Farmers’ Willingness to Adopt Maize-Soybean Rotation Based on the Extended Theory of Planned Behavior: Evidence from Northeast China
Abstract
1. Introduction
2. Theoretical Background and Research Hypotheses
2.1. Theory of Planned Behavior
2.2. Value-Based Theory of Planned Behavior (V-TPB)
3. Materials and Methods
3.1. Study Region
3.2. Survey Procedure
3.3. Methodology
4. Results
4.1. Socio-Economic Characteristics of Surveyed Farmers
4.2. Descriptive Statistics
4.3. Correlation Analysis
4.4. Measurement Model
4.5. Results of SEM
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jalli, M.; Huusela, E.; Jalli, H.; Kauppi, K.; Niemi, M.; Himanen, S.; Jauhiainen, L. Effects of crop rotation on spring wheat yield and pest occurrence in different tillage systems: A multi-year experiment in Finnish growing conditions. Front. Sustain. Food Syst. 2021, 5, 647335. [Google Scholar] [CrossRef]
- Zhou, J.; Zhu, P.; Kluger, D.M.; Lobell, D.B.; Jin, Z. Changes in the Yield Effect of the Preceding Crop in the US Corn Belt Under a Warming Climate. Glob. Change Biol. 2024, 30, e17556. [Google Scholar] [CrossRef] [PubMed]
- Smith, M.E.; Bommarco, R.; Vico, G. Rethinking Crop Rotational Benefits Under Climate Change: Beyond the Growing Season. Glob. Change Biol. 2025, 31, e70012. [Google Scholar] [CrossRef] [PubMed]
- Behnke, G.D.; Zuber, S.M.; Pittelkow, C.M.; Nafziger, E.D.; Villamil, M.B. Long-term crop rotation and tillage effects on soil greenhouse gas emissions and crop production in Illinois, USA. Agric. Ecosyst. Environ. 2018, 261, 62–70. [Google Scholar] [CrossRef]
- Chatterjee, N.; Archontoulis, S.V.; Bastidas, A.; Proctor, C.A.; Elmore, R.W.; Basche, A.D. Simulating winter rye cover crop production under alternative management in a corn-soybean rotation. Agron. J. 2020, 112, 4648–4665. [Google Scholar] [CrossRef]
- MacWilliam, S.; Wismer, M.; Kulshreshtha, S. Life cycle and economic assessment of Western Canadian pulse systems: The inclusion of pulses in crop rotations. Agric. Syst. 2014, 123, 43–53. [Google Scholar] [CrossRef]
- Ma, Y.; Schwenke, G.; Sun, L.; Li Liu, D.; Wang, B.; Yang, B. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios. Sci. Total Environ. 2018, 630, 1544–1552. [Google Scholar] [CrossRef]
- State Council of China. Pilot Plan for the Implementation of the Arable Land Rotation and Fallow System; The Central People’s Government of the People’s Republic of China: Beijing, China, 2016. Available online: https://www.gov.cn/xinwen/2016-06/29/content_5086689.htm (accessed on 21 October 2025).
- State Council of the People’s Republic of China. Rural Revitalization Plan (2024–2027). State Council Gazette, (Issue 11846). 2025. Available online: https://www.gov.cn/gongbao/2025/issue_11846/202502/content_7002798.html (accessed on 21 October 2025).
- Inner Mongolia Department of Agriculture and Rural Affairs. Notice on Strengthening the Prevention and Control of Major Crop Diseases and Pests in Spring; Inner Mongolia Department of Agriculture and Rural Affairs: Hohhot, China, 2023. Available online: https://nmt.nmg.gov.cn/gk/zfxxgk/fdzdgknr/xztz/202305/t20230506_2307305.html (accessed on 21 October 2025). (In Chinese)
- Sporchia, F.; Antonelli, M.; Aguilar-Martínez, A.; Bach-Faig, A.; Caro, D.; Davis, K.F.; Sonnino, R.; Galli, A. Zero hunger: Future challenges and the way forward towards the achievement of sustainable development goal 2. Sustain. Earth Rev. 2024, 7, 10. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 21 October 2025).
- Huang, Y.; Liu, Z. Improving Northeast China’s soybean and maize planting structure through subsidy optimization consider-ing climate change and comparative economic benefit. Land Use Policy 2024, 146, 107319. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, P.; Marley, B.; Liu, W. The factors affecting farmers’ soybean planting behavior in Heilongjiang Province, China. Agriculture 2019, 9, 188. [Google Scholar] [CrossRef]
- Zhang, R.; Du, G.; Faye, B.; Liu, H. Analysis of Farmers’ Crop Rotation Intention and Behavior Using Structural Equation Modeling: Evidence from Heilongjiang Province, China. Land 2025, 14, 158. [Google Scholar] [CrossRef]
- Wang, X.; Yamauchi, F.; Huang, J. Rising wages, mechanization, and the substitution between capital and labor: Evidence from small scale farm system in China. Agric. Econ. 2016, 47, 309–317. [Google Scholar] [CrossRef]
- Liang, C.; Du, G.; Faye, B. The influence of cultivated land transfer and Internet use on crop rotation. Front. Sustain. Food Syst. 2023, 7, 1172405. [Google Scholar] [CrossRef]
- Chen, X.; Han, X.; Lu, X.; Yan, J.; Biswas, A.; Zou, W. Long-term continuous cropping affects ecoenzymatic stoichiometry of microbial nutrient acquisition: A case study from a Chinese Mollisol. J. Sci. Food Agric. 2021, 101, 6338–6346. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Zhang, Y.; Liu, Q.; Guo, M.; Niu, J.; Xia, Q.; Liang, M.; Liu, Y.; Huang, Y.; Du, Y. Comprehensive evaluation of cultivated land quality in black soil of Northeast China: Emphasizing functional diversity and risk management. Appl. Sci. 2025, 15, 3753. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Z.; Heinonsalo, J.; Zhang, Y.; Liu, G. Soil organic carbon stocks and dynamics in a mollisol region: A 1980s–2010s study. Sci. Total Environ. 2022, 807, 150910. [Google Scholar] [CrossRef]
- Zeeshan, U.L.; Haq, M.; Yu, J.; Yao, G.; Yang, H.; Iqbal, H.A.; Tahir, H.; Cui, H.; Liu, Y.; Wu, Y. A systematic review on the continuous cropping obstacles and control strategies in medicinal plants. Int. J. Mol. Sci. 2023, 24, 12470. [Google Scholar] [CrossRef]
- Chinese Academy of Sciences. Northeast Black Soil Protection and Utilization Report; Technical Report; Key Laboratory of Petroleum and Chemical Industry/Institute of Sustainable Development, Chinese Academy of Sciences: Beijing, China, 2022; Available online: https://sdr.cas.cn/nykj/gzdt/202307/P020230724546885940299.pdf (accessed on 21 October 2025). (In Chinese)
- Government of the People’s Republic of China. Opinions of the Central Committee of the Communist Party of China and the State Council on Doing a Good Job in Advancing Rural Revitalization in 2022; The State Council: Beijing, China, 2022. Available online: https://www.gov.cn/xinwen/2022-02/22/content_5675041.htm (accessed on 21 October 2025).
- Wang, X.-G.; Si, W. Does the reform of soybean subsidy policy realize the expansion of soybean production? An empirical analysis based on 124 Prefecture-level cities in soybean main producing areas. Chin. Rural. Econ. 2021, 12, 44–65. [Google Scholar]
- Bardenhagen, C.J.; Howard, P.H.; Gray, S.A. Farmer mental models of biological pest control: Associations with adoption of conservation practices in blueberry and cherry orchards. Front. Sustain. Food Syst. 2020, 4, 54. [Google Scholar] [CrossRef]
- Hansen, B.G.; Greve, A. Dairy farmersvalues and how their values affect their decision making. Agric. Food Sci. 2014, 23, 278–290. [Google Scholar] [CrossRef]
- Da Motta, R.S.; Ortiz, R.A. Costs and perceptions conditioning willingness to accept payments for ecosystem services in a Brazilian case. Ecol. Econ. 2018, 147, 333–342. [Google Scholar] [CrossRef]
- Wang, W.; Jin, J.; He, R.; Gong, H. Gender differences in pesticide use knowledge, risk awareness and practices in Chinese farmers. Sci. Total Environ. 2017, 590, 22–28. [Google Scholar] [CrossRef]
- Démurger, S.; Pelletier, A. Volunteer and satisfied? Rural households’ participation in a payments for environmental services programme in Inner Mongolia. Ecol. Econ. 2015, 116, 25–33. [Google Scholar] [CrossRef]
- Malawska, A.; Topping, C.J.; Nielsen, H.Ø. Why do we need to integrate farmer decision making and wildlife models for policy evaluation? Land Use Policy 2014, 38, 732–740. [Google Scholar] [CrossRef]
- Li, F.; Zhang, K.; Ren, J.; Yin, C.; Zhang, Y.; Nie, J. Driving mechanism for farmers to adopt improved agricultural systems in China: The case of rice-green manure crops rotation system. Agric. Syst. 2021, 192, 103202. [Google Scholar] [CrossRef]
- Ghanian, M.; Ghoochani, O.M.; Dehghanpour, M.; Taqipour, M.; Taheri, F.; Cotton, M. Understanding farmers’ climate adaptation intention in Iran: A protection-motivation extended model. Land Use Policy 2020, 94, 104553. [Google Scholar] [CrossRef]
- Hyland, J.J.; Heanue, K.; McKillop, J.; Micha, E. Factors underlying farmers’ intentions to adopt best practices: The case of paddock based grazing systems. Agric. Syst. 2018, 162, 97–106. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Gao, J.; Zhu, Y.; Zhao, R. Black soil protection in China: Policy evolution, realistic obstacles and optimization paths. J. Northeast. Univ. Soc. Sci. 2024, 26, 82. [Google Scholar]
- Cutforth, L.B.; Francis, C.A.; Lynne, G.D.; Mortensen, D.A.; Eskridge, K.M. Factors affecting farmers’ crop diversity decisions: An integrated approach. Am. J. Altern. Agric. 2001, 16, 168–176. [Google Scholar] [CrossRef]
- Greaves, M.; Zibarras, L.D.; Stride, C. Using the theory of planned behavior to explore environmental behavioral intentions in the workplace. J. Environ. Psychol. 2013, 34, 109–120. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H. Exploring the Factors Affecting Farmers’ Willingness to Cultivate Eco-Agriculture in the Qilian Mountain National Park Based on an Extended TPB Model. Land 2024, 13, 334. [Google Scholar] [CrossRef]
- De Leeuw, A.; Valois, P.; Ajzen, I.; Schmidt, P. Using the theory of planned behavior to identify key beliefs underlying pro environmental behavior in high-school students: Implications for educational interventions. J. Environ. Psychol. 2015, 42, 128–138. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, H.; Gong, C.; Wu, Z. The role of farmers’ green values in creation of green innovative intention and green technology adoption behavior: Evidence from farmers grain green production. Front. Psychol. 2022, 13, 980570. [Google Scholar] [CrossRef] [PubMed]
- Janmaimool, P. Application of protection motivation theory to investigate sustainable waste management behaviors. Sustainability 2017, 9, 1079. [Google Scholar] [CrossRef]
- Pieniak, Z.; Aertsens, J.; Verbeke, W. Subjective and objective knowledge as determinants of organic vegetables consumption. Food Qual. Prefer. 2010, 21, 581–588. [Google Scholar] [CrossRef]
- Maleksaeidi, H.; Keshavarz, M. What influences farmers’ intentions to conserve on-farm biodiversity? An application of the theory of planned behavior in fars province, Iran. Glob. Ecol. Conserv. 2019, 20, e00698. [Google Scholar] [CrossRef]
- Daxini, A.; Ryan, M.; O’Donoghue, C.; Barnes, A.P. Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy 2019, 85, 428–437. [Google Scholar] [CrossRef]
- Savari, M.; Gharechaee, H. Application of the extended theory of planned behavior to predict Iranian farmers’ intention for safe use of chemical fertilizers. J. Clean. Prod. 2020, 263, 121512. [Google Scholar] [CrossRef]
- Tama, R.A.Z.; Ying, L.; Yu, M.; Hoque, M.M.; Adnan, K.M.; Sarker, S.A. Assessing farmers’ intention towards conservation agriculture by using the Extended Theory of Planned Behavior. J. Environ. Manag. 2021, 280, 111654. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, Y.; Zhang, Y.; Nie, F.; Jia, X. Farmers’ Adoption of Agricultural Nature-Based Solutions in Northeast China: An Extended Theory of Planned Behavior Approach. Agriculture 2024, 14, 1650. [Google Scholar] [CrossRef]
- de Groot, J.I.; Steg, L. Mean or Green? Values, Morality and Environmental Significant Behavior. Conserv. Lett. 2009, 2, 61–66. [Google Scholar] [CrossRef]
- De Groot, J.I.; Steg, L. Relationships between value orientations, self-determined motivational types and pro-environmental behavioural intentions. J. Environ. Psychol. 2010, 30, 368–378. [Google Scholar] [CrossRef]
- Grebitus, C.; Steiner, B.; Veeman, M. The roles of human values and generalized trust on stated preferences when food is labeled with environmental footprints: Insights from Germany. Food Policy 2015, 52, 84–91. [Google Scholar] [CrossRef]
- Thøgersen, J.; Ölander, F. Human values and the emergence of a sustainable consumption pattern: A panel study. J. Econ. Psychol. 2002, 23, 605–630. [Google Scholar] [CrossRef]
- Dong, Y.; Gao, L. Consumer attitude and behavioural intention towards organic wine: The roles of consumer values and in volvement. Br. Food J. 2024, 126, 1743–1764. [Google Scholar] [CrossRef]
- Mehdi, S.M.; Rūtelionė, A.; Bhutto, M.Y. The Role of Environmental Values, Environmental Self-Identity, and Attitude in Generation Z’s Purchase Intentions for Organic Food. Environ. Res. Eng. Manag. 2024, 80, 75–87. [Google Scholar] [CrossRef]
- Prakash, G.; Choudhary, S.; Kumar, A.; Garza-Reyes, J.A.; Khan, S.A.R.; Panda, T.K. Do altruistic and egoistic values influence consumers’ attitudes and purchase intentions towards eco-friendly packaged products? An empirical investigation. J. Retail. Consum. Serv. 2019, 50, 163–169. [Google Scholar] [CrossRef]
- Steg, L.; Bolderdijk, J.W.; Keizer, K.; Perlaviciute, G. An integrated framework for encouraging pro-environmental behaviour: The role of values, situational factors and goals. J. Environ. Psychol. 2014, 38, 104–115. [Google Scholar] [CrossRef]
- Yuriev, A.; Dahmen, M.; Paillé, P.; Boiral, O.; Guillaumie, L. Pro-environmental behaviors through the lens of the theory of planned behavior: A scoping review. Resour. Conserv. Recycl. 2020, 155, 104660. [Google Scholar] [CrossRef]
- Çakırlı Akyüz, N.; Theuvsen, L. The impact of behavioral drivers on adoption of sustainable agricultural practices: The case of organic farming in Turkey. Sustainability 2020, 12, 6875. [Google Scholar] [CrossRef]
- Xia, M.; Xiang, P.; Mei, G.; Liu, Z. Drivers for the Adoption of Organic Farming: Evidence from an Analysis of Chinese Farmers. Agriculture 2023, 13, 2268. [Google Scholar] [CrossRef]
- Hoffmann, S.; Schlicht, J. The impact of different types of concernment on the consumption of organic food. Int. J. Consum. Stud. 2013, 37, 625–633. [Google Scholar] [CrossRef]
- Hou, J.; Hou, B. Farmers’ adoption of low-carbon agriculture in China: An extended theory of the planned behavior model. Sustainability 2019, 11, 1399. [Google Scholar] [CrossRef]
- Van, V.H.; Heo, Y.; Doanh, N.K. ‘They convert, I also convert’: The neighborhood effects and tea farmers’ intention to convert to organic farming. Renew. Agric. Food Syst. 2023, 38, e11. [Google Scholar] [CrossRef]
- Yazdanpanah, M.; Tajeri Moghadam, M.; Javan, F.; Deghanpour, M.; Sieber, S.; Falsafi, P. How rationality, morality, and fear shape willingness to carry out organic crop cultivation: A case study of farmers in southwestern Iran. Environ. Dev. Sustain. 2022, 24, 2145–2163. [Google Scholar] [CrossRef]
- Mzoughi, N. Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter? Ecol. Econ. 2011, 70, 1536–1545. [Google Scholar] [CrossRef]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef]
- López-Mosquera, N.; Sánchez, M. Theory of Planned Behavior and the Value-Belief-Norm Theory explaining willingness to pay for a suburban park. J. Environ. Manag. 2012, 113, 251–262. [Google Scholar] [CrossRef]
- Zhang, L.; Ruiz-Menjivar, J.; Luo, B.; Liang, Z.; Swisher, M.E. Predicting climate change mitigation and adaptation behaviors in agricultural production: A comparison of the theory of planned behavior and the Value-Belief-Norm Theory. J. Environ. Psychol. 2020, 68, 101408. [Google Scholar] [CrossRef]
- Hansen, T.; Sørensen, M.I.; Eriksen, M.-L.R. How the interplay between consumer motivations and values influences organic food identity and behavior. Food Policy 2018, 74, 39–52. [Google Scholar] [CrossRef]
- Diekmann, M.; Theuvsen, L. Value structures determining community supported agriculture: Insights from Germany. Agric. Hum. Values 2019, 36, 733–746. [Google Scholar] [CrossRef]
- Shin, H.W.; Fan, A.; Tang, H. Choosing green P2P accommodations: For the earth or for me? Int. J. Hosp. Manag. 2023, 114, 103553. [Google Scholar] [CrossRef]
- Clark, C.F.; Kotchen, M.J.; Moore, M.R. Internal and external influences on pro-environmental behavior: Participation in a green electricity program. J. Environ. Psychol. 2003, 23, 237–246. [Google Scholar] [CrossRef]
- Han, X.Z. Effects and suggestions of black soil protection and soil fertility increase in northeast China. Bull. Chin. Acad. Sci. 2018, 33, 206–212. [Google Scholar]
- Xing’an Daily. Ke You Qian Banner: Scientific grain storage helps “ground-stored grain” stand up. Xinhua Rural Revitalization, 14 September 2023. Available online: https://xczx.news.cn/2023-09/14/c_1212268032.htm (accessed on 21 October 2025).
- Chinese Academy of Sciences. Northeast Black Soil White Paper; Technical Report; Chinese Academy of Sciences: Beijing, China, 2020; Available online: https://www.cas.cn/yw/202107/W020210714418584895253.pdf (accessed on 21 October 2025). (In Chinese)
- Adnan, N.; Nordin, S.M.; Rahman, I.; Noor, A. Adoption of green fertilizer technology among paddy farmers: A possible solution for Malaysian food security. Land Use Policy 2017, 63, 38–52. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psychol. Bull. 1988, 103, 411. [Google Scholar] [CrossRef]
- Chaudhuri, S. Wage inequality in a dual economy and international mobility of factors: Do factor intensities always matter? Econ. Model. 2008, 25, 1155–1164. [Google Scholar] [CrossRef]
- Senger, I.; Borges, J.A.R.; Machado, J.A.D. Using the theory of planned behavior to understand the intention of small farmers in diversifying their agricultural production. J. Rural. Stud. 2017, 49, 32–40. [Google Scholar] [CrossRef]
- Di, Y.; You, N.; Dong, J.; Liao, X.; Song, K.; Fu, P. Recent soybean subsidy policy did not revitalize but stabilize the soybean planting areas in Northeast China. Eur. J. Agron. 2023, 147, 126841. [Google Scholar] [CrossRef]
- Bonke, V.; Musshoff, O. Understanding German farmer’s intention to adopt mixed cropping using the theory of planned behavior. Agron. Sustain. Dev. 2020, 40, 48. [Google Scholar] [CrossRef]
- Li, J.; Liu, G.; Chen, Y.; Li, R. Study on the influence mechanism of adoption of smart agriculture technology behavior. Sci. Rep. 2023, 13, 8554. [Google Scholar] [CrossRef] [PubMed]
- Steg, L.; Perlaviciute, G.; Van der Werff, E.; Lurvink, J. The significance of hedonic values for environmentally relevant attitudes, preferences, and actions. Environ. Behav. 2014, 46, 163–192. [Google Scholar] [CrossRef]
- Arya, B.; Chaturvedi, S.; Bhati, N.S. Extending the theory of planned behaviour to predict sustainable food consumption. Environ. Dev. Sustain. 2024, 26, 31277–31300. [Google Scholar] [CrossRef]
- Clayton, S.D. The Oxford Handbook of Environmental and Conservation Psychology; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Cameron, L.D.; Brown, P.M.; Chapman, J.G. Social value orientations and decisions to take proenvironmental action 1. J. Appl. Soc. Psychol. 1998, 28, 675–697. [Google Scholar] [CrossRef]
- Onwezen, M.C. Goal-framing theory for sustainable food behaviour: The added value of a moral goal frame across different contexts. Food Qual. Prefer. 2023, 105, 104758. [Google Scholar] [CrossRef]
- Li, W.; Ruiz-Menjivar, J.; Zhang, L.; Zhang, J. Climate change perceptions and the adoption of low-carbon agricultural technologies: Evidence from rice production systems in the Yangtze River Basin. Sci. Total Environ. 2021, 759, 143554. [Google Scholar] [CrossRef]
- Alam, M.N.; Ogiemwonyi, O.; Alshareef, R.; Alsolamy, M.; Mat, N.; Azizan, N.A. Do social media influence altruistic and egoistic motivation and green purchase intention towards green products? An experimental investigation. Clean. Eng. Technol. 2023, 15, 100669. [Google Scholar] [CrossRef]



| Variable | Category | Frequency | Percent (%) | 
|---|---|---|---|
| Cultivation size | ≤3.35 Ha | 72 | 24.16 | 
| 3.35–6.67 Ha | 93 | 31.21 | |
| >6.67 Ha | 133 | 44.63 | |
| Organization | Smallholder farms | 243 | 81.54 | 
| Family farm or cooperative | 57 | 18.46 | |
| Farm decision | Yes, and full-time farming | 264 | 88.59 | 
| Yes, and part-time farming | 25 | 8.39 | |
| No farm decision | 9 | 3.02 | |
| Age | Under 35 years | 14 | 4.70 | 
| 35–50 years | 139 | 46.64 | |
| Above 50 years | 145 | 48.66 | |
| Gender | Male | 294 | 98.66 | 
| Female | 4 | 1.34 | |
| Education | Under 6 years | 122 | 40.94 | 
| 7–9 years | 143 | 47.99 | |
| More than 9 years | 33 | 11.07 | 
| Construct | OVs | Measurement Items | Mean | S.D. | Factor Loading (λ) | Reliability and Validity Test | 
|---|---|---|---|---|---|---|
| Intention | IN1 | If there is a maize-soybean rotation project, I would like to participate. | 3.58 | 1.170 | 0.931 | AVE:0.609 C.R.:0.753 :0.750 | 
| IN2 | I tend to adopt maize-soybean rotation to improve the soil quality on my land. | 3.32 | 1.270 | 0.906 | ||
| IN3 | I tend to adopt maize-soybean rotation to promote healthier soil ecosystem. | 3.27 | 1.232 | 0.840 | ||
| Attitude | AT1 | The optimal use of maize-soybean rotation on my land is beneficial to me. | 3.61 | 1.096 | 0.698 | AVE:0.798 C.R.:0.922 :0.922 | 
| AT2 | The maize-soybean rotation benefits both agricultural product sales and consumers. | 3.60 | 1.100 | 0.802 | ||
| AT3 | The maize-soybean rotation is beneficial to ecological environment. | 3.62 | 1.135 | 0.618 | ||
| Perceived behavior control | PBC1 | I can address the risks of additional costs associated with maize-soybean rotation. | 3.32 | 1.352 | 0.695 | AVE:0.603 C.R.:0.819 :0.809 | 
| PBC2 | I believe scientists can help solve the challenges of applying rotation techniques. | 3.65 | 1.131 | 0.857 | ||
| PBC3 | I believe the government will support me in the implementation of rotation practices. | 3.78 | 1.085 | 0.769 | ||
| Subjective norm | SN1 | When I propose crop rotation, my relatives and friends around me will show a positive attitude. | 2.79 | 0.991 | 0.604 | AVE:0.504 C.R.:0.751 :0.707 | 
| SN2 | When I use rotation technology, village cadres or village planting experts will give affirmation. | 2.83 | 1.100 | 0.933 | ||
| SN3 | When other farmers adopt rotation technology and encourage me to follow it, I will do it. | 3.05 | 1.183 | 0.680 | ||
| Egoism | EG1 | I believe people act in their own interests most of the time. | 3.67 | 1.197 | 0.728 | AVE:0.566 C.R.:0.791 :0.777 | 
| EG2 | People give things to others primarily to obtain something in return. | 3.21 | 1.304 | 0.882 | ||
| EG3 | When people do good for others, it is often driven by vanity. | 3.17 | 1.315 | 0.692 | ||
| Altruism | AL1 | People are really selfless in helping others. | 3.41 | 1.248 | 0.911 | AVE:0.596 C.R.:0.814 :0.807 | 
| AL2 | People always help others without expecting anything in return. | 3.42 | 1.306 | 0.567 | ||
| AL3 | People are able to put the interests of others before their own. | 3.36 | 1.347 | 0.603 | ||
| Biospheric | BI1 | Nature should not be disturbed. | 3.81 | 1.117 | 0.830 | AVE:0.505 C.R.:0.745 :0.726 | 
| BI2 | Human activities can easily disrupt the balance of nature. | 3.89 | 0.968 | 0.686 | ||
| BI3 | Nature must be protected from human harm. | 3.95 | 1.094 | 0.606 | 
| Construct | Intention | BI | SN | AT | PBC | EG | AL | 
|---|---|---|---|---|---|---|---|
| Intention | 1 | ||||||
| BI | 0.187 ** | 1 | |||||
| SN | 0.020 | −0.057 | 1 | ||||
| AT | 0.460 ** | 0.213 ** | 0.047 | 1 | |||
| PBC | 0.426 ** | 0.110 | −0.019 | 0.503 ** | 1 | ||
| EG | 0.007 | 0.165 ** | −0.020 | 0.020 | 0.083 | 1 | |
| AL | 0.068 | 0.107 | −0.044 | 0.217 ** | 0.122 * | −0.077 | 1 | 
| Fit Index | Index | Recommended Level | V-TPB Model | GOF Judgment | 
|---|---|---|---|---|
| Absolute fit indices | χ2/df | < 2.00 | 1.293 | Supported | 
| RMR | <0.05 | 0.075 | Supported | |
| RMSEA | <0.08 | 0.031 | Supported | |
| GFI | >0.90 | 0.931 | Supported | |
| AGFI | >0.90 | 0.912 | Supported | |
| Incremental fit indices | NFI | >0.90 | 0.912 | Supported | 
| IFI | >0.90 | 0.978 | Supported | |
| TLI | >0.90 | 0.974 | Supported | |
| CFI | >0.90 | 0.978 | Supported | |
| Parsimony fit indices | PNFI | >0.50 | 0.777 | Supported | 
| PCFI | >0.50 | 0.834 | Supported | 
| Construct | Intention | AT | PBC | SN | EG | AL | BI | 
|---|---|---|---|---|---|---|---|
| Intention | 0.609 | ||||||
| AT | 0.551 | 0.798 | |||||
| PBC | 0.522 | 0.541 | 0.603 | ||||
| SN | 0.026 | 0.000 | 0.000 | 0.504 | |||
| EG | 0.007 | −0.038 | 0.002 | 0.000 | 0.791 | ||
| AL | 0.079 | 0.173 | 0.213 | 0.314 | 0.008 | 0.596 | |
| BI | 0.209 | 0.188 | 0.342 | 0.273 | 0.071 | 0.218 | 0.505 | 
| Paths | Std. Estimate | S.E. | C.R. | Supported | 
|---|---|---|---|---|
| H1: AT → Intention | 0.384 *** | 0.076 | 5.160 | Yes | 
| SN → Intention | 0.018 | 0.085 | 0.286 | No | 
| PBC → Intention | 0.323 *** | 0.090 | 4.153 | Yes | 
| H2a: EG → Attitude | −0.052 | 0.073 | −0.933 | No | 
| H2b: AL → Attitude | 0.148 *** | 0.060 | 2.573 | Yes | 
| H2c: BI → Attitude | 0.180 *** | 0.056 | 3.005 | Yes | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Oyetunde-Usman, Z.; Willcock, S.; Zhang, M.; Jiang, N.; Zhang, L.; Zhang, L.; Su, Y.; Huo, Z.; Xu, C.; et al. Farmers’ Willingness to Adopt Maize-Soybean Rotation Based on the Extended Theory of Planned Behavior: Evidence from Northeast China. Agriculture 2025, 15, 2264. https://doi.org/10.3390/agriculture15212264
Zhang Y, Oyetunde-Usman Z, Willcock S, Zhang M, Jiang N, Zhang L, Zhang L, Su Y, Huo Z, Xu C, et al. Farmers’ Willingness to Adopt Maize-Soybean Rotation Based on the Extended Theory of Planned Behavior: Evidence from Northeast China. Agriculture. 2025; 15(21):2264. https://doi.org/10.3390/agriculture15212264
Chicago/Turabian StyleZhang, Yunzheng, Zainab Oyetunde-Usman, Simon Willcock, Minglong Zhang, Ning Jiang, Luran Zhang, Li Zhang, Yu Su, Zongyi Huo, Cailong Xu, and et al. 2025. "Farmers’ Willingness to Adopt Maize-Soybean Rotation Based on the Extended Theory of Planned Behavior: Evidence from Northeast China" Agriculture 15, no. 21: 2264. https://doi.org/10.3390/agriculture15212264
APA StyleZhang, Y., Oyetunde-Usman, Z., Willcock, S., Zhang, M., Jiang, N., Zhang, L., Zhang, L., Su, Y., Huo, Z., Xu, C., Chen, Y., Meng, Q., & Jia, X. (2025). Farmers’ Willingness to Adopt Maize-Soybean Rotation Based on the Extended Theory of Planned Behavior: Evidence from Northeast China. Agriculture, 15(21), 2264. https://doi.org/10.3390/agriculture15212264
 
        





 
       