Post-Harvest Disease Control Using Bacteriophages: Current Strategies, Practical Applications, and Future Trends
Abstract
1. Introduction: The Need for Sustainable Post-Harvest Disease Management
2. Methodology
3. Delivery Methods for Bacteriophage Applications in Post-Harvest Systems
4. Case Studies and Recent Advances
5. Phage Formulations and Enhancements
6. Regulatory and Safety Considerations
7. Future Directions and Research Needs
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Anusha, M.; Sri, K.R.; Lokesh, M.; Mrudula Deepthi, N.; Durga Malleswari, M. Postharvest Management Techniques for Improved Shelf Life of Horticultural Crops: A Review. J. Exp. Agric. Int. 2024, 46, 362–380. [Google Scholar] [CrossRef]
- Satheesan, A. Environmental Impacts of Post-Harvest Loss of Onions. Int. Res. J. Mod. Eng. Technol. Sci. 2024, 6, 89–95. [Google Scholar] [CrossRef]
- Ling, L.; Wang, Y.; Cheng, W.; Jiang, K.; Luo, H.; Pang, M.; Yue, R. Research Progress of Volatile Organic Compounds Produced by Plant Endophytic Bacteria in Control of Postharvest Diseases of Fruits and Vegetables. World J. Microbiol. Biotechnol. 2023, 39, 149. [Google Scholar] [CrossRef] [PubMed]
- Raynaldo, F.A.; Xu, Y.; Yolandani, Y.; Wang, Q.; Wu, B.; Li, D. Biological Control and Other Alternatives to Chemical Fungicides in Controlling Postharvest Disease of Fruits Caused by Alternaria alternata and Botrytis cinerea. Food Innov. Adv. 2024, 3, 135–143. [Google Scholar] [CrossRef]
- Kjemtrup, S.; Nimchuk, Z.; Dangl, J.L. Delivery of Virulence Genes: Type III Secretion. Curr. Opin. Microbiol. 2000, 3, 73–78. [Google Scholar] [CrossRef]
- Jamil, A. Antifungal and Plant Growth Promoting Activity of Trichoderma Spp. Against Fusarium oxysporum f. Sp. Lycopersici Colonizing Tomato. J. Plant Prot. Res. 2021, 61, 243–253. [Google Scholar] [CrossRef]
- Obradovic, A.; Jones, J.B.; Momol, M.T.; Olson, S.M.; Jackson, L.E.; Balogh, B.; Guven, K.; Iriarte, F.B. Integration of Biological Control Agents and Systemic Acquired Resistance Inducers against Bacterial Spot on Tomato. Plant Dis. 2005, 89, 712–716. [Google Scholar] [CrossRef]
- Halawa, E.M. Challenges of Bacteriophages Application in Controlling Bacterial Plant Diseases and How to Overcome Them. J. Genet. Eng. Biotechnol. 2023, 21, 98. [Google Scholar] [CrossRef]
- Altintas, Z.; Pocock, J.; Thompson, K.A.; Tothill, I.E. Comparative Investigations for Adenovirus Recognition and Quantification: Plastic or Natural Antibodies? Biosens. Bioelectron. 2015, 74, 996–1004. [Google Scholar] [CrossRef]
- Al-Hindi, R.R.; Teklemariam, A.D.; Alharbi, M.G.; Alotibi, I.; Azhari, S.A.; Qadri, I.; Alamri, T.; Harakeh, S.; Applegate, B.M.; Bhunia, A.K. Bacteriophage-Based Biosensors: A Platform for Detection of Foodborne Bacterial Pathogens from Food and Environment. Biosensors 2022, 12, 905. [Google Scholar] [CrossRef]
- Merabishvili, M.; Vervaet, C.; Pirnay, J.P.; de Vos, D.; Verbeken, G.; Mast, J.; Chanishvili, N.; Vaneechoutte, M. Stability of Staphylococcus aureus Phage ISP after Freeze-Drying (Lyophilization). PLoS ONE 2013, 8, e68797. [Google Scholar] [CrossRef] [PubMed]
- Stobnicka-Kupiec, A. Bakteriofagi Jako Czynniki Biokontroli Populacji Niepożądanych Bakterii. Bezp. Pr. Nauka Prakt. 2024, 637, 22–27. [Google Scholar] [CrossRef]
- Połaska, M.; Sokołowska, B. Review Bacteriophages—A New Hope or a Huge Problem in the Food Industry. AIMS Microbiol. 2019, 5, 324–347. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, S.; Jung, H.; Koo, B.K.; Han, J.A.; Lee, H.S. Exploiting Bacterial Genera as Biocontrol Agents: Mechanisms, Interactions and Applications in Sustainable Agriculture. J. Plant Biol. 2023, 66, 485–498. [Google Scholar] [CrossRef]
- Sallam, N.A.; Nagy Riad, S.; Mohamed, M.S.; Seef El-Eslam, A. Formulations of Bacillus spp. and Pseudomonas fluorescens for biocontrol of cantaloupe root rot caused by Fusarium solani. J. Plant Prot. Res. 2013, 53, 296–300. [Google Scholar] [CrossRef]
- Costa, M.J.; Pastrana, L.M.; Teixeira, J.A.; Sillankorva, S.M.; Cerqueira, M.A. Bacteriophage Delivery Systems for Food Applications: Opportunities and Perspectives. Viruses 2023, 15, 1271. [Google Scholar] [CrossRef]
- Wang, X.; Huang, J.; Zhang, Y.; Zeng, H.; Li, W.; Wang, Y. Design and Application of Antibacterial Bioactive Films for Food Preservation: A Review. J. Agric. Food Chem. 2025, 73, 19244–19261. [Google Scholar] [CrossRef]
- Narayanan, K.B.; Bhaskar, R.; Han, S.S. Bacteriophages: Natural Antimicrobial Bioadditives for Food Preservation in Active Packaging. Int. J. Biol. Macromol. 2024, 276, 133945. [Google Scholar] [CrossRef]
- Wagh, R.V.; Priyadarshi, R.; Rhim, J.W. Novel Bacteriophage-Based Food Packaging: An Innovative Food Safety Approach. Coatings 2023, 13, 609. [Google Scholar] [CrossRef]
- Malik, D.J. Bacteriophage Encapsulation Using Spray Drying for Phage Therapy. Curr. Issues Mol. Biol. 2021, 40, 303–316. [Google Scholar] [CrossRef]
- Wdowiak, M.; Paczesny, J.; Raza, S. Enhancing the Stability of Bacteriophages Using Physical, Chemical, and Nano-Based Approaches: A Review. Pharmaceutics 2022, 14, 1936. [Google Scholar] [CrossRef] [PubMed]
- Komárková, M.; Benešík, M.; Černá, E.; Sedláčková, L.; Moša, M.; Vojtová, L.; Franc, A.; Pantůček, R. The Pharmaceutical Quality of Freeze-Dried Tablets Containing Therapeutic Bacteriophages against Pseudomonas aeruginosa and Staphylococcus aureus. Int. J. Pharm. 2025, 671, 125199. [Google Scholar] [CrossRef] [PubMed]
- Śliwka, P.; Skaradziński, G.; Dusza, I.; Grzywacz, A.; Skaradzińska, A. Freeze-Drying of Encapsulated Bacteriophage T4 to Obtain Shelf-Stable Dry Preparations for Oral Application. Pharmaceutics 2023, 15, 2792. [Google Scholar] [CrossRef] [PubMed]
- Vinner, G.K.; Richards, K.; Leppanen, M.; Sagona, A.P.; Malik, D.J. Microencapsulation of Enteric Bacteriophages in a pH-Responsive Solid Oral Dosage Formulation Using a Scalable Membrane Emulsification Process. Pharmaceutics 2019, 11, 475. [Google Scholar] [CrossRef]
- Aziz, N.S.; Ibrahim, S.; Zaharinie, T.; Tang, S.S. Bacteriophage Encapsulation—Trends and Potential Applications in Aquaculture. Aquaculture 2025, 594, 741398. [Google Scholar] [CrossRef]
- Castro-Mejía, J.L.; Muhammed, M.K.; Kot, W.; Neve, H.; Franz, C.M.A.P.; Hansen, L.H.; Vogensen, F.K.; Nielsen, D.S. Optimizing Protocols for Extraction of Bacteriophages Prior to Metagenomic Analyses of Phage Communities in the Human Gut. Microbiome 2015, 3, 64. [Google Scholar] [CrossRef]
- Sugimoto, R.; Lee, J.H.; Lee, J.H.; Jin, H.E.; Yoo, S.Y.; Lee, S.W. Bacteriophage Nanofiber Fabrication Using near Field Electrospinning. RSC Adv. 2019, 9, 39111–39118. [Google Scholar] [CrossRef]
- Martinez-Soto, C.E.; Zaitoon, A.; Wang, C.; Barbut, S.; Balamurugan, S.; Lim, L.-T.; Khursigara, C.M.; Anany, H. Phage-Loaded Electrospun Nonwovens with Antimicrobial Properties Against Salmonella enteritidis. PHAGE 2025, 6, 212–221. [Google Scholar] [CrossRef]
- Matinfar, G.; Ye, H.; Bashiry, M.; Hashami, Z.; Yang, T. Electrospinning-Based Sensing Technologies: Opportunities for Food Applications. Compr. Rev. Food Sci. Food Saf. 2024, 23, e13415. [Google Scholar] [CrossRef]
- Park, H.; Kim, J.; Kim, M.; Park, Y.; Ryu, S. Development of New Strategy Combining Heat Treatment and Phage Cocktail for Post-Contamination Prevention. Food Res. Int. 2021, 145, 110415. [Google Scholar] [CrossRef]
- Bolsan, A.C.; Sampaio, G.V.; Rodrigues, H.C.; Silva De Souza, S.; Edwiges, T.; Celant De Prá, M.; Gabiatti, N.C. Phage Formulations and Delivery Strategies: Unleashing the Potential against Antibiotic-Resistant Bacteria. Microbiol. Res. 2024, 282, 127662. [Google Scholar] [CrossRef] [PubMed]
- Temsaah, H.R.; Abdelkader, K.; Ahmed, A.E.; Elgiddawy, N.; Eldin, Z.E.; Elshebrawy, H.A. Chitosan Nano-Formulation Enhances Stability and Bactericidal Activity of the Lytic Phage. BMC Biotechnol. 2025, 25, 3. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, K.; Meshram, S. The Evolution of Phage Therapy: A Comprehensive Review of Current Applications and Future Innovations. Cureus 2024, 16, e70414. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.J.; Lim, M.C.; Woo, M.A.; Kim, B.S.; Lim, J.A. Development of Stabilizing Solution for Long-Term Storage of Bacteriophages at Room Temperature and Application to Control Foodborne Pathogens. Viruses 2024, 16, 1155. [Google Scholar] [CrossRef]
- Manohar, P.; Ramesh, N. Improved Lyophilization Conditions for Long-Term Storage of Bacteriophages. Sci. Rep. 2019, 9, 15242. [Google Scholar] [CrossRef]
- Korehei, R.; Kadla, J. Incorporation of T4 Bacteriophage in Electrospun Fibres. J. Appl. Microbiol. 2013, 114, 1425–1434. [Google Scholar] [CrossRef]
- Balcão, V.M.; Glasser, C.A.; Chaud, M.V.; del Fiol, F.S.; Tubino, M.; Vila, M.M.D.C. Biomimetic Aqueous-Core Lipid Nanoballoons Integrating a Multiple Emulsion Formulation: A Suitable Housing System for Viable Lytic Bacteriophages. Colloids Surf. B Biointerfaces 2014, 123, 478–485. [Google Scholar] [CrossRef]
- Alves, D.; Cerqueira, M.A.; Pastrana, L.M.; Sillankorva, S. Entrapment of a Phage Cocktail and Cinnamaldehyde on Sodium Alginate Emulsion-Based Films to Fight Food Contamination by Escherichia coli and Salmonella enteritidis. Food Res. Int. 2020, 128, 108791. [Google Scholar] [CrossRef]
- Vonasek, E.L.; Choi, A.H.; Sanchez, J.; Nitin, N. Incorporating Phage Therapy into WPI Dip Coatings for Applications on Fresh Whole and Cut Fruit and Vegetable Surfaces. J. Food Sci. 2018, 83, 1871–1879. [Google Scholar] [CrossRef]
- Kilic, T.; Bali, E.B. Biofilm Control Strategies in the Light of Biofilm-Forming Microorganisms. World J. Microbiol. Biotechnol. 2023, 39, 131. [Google Scholar] [CrossRef]
- Boggione, D.M.G.; Batalha, L.S.; Gontijo, M.T.P.; Lopez, M.E.S.; Teixeira, A.V.N.C.; Santos, I.J.B.; Mendonça, R.C.S. Evaluation of Microencapsulation of the UFV-AREG1 Bacteriophage in Alginate-Ca Microcapsules Using Microfluidic Devices. Colloids Surf. B Biointerfaces 2017, 158, 182–189. [Google Scholar] [CrossRef]
- García-Anaya, M.C.; Sepulveda, D.R.; Zamudio-Flores, P.B.; Acosta-Muñiz, C.H. Bacteriophages as Additives in Edible Films and Coatings. Trends Food Sci. Technol. 2023, 132, 150–161. [Google Scholar] [CrossRef]
- Vila, M.M.D.C.; Cinto, E.C.; Pereira, A.O.; Baldo, D.Â.; Oliveira, J.M., Jr.; Balcão, V.M. An Edible Antibacterial Coating Integrating Lytic Bacteriophage Particles for the Potential Biocontrol of Salmonella enterica in Ripened Cheese. Polymers 2024, 16, 680. [Google Scholar] [CrossRef]
- Cui, H.; Yang, X.; Li, C.; Ye, Y.; Chen, X.; Lin, L. Enhancing Anti-E. coli O157:H7 Activity of Composite Phage Nanofiber Film by D-Phenylalanine for Food Packaging. Int. J. Food Microbiol. 2022, 376, 109762. [Google Scholar] [CrossRef]
- Iriarte, F.B.; Obradović, A.; Wernsing, M.H.; Jackson, L.E.; Balogh, B.; Hong, J.A.; Momol, M.T.; Jones, J.B.; Vallad, G.E. Soil-Based Systemic Delivery and Phyllosphere in Vivo Propagation of Bacteriophages. Bacteriophage 2012, 2, e23530. [Google Scholar] [CrossRef]
- Liu, S.; Quek, S.; Huang, K. Advanced Strategies to Overcome the Challenges of Bacteriophage-Based Antimicrobial Treatments in Food and Agricultural Systems. Crit. Rev. Food Sci. Nutr. 2024, 64, 12574–12598. [Google Scholar] [CrossRef]
- Gillies, K.; Gaynor, P.; Gillies, K.O.; Gaynor, P. OFAS/GNP for Their Use in Making a Suitability Determination for the Described Use as Provided for Under Appendix A, Section C of the MOU. Please Promptly Contact Me Should You Have Any Questions Regarding the Submitted Notice; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017. [Google Scholar]
- Environmental Protection Agency. Pesticide Product Registration; Receipt of Applications for New Active Ingredients. Fed. Regist. 2024, 89, 68156. [Google Scholar]
- Bugaeva, E.N.; Voronina, M.V.; Vasiliev, D.M.; Lukianova, A.A.; Landyshev, N.N.; Ignatov, A.N.; Miroshnikov, K.A. Use of a Specific Phage Cocktail for Soft Rot Control on Ware Potatoes: A Case Study. Viruses 2021, 13, 1095. [Google Scholar] [CrossRef] [PubMed]
- Korniienko, N.; Kharina, A.; Budzanivska, I.; Burketová, L.; Kalachova, T. Phages of Phytopathogenic Bacteria: High Potential, but Challenging Application. Plant Prot. Sci. 2022, 58, 89–91. [Google Scholar] [CrossRef]
- Snyder, A.B.; Perry, J.J.; Yousef, A.E. Developing and Optimizing Bacteriophage Treatment to Control Enterohemorrhagic Escherichia coli on Fresh Produce. Int. J. Food Microbiol. 2016, 236, 90–97. [Google Scholar] [CrossRef]
- Davies, T.; Cando-Dumancela, C.; Liddicoat, C.; Dresken, R.; Damen, R.H.; Edwards, R.A.; Ramesh, S.A.; Breed, M.F. Ecological Phage Therapy: Can Bacteriophages Help Rapidly Restore the Soil Microbiome? Ecol. Evol. 2024, 14, e70185. [Google Scholar] [CrossRef] [PubMed]
- Dong, L. Phage Soil Additives: A Frontier in Agricultural Health. Theor. Nat. Sci. 2024, 37, 103–108. [Google Scholar] [CrossRef]
- Kobra, N.; Jalil, K.; Youbert, G. Effects of Three Glomus Species As Biocontrol Agents Against Verticillium-Induced Wilt in Cotton. J. Plant Prot. Res. 2009, 49, 186–189. [Google Scholar] [CrossRef]
- Peter, O.; Imran, M.; Shaffique, S.; Kang, S.M.; Rolly, N.K.; Felistus, C.; Bilal, S.; Dan-Dan, Z.; Injamum-Ul-Hoque, M.; Kwon, E.H.; et al. Combined Application of Melatonin and Bacillus Sp. Strain IPR-4 Ameliorates Drought Stress Tolerance via Hormonal, Antioxidant, and Physiomolecular Signaling in Soybean. Front. Plant Sci. 2024, 15, 1274964. [Google Scholar] [CrossRef]
- Baliyan, N.; Dhiman, S.; Dheeman, S.; Vishnoi, V.K.; Kumar, S.; Maheshwari, D.K. Bacteriophage Cocktails as Antibacterial Agents in Crop Protection. Environ. Sustain. 2022, 5, 305–311. [Google Scholar] [CrossRef]
- Sauvageau, D.; Cooper, D.G. Two-Stage, Self-Cycling Process for the Production of Bacteriophages. Microb. Cell Factories 2010, 9, 81. [Google Scholar] [CrossRef]
- Malik, D.J.; Goncalves-Ribeiro, H.; GoldSchmitt, D.; Collin, J.; Belkhiri, A.; Fernandes, D.; Weichert, H.; Kirpichnikova, A. Advanced Manufacturing, Formulation and Microencapsulation of Therapeutic Phages. Clin. Infect. Dis. 2023, 77, S370–S383. [Google Scholar] [CrossRef]
- Buttimer, C.; McAuliffe, O.; Ross, R.P.; Hill, C.; O’Mahony, J.; Coffey, A. Bacteriophages and Bacterial Plant Diseases. Front. Microbiol. 2017, 8, 34. [Google Scholar] [CrossRef]
- Fernández, L.; Gutiérrez, D.; Rodríguez, A.; García, P. Application of Bacteriophages in the Agro-Food Sector: A Long Way toward Approval. Front. Cell. Infect. Microbiol. 2018, 8, 296. [Google Scholar] [CrossRef]
- Meaden, S.; Koskella, B. Exploring the Risks of Phage Application in the Environment. Front. Microbiol. 2013, 4, 358. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, S.; Zhang, X.; Zhang, K.; Liu, W.; Zhang, R.; Zhang, Z. Enterobacter hormaechei in the Intestines of Housefly Larvae Promotes Host Growth by Inhibiting Harmful Intestinal Bacteria. Parasites Vectors 2021, 14, 598. [Google Scholar] [CrossRef]
- Bhattacharyya, C.; Banerjee, S.; Acharya, U.; Mitra, A.; Mallick, I.; Haldar, A.; Haldar, S.; Ghosh, A.; Ghosh, A. Evaluation of Plant Growth Promotion Properties and Induction of Antioxidative Defense Mechanism by Tea Rhizobacteria of Darjeeling, India. Sci. Rep. 2020, 10, 15536. [Google Scholar] [CrossRef]



| Method | Advantages | Disadvantages | Examples | References |
|---|---|---|---|---|
| Cooling | Limits bacterial growth | High energy cost, does not eliminate pathogens | Storage of fresh fruits, vegetables | [1,2] |
| Chemical fungicides | Effective in pathogen control | Chemical residues, toxicity, resistance | Imidazoles, fungicides | [4] |
| Convection drying | Low cost, ease of use | Loss of colour, texture, nutrients | Dried fruits and vegetables | [3] |
| Freeze drying | Retention of bioactive compounds, better quality | High costs, complex process | Lyophilized products | [11,12] |
| Freezing | Slows down and microorganism development | Structural damage, loss of turgor and texture | Frozen fruits and vegetables | [3] |
| Bacteriophages | Selectivity towards pathogens, biodegradability, lack of toxicity | Narrow spectrum of action, need for strain matching | PhageGuard, AgriPhage | [7,12,13] |
| Method | Description | Advantages | Challenges | Applications | References |
|---|---|---|---|---|---|
| Encapsulation | Encasing phages in protective carriers to shield them from environmental stressors. | Enhances stability, protects against pH, temperature, and enzymatic degradation. | Production cost, scalability. | Agriculture, food safety, medical therapeutics. | [23,31,32] |
| Lyophilization (Freeze-drying) | Removes water via sublimation, transforming phages into dry, stable powders. | Extends shelf-life, allows for diverse delivery forms (capsules, inhalables). | Costly, requires stabilizers to maintain activity. | Food preservation, pharmaceuticals. | [11,31,33] |
| Nanoparticle Encapsulation (e.g., Chitosan Nanoparticles) | Phages incorporated into nanoparticles for controlled release. | Improves thermal stability, enhances targeted bacterial interactions. | Potential regulatory hurdles, formulation complexity. | Antimicrobial coatings, plant protection. | [23,32] |
| Synergistic Combinations (Phages + Antimicrobials/Antibiotics) | Integrating phages with bacteriocins or antibiotics to enhance efficacy. | Effective against biofilms, combats multidrug-resistant bacteria. | Risk of resistance development, regulatory concerns. | Post-harvest protection. | [31,33] |
| Ion Additives (Sodium, Magnesium, Sugars) | Use of stabilizers to improve phage viability under varying conditions. | Cost-effective, enhances phage integrity at room temperature. | Requires optimization for different environments. | Post-harvest disease control, biopreservation. | [34,35] |
| Application Method | Commercial Use | Research/Trial Use | Advantages | Limitations | Example Commercial Products | Efficacy (from Literature) | References |
|---|---|---|---|---|---|---|---|
| Dipping/ immersion | ✓ | ✓ | Uniform coverage, simple process | Not suitable for all products | SalmoFresh, ShigaShield (Intralytix, Inc., Baltimore, MD, USA) | 1–2 log reduction | [37] |
| Edible coatings/ films | ✓ | ✓ | Targeted, safe, consumer-friendly | Stability, release kinetics | Listex™, PhageGuard (Listex Global, Sunnyvale, CA, USA) | Up to 99% reduction; 1–2 log drop | [26,28] |
| Spray/ fogging | ✓ | ✓ | Field-scale, easy to apply | Environmental sensitivity | AgriPhage (OmniLytics, Inc., Sandy, UT, USA) | 10–12-fold reduction | [36,49] |
| Regulatory Level | Legal Act/Guidelines | Key Provisions/Application to Phages | Status of Bacteriophages |
|---|---|---|---|
| European Union | Regulation (EC) No 1829/2003 on genetically modified food and feed | Establishes rules for genetically modified organisms (GMOs), which may apply to phages if they are genetically modified or their use falls under this regulation’s scope. | No direct classification. |
| Commission Regulation (EC) No 2073/2005 on microbiological criteria for foodstuffs | Provides additional regulatory guidelines that may apply to phage use in food systems. | May influence how phages are used to control pathogens in food systems. | |
| EU Green Deal and Farm to Fork Strategy | Promote the reduction in pesticides and the development of biological control methods; phages align with these goals as a sustainable alternative. | Promoted as consistent with sustainability goals and chemical reduction targets. | |
| Poland | Plant Protection Act of 8 March 2013 (Dz.U. z 2020 r. poz. 221) [2] | Defines plant protection products and mandates their registration before being placed on the market or used. Poland, as an EU member, is bound by EU regulations. | Not recognized as plant protection products under this law, meaning they are not required to be registered as ready plant protection products. |
| Good Agricultural Practice (GAP) | A set of principles designed to ensure proper farm management, environmental protection, and food safety. | Can be used within the framework of GAP and does not require formal registration or authorization. This is their primary pathway for use in Poland. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffmann, A.; Sadowska, K.; Zenelt, W.; Krawczyk, K. Post-Harvest Disease Control Using Bacteriophages: Current Strategies, Practical Applications, and Future Trends. Agriculture 2025, 15, 2261. https://doi.org/10.3390/agriculture15212261
Hoffmann A, Sadowska K, Zenelt W, Krawczyk K. Post-Harvest Disease Control Using Bacteriophages: Current Strategies, Practical Applications, and Future Trends. Agriculture. 2025; 15(21):2261. https://doi.org/10.3390/agriculture15212261
Chicago/Turabian StyleHoffmann, Anna, Katarzyna Sadowska, Weronika Zenelt, and Krzysztof Krawczyk. 2025. "Post-Harvest Disease Control Using Bacteriophages: Current Strategies, Practical Applications, and Future Trends" Agriculture 15, no. 21: 2261. https://doi.org/10.3390/agriculture15212261
APA StyleHoffmann, A., Sadowska, K., Zenelt, W., & Krawczyk, K. (2025). Post-Harvest Disease Control Using Bacteriophages: Current Strategies, Practical Applications, and Future Trends. Agriculture, 15(21), 2261. https://doi.org/10.3390/agriculture15212261

