L.J.; Pessoa, H.P.; da Silva, F.L. Leveraging leaf spectroscopy to identify drought-tolerant soybean cultivars. Smart Agric. Technol. 2024, 9, 100626. [Google Scholar] [CrossRef]
- Chen, L.; Xu, B.; Zhao, C.; Duan, D.; Cao, Q.; Wang, F. Application of multispectral camera in monitoring the quality parameters of fresh Tea Leaves. Remote Sens. 2021, 13, 3719. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.; Deering, D. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFC: Greenbelt, MD, USA, 1973.
- Chávez-Martínez, O.; Monjardin-Armenta, S.A.; Rangel-Peraza, J.G.; Sanhouse-García, A.J.; Mora-Felix, Z.D.; Plata-Rocha, W. Use of different vegetation indices for the evaluation of the kinetics of the cherry tomato (Solanum lycopersicum var. cerasiforme) growth based on multispectral images by UAV. Open Agric. 2024, 9, 20220357. [Google Scholar]
- Lemenkova, P.; Debeir, O. Computing Vegetation Indices from the Satellite Images Using GRASS GIS Scripts for Monitoring Mangrove Forests in the Coastal Landscapes of Niger Delta, Nigeria. J. Mar. Sci. Eng. 2023, 11, 871. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Nguy-Robertson, A.L. The mathematical identity of two vegetation indices: MCARI2 and MTVI2. Int. J. Remote Sens. 2013, 34, 7504–7507. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Fuentes, M.V.B.; Heenkenda, M.K.; Sahota, T.S.; Serrano, L.S. Analyzing Winter Wheat (Triticum aestivum) Growth Pattern Using High Spatial Resolution Images: A Case Study at Lakehead University Agriculture Research Station, Thunder Bay, Canada. Crops 2024, 4, 115–133. [Google Scholar] [CrossRef]
- Hancock, D.W. Spectral Reflectance of Canopies of Rainfed and Subsurface Irrigated Alfalfa. Ph.D. Thesis, University of Kentucky, Lexington, KY, USA, 2006. [Google Scholar]
- Kaufman, Y.J.; Tanre, D. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Trans. Geosci. Remote Sens. 1992, 30, 261–270. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Dash, J.; Curran, P. Evaluation of the MERIS terrestrial chlorophyll index (MTCI). Adv. Space Res. 2007, 39, 100–104. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Ciganda, V.; Rundquist, D.C.; Arkebauer, T.J. Remote estimation of canopy chlorophyll content in crops. Geophys. Res. Lett. 2005, 32, L08403. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.; Morales, A.; Testi, L.; Villalobos, F. Spatio-temporal patterns of chlorophyll fluorescence and physiological and structural indices acquired from hyperspectral imagery as compared with carbon fluxes measured with eddy covariance. Remote Sens. Environ. 2013, 133, 102–115. [Google Scholar] [CrossRef]
- Khishigjargal, M.; Dulamsuren, C.; Lkhagvadorj, D.; Leuschner, C.; Hauck, M. Contrasting responses of seedling and sapling densities to livestock density in the Mongolian forest-steppe. Plant Ecol. 2013, 214, 1391–1403. [Google Scholar] [CrossRef]
- Guebsi, R.; Mami, S.; Chokmani, K. Drones in Precision Agriculture: A Comprehensive Review of Applications, Technologies, and Challenges. Drones 2024, 8, 686. [Google Scholar] [CrossRef]
- Silleos, N.G.; Alexandridis, T.K.; Gitas, I.Z.; Perakis, K. Vegetation indices: Advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto Int. 2006, 21, 21–28. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P., Jr.; Waller, P.M.; Thompson, T.L. Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.; Fredeen, A.; Merino, J.; Field, C. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Gamon, J.A.; Surfus, J.S. Assessing leaf pigment content and activity with a reflectometer. New Phytol. 1999, 143, 105–117. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant remote sensing vegetation indices: A review of developments and applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef]
- Courel, M.-F.; Chamard, P.C.; Guenegou, M.; Lerhun, J.; Levasseur, J.; Togola, M. Utilisation des bandes spectrales du vert et du rouge pour une meilleure évaluation des formations végétales actives. In Proceedings of the Congrès AUPELF-UREF, Sherbrooke, QC, Canada, 21–23 October 1991. [Google Scholar]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Romero, A.; Aguado, I.; Yebra, M. Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion. Int. J. Remote Sens. 2012, 33, 396–414. [Google Scholar] [CrossRef]
- Chen, L.; Xing, M.; He, B.; Wang, J.; Shang, J.; Huang, X.; Xu, M. Estimating soil moisture over winter wheat fields during growing season using machine-learning methods. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 3706–3718. [Google Scholar] [CrossRef]
- Denil, M.; Shakibi, B.; Dinh, L.; Ranzato, M.A.; De Freitas, N. Predicting parameters in deep learning. arXiv 2013. [Google Scholar] [CrossRef]
- Zha, H.; Miao, Y.; Wang, T.; Li, Y.; Zhang, J.; Sun, W.; Feng, Z.; Kusnierek, K. Improving unmanned aerial vehicle remote sensing-based rice nitrogen nutrition index prediction with machine learning. Remote Sens. 2020, 12, 215. [Google Scholar] [CrossRef]
- Williams, P.C. Variables affecting near-infrared reflectance spectroscopic analysis. In Near-Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987; pp. 143–167. [Google Scholar]
- Rossel, R.A.V.; Taylor, H.J.; McBratney, A.B. Multivariate calibration of hyperspectral γ-ray energy spectra for proximal soil sensing. Eur. J. Soil Sci. 2007, 58, 343–353. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Mansaray, L.R.; Zhang, K.; Kanu, A.S. Dry biomass estimation of paddy rice with Sentinel-1A satellite data using machine learning regression algorithms. Comput. Electron. Agric. 2020, 176, 105674. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, T.; Guo, W.; Xu, X.; Qiao, H.; Xie, Y.; Ma, X. Leaf area index estimation model for UAV image hyperspectral data based on wavelength variable selection and machine learning methods. Plant Methods 2021, 17, 49. [Google Scholar] [CrossRef] [PubMed]
- Prananto, J.A.; Minasny, B.; Weaver, T. Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf tissues. Adv. Agron. 2020, 164, 1–49. [Google Scholar]
- Guyot, G.; Baret, F.; Major, D.J. High Specrral Resolution: Determination of Specrral Shifts Between the Red and Infrared. Int. Arch. Photogramm. Remote Sens. 1988, 11, 750–760. [Google Scholar]
- Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices. Agric. For. Meteorol. 2017, 236, 162–174. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef]
- Li, M.; Tan, Y.; Pan, J.; Peng, S. Modeling forest aboveground biomass by combining spectrum, textures and topographic features. Front. For. China 2008, 3, 10–15. [Google Scholar] [CrossRef]
- Sun, X.; Yang, Z.; Su, P.; Wei, K.; Wang, Z.; Yang, C.; Wang, C.; Qin, M.; Xiao, L.; Yang, W.; et al. Non-destructive monitoring of maize LAI by fusing UAV spectral and textural features. Front. Plant Sci. 2023, 14, 1158837. [Google Scholar] [CrossRef] [PubMed]
- Lourenço, P.; Godinho, S.; Sousa, A.; Gonçalves, A.C. Estimating tree aboveground biomass using multispectral satellite-based data in Mediterranean agroforestry system using random forest algorithm. Remote Sens. Appl. Soc. Environ. 2021, 23, 100560. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Reich, P.B.; Walters, M.B.; Ellsworth, D.S. Leaf life—Span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 1992, 62, 365–392. [Google Scholar] [CrossRef]








| Variables | Spectral Index | Formula | References |
|---|---|---|---|
| R | \ | \ | |
| G | \ | \ | |
| B | \ | \ | |
| RedEdge | \ | \ | |
| NIR | \ | \ | |
| NDVI | (NIR − R)/(NIR + R) | [32] | |
| IPVI | NIR/(NIR + R) | [33] | |
| DVI | NIR − R | [34] | |
| TVI | 0.5 × [120 × (NIR − G) − 200 × (R − G)] | [35] | |
| OSAVI | (NIR − R)/(NIR − R + L) (L = 0.16) | [36] | |
| MCARI2 | 1.2 × [1.2 × (NIR − R) − 2.5 × (R − G)] | [37] | |
| SIPI | (NIR − B)/(NIR + R) | [38] | |
| EVI2 | 2.5 × (NIR − R)/(NIR + 2.4 × R + 1) | [39] | |
| RENDVI | (RE − R)/(RE + R) | [40] | |
| VIs | SARVI | (NIR − R)/(NIR + R + 0.5) | [41] |
| RE-NIR-GTI | 1.5 (NIR − RE) − 2(RE − G) | This study | |
| NDRE | (NIR − RE)/(NIR + RE) | [42] | |
| GCI | NIR/G − 1 | [43] | |
| CI | (NIR − RE)/(NIR + R) | [44] | |
| MTCI | (NIR − RE)/(RE + R) | [45] | |
| CIRE | NIR/RE − 1 | [46] | |
| NPCI | (R − B)/(R + B) | [47] | |
| NGRDI | (G − R)/(G + R) | [48] | |
| GNDVI | (NIR − G)/(NIR + G) | [49] | |
| NGI | G/(R + G + B) | [50] | |
| CCCI | (NIR − RE)/(NIR + RE) × (NIR − R)/(NIR + R) | [51] | |
| ExB | 1.4 × B − G | [52] | |
| IRG | NIR/G | [53] | |
| GB | G/B | [54] | |
| GI | G/R | [55] | |
| TIs | GLCM | Mean, Var, Homo, Cor, Dis, Ent, SecMom, Con | [56] |
| Period | N | Max (m2/g) | Min (m2/g) | Mean (m2/g) | SD (m2/g) | CV (%) |
|---|---|---|---|---|---|---|
| Tillering stage | 72 | 1.33 | 0.57 | 0.85 | 0.18 | 21.26 |
| Jointing stage | 72 | 0.91 | 0.42 | 0.64 | 0.14 | 22.17 |
| Heading stage | 72 | 0.76 | 0.35 | 0.54 | 0.13 | 24.24 |
| All | 216 | 1.33 | 0.35 | 0.68 | 0.20 | 29.64 |
| VIsModel | Train(CV) | Test | ||||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE (m2/g) | RRMSE | RPD | R2 | RMSE (m2/g) | RRMSE | RPD | |
| RF | 0.8569 | 0.0702 | 0.1039 | 2.6960 | 0.9035 | 0.0699 | 0.1050 | 3.2184 |
| XGBoost | 0.8795 | 0.0655 | 0.0928 | 3.0040 | 0.8644 | 0.0829 | 0.1244 | 2.7155 |
| GBDT | 0.8583 | 0.0701 | 0.1029 | 2.6866 | 0.8480 | 0.0878 | 0.1317 | 2.5651 |
| PLSR | 0.7627 | 0.0903 | 0.1420 | 1.9439 | 0.8283 | 0.0933 | 0.1400 | 2.4132 |
| TIs-Model | Train(CV) | Test | ||||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE_ (m2/g) | RRMSE | RPD | R2 | RMSE_ (m2/g) | RRMSE | RPD | |
| RF | 0.8556 | 0.0711 | 0.0994 | 2.8820 | 0.9008 | 0.0709 | 0.1064 | 3.1756 |
| XGBoost | 0.8876 | 0.0630 | 0.0935 | 2.9583 | 0.8561 | 0.0854 | 0.1282 | 2.6359 |
| GBDT | 0.8653 | 0.0683 | 0.1004 | 2.8241 | 0.8618 | 0.0837 | 0.1256 | 2.6898 |
| PLSR | 0.7122 | 0.0996 | 0.1469 | 1.8563 | 0.8002 | 0.1006 | 0.1510 | 2.2369 |
| VIs + TIs -Model | Train(CV) | Test | ||||||
|---|---|---|---|---|---|---|---|---|
| R2 | RMSE_ (m2/g) | RRMSE | RPD | R2 | RMSE_(m2/g) | RRMSE | RPD | |
| RF | 0.8525 | 0.0713 | 0.1067 | 2.6412 | 0.9049 | 0.0694 | 0.1042 | 3.2419 |
| XGBoost | 0.8828 | 0.0641 | 0.0941 | 2.9584 | 0.8560 | 0.0854 | 0.1282 | 2.6355 |
| GBDT | 0.8624 | 0.0691 | 0.1014 | 2.7112 | 0.8519 | 0.0866 | 0.1300 | 2.5986 |
| PLSR | 0.7603 | 0.0915 | 0.1316 | 2.0731 | 0.8606 | 0.0841 | 0.1262 | 2.6780 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Wang, S.; Pei, Y.; Yin, Q.; Ding, Z.; Wang, J.; Wang, W.; Zhou, G.; Huo, Z. Estimate the Pre-Flowering Specific Leaf Area of Rice Based on Vegetation Indices and Texture Indices Derived from UAV Multispectral Imagery. Agriculture 2025, 15, 2293. https://doi.org/10.3390/agriculture15212293
Huang J, Wang S, Pei Y, Yin Q, Ding Z, Wang J, Wang W, Zhou G, Huo Z. Estimate the Pre-Flowering Specific Leaf Area of Rice Based on Vegetation Indices and Texture Indices Derived from UAV Multispectral Imagery. Agriculture. 2025; 15(21):2293. https://doi.org/10.3390/agriculture15212293
Chicago/Turabian StyleHuang, Jingjing, Sunan Wang, Yuexia Pei, Quan Yin, Zhi Ding, Jianjun Wang, Weiling Wang, Guisheng Zhou, and Zhongyang Huo. 2025. "Estimate the Pre-Flowering Specific Leaf Area of Rice Based on Vegetation Indices and Texture Indices Derived from UAV Multispectral Imagery" Agriculture 15, no. 21: 2293. https://doi.org/10.3390/agriculture15212293
APA StyleHuang, J., Wang, S., Pei, Y., Yin, Q., Ding, Z., Wang, J., Wang, W., Zhou, G., & Huo, Z. (2025). Estimate the Pre-Flowering Specific Leaf Area of Rice Based on Vegetation Indices and Texture Indices Derived from UAV Multispectral Imagery. Agriculture, 15(21), 2293. https://doi.org/10.3390/agriculture15212293

