Application of Acetochlor Nanocapsule Formulation in Sichuan Ophiopogon japonicus Fields
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Acetochlor Nanocapsules
2.3. Field Experimental Condition
2.3.1. Field Management and Experimental Design
2.3.2. Herbicide Treatments and Application
2.3.3. Target Weed Spectrum
2.4. Herbicide Efficacy in Weed Control
number of weeds in unweeded control plot) × 100
plot/fresh weight of weeds in unweeded control plot) × 100
2.5. Effect of Herbicide on the Agronomic Traits and Yield of O. japonicus
2.6. Quality Determination of O. japonicus
2.7. Data Processing
3. Results and Discussion
3.1. Control Efficacy of Acetochlor Nanocapsules on Weeds
3.2. Effect of Herbicide on the Agronomic Traits and Yield of O. japonicus
3.3. Correlation Analysis Between Agronomic Traits and Yield of O. japonicus
3.4. Effect of Herbicide on the Nutritional Quality of O. japonicus
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Su, S. Review of amide herbicides. Pesticide 2002, 11, 1–5. [Google Scholar] [CrossRef]
- Liu, X.S.; Li, C.Y. Cytochrome P450 CYP90D5 Enhances Degradation of the Herbicides Isoproturon and Acetochlor in Rice Plants and Grains. J. Agric. Food Chem. 2023, 71, 17399–17409. [Google Scholar] [CrossRef]
- Ma, T.; Ma, L.; Wei, R.; Xu, L.; Ma, Y.; Dang, J.; Chen, Z.; Ma, S.; Li, S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. Environ. Toxicol. Chem. 2024, 43, 2005–2019. [Google Scholar] [CrossRef]
- Su, X.N.; Zhang, J.J.; Liu, J.T.; Zhang, N.; Ma, L.Y.; Lu, F.F.; Chen, Z.J.; Shi, Z.; Si, W.J.; Liu, C.; et al. Biodegrading Two Pesticide Residues in Paddy Plants and the Environment by a Genetically Engineered Approach. J. Agric. Food Chem. 2019, 67, 4947–4957. [Google Scholar] [CrossRef]
- Qu, Z.; Bai, X.; Zhang, T.; Yang, Z. Ultrasound-assisted extraction and solid-phase extraction for the simultaneous determination of five amide herbicides in fish samples by gas chromatography with electron capture detection. J. Sep. Sci. 2017, 40, 1142–1149. [Google Scholar] [CrossRef]
- Cai, Y.; Li, L.; Zhang, J.; Li, Z.; Zhang, F.; Xu, Y.; Tai, Z. Development of a MOF-based SPE method combined with GC-MS for simultaneous determination of alachlor, acetochlor and pretilachlor in field soil. Environ. Monit. Assess. 2023, 195, 569. [Google Scholar] [CrossRef]
- Kutasy, B.; Hegedus, G.; Kiniczky, M.; Pallos, J.P.; Nagy, A.; Pocsi, I.; Pakozdi, K.; Kallai, M.; Weingart, C.; Andor, K.; et al. Garlic Extracts Nanoliposome as an Enhancer of Bioavailability of ABA and Thiamine Content and as an Antifungal Agent Against Fusarium oxysporum f. sp. pisi Infecting Pisum sativum. Agronomy 2025, 15, 991. [Google Scholar] [CrossRef]
- Tao, R.; You, C.; Qu, Q.; Zhang, X.; Deng, Y.; Ma, W.; Huang, C. Recent advances in the design of controlled- and sustained-release micro/nanocarriers of pesticide. Environ. Sci. Nano 2023, 10, 351–371. [Google Scholar] [CrossRef]
- Jain, H.V.; Dhiman, S.; Ansari, N.G. Recent trends in techniques, process and sustainability of slow-release formulation for pesticides. Ind. Crops Prod. 2024, 216, 118764. [Google Scholar] [CrossRef]
- Guo, Y.; Yang, Q.; Yan, W.; Li, B.; Qian, K.; Li, T.; Xiao, W.; He, L. Controlled release of acetochlor from poly (butyl methacrylate-diacetone acrylamide) based formulation prepared by nanoemulsion polymerisation method and evaluation of the efficacy. Int. J. Environ. Anal. Chem. 2014, 94, 1001–1012. [Google Scholar] [CrossRef]
- Commission, C.P. Pharmacopoeia of the People’s Republic of China (Part One); Chinese Pharmacopoeia Commission: Beijing, China, 2020.
- Liu, Q.; Lu, J.-J.; Hong, H.-J.; Yang, Q.; Wang, Y.; Chen, X.-J. Ophiopogon japonicus and its active compounds: A review of potential anticancer effects and underlying mechanisms. Phytomedicine 2023, 113, 154718. [Google Scholar] [CrossRef] [PubMed]
- Lei, F.; Weckerle, C.S.; Heinrich, M. Liriopogons (Genera Ophiopogon and Liriope, Asparagaceae): A Critical Review of the Phytochemical and Pharmacological Research. Front. Pharmacol. 2021, 12, 769929. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Qiu, Y.; Chen, Z.; Luo, L.; Tang, H.; Zhou, X.; Yuan, H.; Wang, W.; Liu, P. Characterization of quality differences of Ophiopogonis Radix from different origins by TLC, HPLC, UHPLC-MS and multivariate statistical analyses. J. Liq. Chromatogr. Relat. Technol. 2022, 45, 120–129. [Google Scholar] [CrossRef]
- Li, R.-X.; Li, M.-M.; Wang, T.; Wang, T.-L.; Chen, J.-Y.; Francis, F.; Fan, B.; Kong, Z.-Q.; Dai, X.-F. Screening of pesticide residues in Traditional Chinese Medicines using modified QuEChERS sample preparation procedure and LC-MS/MS analysis. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2020, 1152, 122224. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, R.; Chen, D.; Chen, J.; Xiao, O.; Kong, Z.; Dai, X. Effect of Paclobutrazol on the Physiology and Biochemistry of Ophiopogon aponicus. Agronomy 2021, 11, 1533. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, J.; Ye, S.; Dai, W.; Lai, Q.; Wang, J.; Wang, T.; Chen, F.; Luo, D. Cultivation Status, Existing Problems, and Development Strategies of Ophiopogon japonicus in Fucheng: A Study Based on a Survey of 139 Households. Mod. Chin. Med. 2022, 24, 1083–1088. [Google Scholar] [CrossRef]
- Wang, F.; Yang, R.; Zhang, S.; Bao, X.; Li, M.; Zhou, J. Simultaneous Determination of Three Flavone Constituents in Ophiopogonis Radix by HPLC Method. Chin. Pharm. J. 2016, 51, 655–658. [Google Scholar]
- Li, H.; Cai, X.; Yang, R.; Tao, L.; Li, M. Commercial grade standard and quality evaluation of Chuanmaidong medicinal materials. Chin. Tradit. Pat. Med. 2023, 45, 641–646. [Google Scholar]
- Feng, T. Comprehensive Evaluation of Agronomic Traits and Quality of 40 O. Japonicus Germplasm Resources. Master’s Thesis, Southwest University of Science and Technology, Mianyang, China, 2023. [Google Scholar]
- Volova, T.; Shumilova, A.; Zhila, N.; Sukovatyi, A.; Shishatskaya, E.; Thomas, S. Efficacy of Slow-Release Formulations of Metribuzin and Tribenuron Methyl Herbicides for Controlling Weeds of Various Species in Wheat and Barley Stands. ACS Omega 2020, 5, 25135–25147. [Google Scholar] [CrossRef]
- Zhila, N.; Murueva, A.; Shershneva, A.; Shishatskaya, E.; Volova, T. Herbicidal activity of slow-release herbicide formulations in wheat stands infested by weeds. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2017, 52, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zheng, H.; Huang, L.Q. Review of contributing factors and research model of “excellent shape, high quality, and superior effect” of Dao-di herbs. China J. Chin. Mater. Med. 2024, 49, 3977–3985. [Google Scholar] [CrossRef]
- Salac, J.; Sopik, T.; Stloukal, P.; Janasova, N.; Jursik, M.; Koutny, M. Slow release formulation of herbicide metazachlor based on high molecular weight poly(lactic acid) submicro and microparticles. Int. J. Environ. Sci. Technol. 2019, 16, 6135–6144. [Google Scholar] [CrossRef]
- Kagimbo, F.M.; Shimelis, H.; Sibiya, J. Diversity assessment of sweetpotato germplasm collections for yield and yield-related traits in western Tanzania. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2018, 68, 121–129. [Google Scholar] [CrossRef]
- Zongo, A.; Nana, A.T.; Sawadogo, M.; Konate, A.K.; Sankara, P.; Ntare, B.R.; Desmae, H. Variability and Correlations among Groundnut Populations for Early Leaf Spot, Pod Yield, and Agronomic Traits. Agronomy 2017, 7, 52. [Google Scholar] [CrossRef]
- Chen, K.-Q.; Wang, S.-Z.; Lei, H.-B.; Liu, X. Ophiopogonin D: Review of pharmacological activity. Front. Pharmacol. 2024, 15, 1401627. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, W.; Zhang, Y.; Song, F.; Huang, P. Ophiopogonin D′ inhibited tumour growth and metastasis of anaplastic thyroid cancer by modulating JUN/RGS4 signalling. J. Cell. Mol. Med. 2024, 28, e70014. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Li, Z.; Gu, L.; Li, L.; Gao, Q.; Zhang, X.; Fu, J.; Guo, Y.; Li, Q.; Shen, X.; et al. Ophiopogonin B alleviates cisplatin resistance of lung cancer cells by inducing Caspase-1/GSDMD dependent pyroptosis. J. Cancer 2022, 13, 715–727. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Chen, B.; Chen, S.; Liang, Y.; Chen, D.; Li, X. Methylophiopogonanone A Inhibits Ferroptosis in H9c2 Cells: An Experimental and Molecular Simulation Study. Molecules 2024, 29, 5764. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Qin, Y.; Wang, Y.; Liu, B.; Fang, R.; Bai, M. Methylophiopogonanone B of Radix Ophiopogonis protects cells from H2O2-induced apoptosis through the NADPH oxidase pathway in HUVECs. Mol. Med. Rep. 2019, 20, 3691–3700. [Google Scholar] [CrossRef]
- Siddiqui, A.O.; Isik, D.; Jabran, K. Impact of Weed Competition on Morphological and Biochemical Traits of Potato: A Review. Potato Res. 2024, 67, 451–462. [Google Scholar] [CrossRef]
- Hamoda, A.; Khojah, E.Y.; Radhi, K.S. Synergistic effects of herbicides and gibberellic acid on wheat yield and quality. Sci. Rep. 2025, 15, 7496. [Google Scholar] [CrossRef]
- Shi, Y.; Cheng, X.; Xi, X.; Weng, W.; Zhang, B.; Zhang, J.; Zhang, R. Effects of a Novel Weeding and Fertilization Scheme on Yield and Quality of Rice. Agronomy 2023, 13, 2269. [Google Scholar] [CrossRef]
- Noworolnik, K.; Leszczynska, D. Effect of selected herbicides on yielding and malting quality of spring barley cultivars. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2017, 67, 303–307. [Google Scholar] [CrossRef]
- Cutulle, M.A.; Armel, G.R.; Kopsell, D.A.; Wilson, H.P.; Brosnan, J.T.; Vargas, J.J.; Hines, T.E.; Koepke-Hill, R.M. Several Pesticides Influence the Nutritional Content of Sweet Corn. J. Agric. Food Chem. 2018, 66, 3086–3092. [Google Scholar] [CrossRef]
- Chen, H.; Liu, X.; Deng, S.; Wang, H.; Ou, X.; Huang, L.; Li, J.; Jin, C. Pretilachlor Releasable Polyurea Microcapsules Suspension Optimization and Its Paddy Field Weeding Investigation. Front. Chem. 2020, 8, 826. [Google Scholar] [CrossRef]
- Fogleman, M.; Norsworthy, J.K.; Barber, T.; Gbur, E. Influence of Formulation and Rate on Rice Tolerance to Early-Season Applications of Acetochlor. Weed Technol. 2019, 33, 239–245. [Google Scholar] [CrossRef]
- Feng, J.; Sun, J.; Xu, J.; Wang, H. Degradation of acetochlor in soil by adding organic fertilizers with different conditioners. Soil Tillage Res. 2023, 228, 105651. [Google Scholar] [CrossRef]
- Kutasy, B.; Takacs, Z.; Kovacs, J.; Bogaj, V.; Razak, S.A.; Hegedus, G.; Decsi, K.; Szekvari, K.; Virag, E. Pro197Thr Substitution in Ahas Gene Causing Resistance to Pyroxsulam Herbicide in Rigid Ryegrass (Lolium Rigidum Gaud.). Sustainability 2021, 13, 6648. [Google Scholar] [CrossRef]
- Jhala, A.J.; Singh, M.; Shergill, L.; Singh, R.; Jugulam, M.; Riechers, D.E.; Ganie, Z.A.; Selby, T.P.; Werle, R.; Norsworthy, J.K. Very long chain fatty acid-inhibiting herbicides: Current uses, site of action, herbicide-resistant weeds, and future. Weed Technol. 2023, 38, 90. [Google Scholar] [CrossRef]
- Wu, F.; Cai, X.; Chen, H.; Bao, X.; Li, M.; Zhou, J. Accumulation of Main Chemical Components in Ophiopogonis Radix in the Process of Development. Chin. Pharm. J. 2016, 51, 533–537. [Google Scholar]


| Herbicide | Dosage (g a.i. ha−1) | Weed Control Efficacy (%) | Weight Control Efficacy (%) | |||
|---|---|---|---|---|---|---|
| DAA15 | DAA30 | DAA45 | DAA60 | DAA60 | ||
| Acetochlor EC | 900 | 79.08% a | 77.21% b | 73.85% b | 71.33% b | 69.13% b |
| Acetochlor nanocapsules | 450 | 64.06% b | 70.5% b | 71.36% b | 68.64% b | 66.71% b |
| 900 | 76.14% ab | 77.84% b | 79.56% b | 74.36% b | 72.46% b | |
| 1800 | 89.02% a | 91.42% a | 96.54% a | 91.04% a | 89.36% a | |
| Herbicide | Dosage (g a.i. ha−1) | Leaf Length (cm) | Leaf Wide (mm) | Leaf Number (per Plant) | Tiller Number (per Plant) | Root Length (cm) | Root Number (per Plant) |
|---|---|---|---|---|---|---|---|
| Acetochlor EC | 900 | 27.62 ± 1.51 a | 3.56 ± 0.28 a | 49.80 ± 4.76 b | 2.83 ± 0.15 a | 14.25 ± 1.04 a | 18.73 ± 2.73 a |
| Acetochlor nanocapsules | 450 | 28.50 ± 2.35 a | 3.55 ± 0.09 a | 47.87 ± 1.51 b | 2.33 ± 0.29 a | 14.45 ± 1.75 a | 17.47 ± 1.93 a |
| 900 | 30.88 ± 3.25 a | 3.72 ± 0.11 a | 52.77 ± 10.05 ab | 2.90 ± 0.62 a | 14.69 ± 1.47 a | 20.53 ± 4.41 a | |
| 1800 | 30.31 ± 3.73 a | 3.58 ± 0.29 a | 66.63 ± 5.20 a | 3.37 ± 0.25 a | 15.20 ± 1.12 a | 23.23 ± 2.14 a | |
| weed-free | 28.88 ± 3.52 a | 3.47 ± 0.21 a | 58.60 ± 1.85 ab | 3.20 ± 0.26 a | 15.26 ± 1.08 a | 19.00 ± 0.85 a | |
| Herbicide | Dosage (g a.i. ha−1) | root tuber number (per plant) | root tuber diameter (mm) | root tuber length (mm) | shoot dry weight (g) | root dry weight (g) | root tuber dry weight (g) |
| Acetochlor EC | 900 | 9.20 ± 1.16 a | 8.02 ± 0.25 a | 21.02 ± 0.40 a | 38.28 ± 5.15 a | 12.23 ± 0.64 a | 18.20 ± 2.37 a |
| Acetochlor nanocapsules | 450 | 8.77 ± 0.96 a | 8.37 ± 0.47 a | 20.53 ± 2.43 a | 37.53 ± 4.46 a | 10.99 ± 0.77 a | 18.47 ± 4.41 a |
| 900 | 10.77 ± 1.85 a | 8.53 ± 0.60 a | 23.31 ± 1.75 a | 46.90 ± 13.25 a | 14.40 ± 2.47 a | 23.58 ± 3.44 a | |
| 1800 | 12.27 ± 2.16 a | 8.34 ± 0.54 a | 21.09 ± 2.19 a | 49.72 ± 2.51 a | 16.51 ± 3.78 a | 25.27 ± 7.84 a | |
| weed-free | 11.47 ± 0.35 a | 8.63 ± 0.36 a | 22.52 ± 1.02 a | 37.60 ± 2.33 a | 12.37 ± 1.39 a | 23.29 ± 2.04 a | |
| Herbicide | Dosage (g a.i. ha−1) | Total Saponins | Ophiopogonin D | Ophiopogonin B | Ophiopogonin D′ |
|---|---|---|---|---|---|
| Acetochlor EC | 900 | 3.640 ± 0.245 a | 0.298 ± 0.041 a | 0.102 ± 0.014 a | 0.308 ± 0.030 a |
| Acetochlor nanocapsules | 450 | 3.586 ± 0.449 a | 0.298 ± 0.026 a | 0.098 ± 0.019 a | 0.321 ± 0.053 a |
| 900 | 3.582 ± 0.328 a | 0.281 ± 0.018 a | 0.100 ± 0.008 a | 0.329 ± 0.054 a | |
| 1800 | 3.657 ± 0.392 a | 0.302 ± 0.034 a | 0.110 ± 0.009 a | 0.319 ± 0.039 a | |
| weed-free | 3.322 ± 0.260 a | 0.286 ± 0.020 a | 0.094 ± 0.007 a | 0.298 ± 0.047 a | |
| Herbicide | Dosage (g a.i. ha−1) | total flavonoids | Methylophi- -opogonanone A | Methylophi- -opogonanone B | total polysaccharides |
| Acetochlor EC | 900 | 0.251 ± 0.011 a | 0.453 ± 0.043 a | 0.241 ± 0.020 a | 28.947 ± 1.125 a |
| Acetochlor nanocapsules | 450 | 0.251 ± 0.014 a | 0.459 ± 0.041 a | 0.241 ± 0.017 a | 28.899 ± 1.189 a |
| 900 | 0.276 ± 0.008 a | 0.465 ± 0.045 a | 0.241 ± 0.019 a | 30.347 ± 0.680 a | |
| 1800 | 0.277 ± 0.010 a | 0.457 ± 0.024 a | 0.241 ± 0.016 a | 29.494 ± 1.372 a | |
| weed-free | 0.274 ± 0.012 a | 0.440 ± 0.037 a | 0.235 ± 0.011 a | 29.850 ± 0.851 a | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, S.; Qian, K.; Lai, Q.; Zhao, D.; Dai, W.; He, L. Application of Acetochlor Nanocapsule Formulation in Sichuan Ophiopogon japonicus Fields. Agriculture 2025, 15, 2258. https://doi.org/10.3390/agriculture15212258
Zheng S, Qian K, Lai Q, Zhao D, Dai W, He L. Application of Acetochlor Nanocapsule Formulation in Sichuan Ophiopogon japonicus Fields. Agriculture. 2025; 15(21):2258. https://doi.org/10.3390/agriculture15212258
Chicago/Turabian StyleZheng, Shengwei, Kun Qian, Qianglong Lai, Dan Zhao, Wei Dai, and Lin He. 2025. "Application of Acetochlor Nanocapsule Formulation in Sichuan Ophiopogon japonicus Fields" Agriculture 15, no. 21: 2258. https://doi.org/10.3390/agriculture15212258
APA StyleZheng, S., Qian, K., Lai, Q., Zhao, D., Dai, W., & He, L. (2025). Application of Acetochlor Nanocapsule Formulation in Sichuan Ophiopogon japonicus Fields. Agriculture, 15(21), 2258. https://doi.org/10.3390/agriculture15212258

