Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Steps of the Methodological Framework
- (1)
- According to the International Dairy Federation, the FPCM should be calculated using Formula (1) [22]:FPCMIDF (kg/year) = Production (kg/year) × (0.1226 × True Fat (%) + 0.0776 × True Protein (%) + 0.2534)
- (2)
- According to the United Nations Food and Agriculture Organization (FAO) (2007), the FPCM should be calculated using Formula (2) [23]:FPCMFAO (kg/year) = Raw milk (kg/year) × (0.337 + 0.116 × Fat content (%) + 0.06 × Protein content (%))
2.2. Environmental Impact Assessment Through the Cradle-to-Gate LCA Technique
2.3. Calculation and Analysis of GHG Emissions
3. Results
3.1. Characteristics of Dairy Farms in Latvia
3.2. LCA Calculation Results for Dairy Farms in Latvia
3.3. Comparisons of the Calculation of Direct GHG Emissions in Different Sizes of Dairy Farms in Latvia
4. Discussion
4.1. Productivity and Economic Performance
4.2. Environmental Impact and Sustainability
4.3. Balancing Productivity, Profitability, and Environmental Performance
4.4. Methodological Considerations
4.5. Policy Implications and Future Research Directions
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CO2 | carbon dioxide |
CH4 | methane |
CO2eq | carbon dioxide equivalent |
EU | European Union |
EUR | euro |
FADN | The Farm Accounting Data Network |
FAO | The United Nations Food and Agriculture Organization |
FPCM | fat- and protein-corrected milk |
GHG | greenhouse gas |
IDF | International Dairy Federation |
IPCC | The Intergovernmental Panel on Climate Change |
ISO | International Organization for Standardization |
kg | kilogram |
LCA | Life cycle assessment |
LCI | life cycle inventory |
LLKC | Latvian Rural Advisory and Training Centre |
N2O | nitrous oxide |
SO | Standard Output |
TMR | total mixed ratio |
Appendix A
Indicators/Number of Cows per Herd | 1–50 | 51–200 | ≥201 | Total/Overall Average |
---|---|---|---|---|
Hay | 5.70 | 2.47 | 2.19 | 3.46 |
Haylage/Grass silage | 6.20 | 7.02 | 5.80 | 6.34 |
Legume and grass silage | 9.00 | 8.61 | 4.12 | 7.24 |
Corn silage | 0.55 | 2.43 | 3.80 | 2.26 |
Straw | 0.75 | 0.63 | 0.49 | 0.62 |
Roots | 1.40 | 0.00 | 0.00 | 0.47 |
Fodder | 4.05 | 4.31 | 3.49 | 3.95 |
Molasses | 0.35 | 0.33 | 0.45 | 0.38 |
Expeller and meal | 0.65 | 1.59 | 1.28 | 1.17 |
Salt | 0.10 | 0.09 | 0.08 | 0.09 |
Minerals and vitamins | 0.20 | 0.19 | 0.18 | 0.19 |
Total mixed ratio (TMR) | 10.00 | 21.72 | 24.77 | 18.83 |
Indicators | TMR per Day in kg per Cow | % of Total TMR |
---|---|---|
Alfalfa grass silage | 31 | 61% |
Maize silage | 7 | 14% |
Wheat | 3 | 6% |
Barley | 3 | 6% |
Maize chop | 1.5 | 3% |
Soy expellers | 2.7 | 5% |
Molasses | 0.5 | 1% |
Mineral supplements | 0.18 | 0% |
Fodder chalk | 0.2 | 0% |
Sodium | 0.1 | 0% |
Salt | 0.05 | 0% |
Water | 2 | 4% |
Total | 51.23 | 100% |
Nutrient Provision in Feed Rations/ Number of Cows per Herd | 1–50 | 51–200 | >201 | Total/ Overall Average |
---|---|---|---|---|
Dry matter, kg | 18.8 | 23.25 | 25.04 | 22.36 |
Crude protein, g | 2565.295 | 2681.45 | 3322.59 | 2856.44 |
Crude fats, g | 565.44 | 698.15 | 730.82 | 664.80 |
Crude fibber, kg | 5.7 | 5.67 | 5.63 | 5.67 |
Nitrogen-free extract, kg | 10.4 | 10.60 | 13.33 | 11.44 |
References
- Muska, A.; Pilvere, I.; Viira, A.-H.; Muska, K.; Nipers, A. European Green Deal Objective: Potential Expansion of Organic Farming Areas. Agriculture 2025, 15, 1633. [Google Scholar] [CrossRef]
- Peng, B.; Melnikiene, R.; Baležentis, T.; Agnusdei, G.P. Structural dynamics and sustainability in the agricultural sector: The case of the European Union. Agric. Food Econ. 2024, 12, 31. [Google Scholar] [CrossRef]
- Bórawski, P.; Pawlewicz, A.; Parzonko, A.; Harper, J.K.; Holden, L. Factors Shaping Cow’s Milk Production in the EU. Sustainability 2020, 12, 420. [Google Scholar] [CrossRef]
- Pilvere, I.; Upite, I.; Muska, A.; Zdanovskis, K.; Nipers, A.; Janmere, L. Resilience of Milk Supply Chains during and after the COVID-19 Crisis in Latvia. Rural Sustain. Res. 2021, 45, 53–64. [Google Scholar] [CrossRef]
- Chatellier, V.; Delattre, F.; Rat-Aspert, O. Milk Price in Savoy and Cheese Chain. HAL (Le Centre Pour La Communication Scientifique Directe). 2006. Available online: https://hal.archives-ouvertes.fr/hal-02822243 (accessed on 20 June 2025).
- Brkić, I.; Puvača, N. Economic and Ecological Sustainability of Dairy Production. J. Agron. Technol. Eng. Manag. (JATEM) 2024, 7, 1088. [Google Scholar] [CrossRef]
- Bojovic, M.; McGregor, A. A review of megatrends in the global dairy sector: What are the socioecological implications? Agric. Hum. Values 2022, 40, 373. [Google Scholar] [CrossRef]
- Hynes, D.; Stergiadas, S.; Yan, T. Summaries. Adv. Anim. Biosci. 2016, 7, 1. [Google Scholar] [CrossRef]
- Capper, J.L.; Bauman, D.E. The Role of Productivity in Improving the Environmental Sustainability of Ruminant Production Systems. Annu. Rev. Anim. Biosci. 2012, 1, 469. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.B.; Mitloehner, F.M. Sustainability of the Dairy Industry: Emissions and Mitigation Opportunities. Front. Anim. Sci. 2021, 2, 760310. [Google Scholar] [CrossRef]
- Slade, P.; Hailu, G. Efficiency and regulation: A comparison of dairy farms in Ontario and New York State. J. Product. Anal. 2015, 45, 103. [Google Scholar] [CrossRef]
- Latruffe, L.; Desjeux, Y.; Hanitravelo, G.L.J.; Hennessy, T.; Bockstaller, C.; Dupraz, P.; Finn, J.A. Tradeoffs Between Economic, Environmental and Social Sustainability: The Case of a Selection of European Farms. HAL (Le Centre Pour La Communication Scientifique Directe). 2016. Available online: https://hal.archives-ouvertes.fr/hal-01611416 (accessed on 4 July 2025).
- Wilfart, A.; Baillet, V.; Balaine, L.; de Otálora, X.D.; Dragoni, F.; Król, D.; Frątczak-Müller, J.; Rychła, A.; Rodriguez, D.G.P.; Breen, J.; et al. DEXi-Dairy: An ex post multicriteria tool to assess the sustainability of dairy production systems in various European regions. Agron. Sustain. Dev. 2023, 43, 82. [Google Scholar] [CrossRef]
- Koutouzidou, G.; Ragkos, A.; Theodoridis, A.; Arsenos, G. Entrepreneurship in Dairy Cattle Sector: Key Features of Successful Administration and Management. Land 2022, 11, 1736. [Google Scholar] [CrossRef]
- Tamburini, E.; Pedrini, P.; Marchetti, M.G.; Fano, E.A.; Castaldelli, G. Life Cycle Based Evaluation of Environmental and Economic Impacts of Agricultural Productions in the Mediterranean Area. Sustainability 2015, 7, 2915. [Google Scholar] [CrossRef]
- McClelland, S.C.; Arndt, C.; Gordon, D.R.; Thoma, G. Type and number of environmental impact categories used in livestock life cycle assessment: A systematic. Livest. Sci. 2018, 209, 39. [Google Scholar] [CrossRef]
- Milani, F.; Nutter, D.W.; Thoma, G. Invited review: Environmental impacts of dairy processing and products: A review. J. Dairy Sci. 2011, 94, 4243. [Google Scholar] [CrossRef]
- SLLC Latvian Environment, Geology and Meteorology Centre (LVMEO). Summary of the 2025 Greenhouse Gas Inventory. Available online: https://videscentrs.lvgmc.lv/lapas/informacija-par-latvijas-seg-emisijam (accessed on 8 September 2025). (In Latvian).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; Prepared by the National. Greenhouse Gas Inventories Programme; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (accessed on 17 July 2025).
- Farm Accounting Data Network (FADN). 2023 Data. Available online: https://sudat.arei.lv/Login.aspx?ReturnUrl=%2f (accessed on 14 June 2025).
- Rural Support Service (RSS). 2024 Data. Monitoring Data of Herds in 2023/2024. Available online: https://registri.ldc.gov.lv/lv/parraudziba (accessed on 11 August 2025).
- International Dairy Federation (IDF). A Common Carbon Footprint Approach for Dairy Sector: The IDF Guide to Standard Life Cycle Assessment Methodology. Bulletin of the International Dairy Federation 479/2015. Available online: https://www.fil-idf.org/wp-content/uploads/2016/09/Bulletin479-2015_A-common-carbon-footprint-approach-for-the-dairy-sector.CAT.pdf (accessed on 4 August 2025).
- United Nations Food and Agriculture Organization (FAO). Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. 2007. Available online: https://www.fao.org/4/k7930e/k7930e00.pdf (accessed on 11 August 2025).
- SaimnieksLV Portal. Amount of Milk Produced by Cows of Different Sizes in One Day. By LLKC on 02.03.2022. Available online: http://saimnieks.lv/raksts/dazada-auguma-izmera-govju-razotais-piena-daudzums-viena-diena#:~:text=Vid%C4%93jais%20piena%20govju%20produkt%C4%ABv%C4%81s%20dz%C4%ABves,5%20l%C4%ABdz%206%2C5%20gadiem (accessed on 5 September 2025). (In Latvian).
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. 4.3.4.2. Section. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- European Commission (EC). Annex, I. Product Environmental Footprint Method. 2021. Available online: https://environment.ec.europa.eu/system/files/2021-12/Annexes%201%20to%202.pdf (accessed on 21 August 2025).
- PRé Sustainability, SimaPro Software 10.2.0.2., Using Database Ecoinvent 3.0, Cut-Off by Classification—System, and Using Method ReCiPe 2016 Endpoint (H) V1.11/World (2010) H/A. Available online: https://simapro.com/ (accessed on 5 August 2025).
- ISO 14072:2024; Environmental Management—Life Cycle Assessment—Requirements and Guidance for Organizational Life Cycle Assessment. International Organization for Standardization (ISO): Geneva, Switzerland, 2024.
- Buxel, H.; Esenduran, G.; Griffin, S. Strategic sustainability: Creating business value with life cycle analysis. Bus. Horiz. 2014, 58, 109. [Google Scholar] [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization (ISO): Geneva, Switzerland, 2006.
- Degola, L.; Cielava, L.; Trupa, A.; Aplocina, E. Feed Rations in Different Size Dairy Farms. Scientific Practical Conference „LĪDZSVAROTA LAUKSAIMNIECĪBA”, 25.–26.02.2016., LLU, Jelgava, Latvia. Available online: https://llufb.llu.lv/conference/lidzsvar_lauksaim/2016/Latvia-lidzsvarota-lauksaimnieciba2016-161-168.pdf (accessed on 2 August 2025). (In Latvian).
- Holstein Foundation Inc. Milking and Lactation. 2017. Available online: https://www.holsteinfoundation.org/pdf_doc/workbooks/Milking_Lactation_Workbook.pdf (accessed on 16 August 2025).
- Latvian Rural Advisory and Training Centre (LLKC). The Role of Dairy Cow Nutrition in Changing the Dry Matter Content of Raw Milk. 21 November 2019. Available online: https://arhivs.llkc.lv/lv/nozares/lopkopiba/slaucamo-govju-edinasanas-nozime-svaigpiena-sausnas-satura-izmaina (accessed on 18 August 2025). (In Latvian).
- European Commission. Green Forum, Life Cycle Assessment & the EF Methods, Comprehensive Coverage of Impacts. 2025. Available online: https://green-forum.ec.europa.eu/green-business/environmental-footprint-methods/life-cycle-assessment-ef-methods_en (accessed on 11 August 2025).
- Frazier, R.S.; Jin, E.; Ajay Kumar, A. Life Cycle Assessment of Biochar versus Metal Catalysts Used in Syngas Cleaning. Energies 2015, 8, 621–644. [Google Scholar] [CrossRef]
- Popluga, D. Review of the Implementation of the Scientific Research Project “Adjustment of Marginal Abatement Cost Curves (MACC) of Latvian Agricultural Greenhouse Gas and Ammonia Emissions, as Well as CO2 Sequestration (in Arable land and Grassland) for Use in Agricultural, Environmental and Climate Policy-Making”. 2019. Available online: https://www.lbtu.lv/sites/default/files/files/projects/Popluga_19-00-SOINV05-000018_1.pdf (accessed on 22 August 2025). (In Latvian).
- Trading Economics. Latvia’s Average Temperature. 2025. Available online: https://tradingeconomics.com/latvia/temperature (accessed on 20 August 2025).
- Latvia’s National Inventory Report Greenhouse Gas Emissions in Latvia from 1990 to 2021 in Common Reporting Format (CRF). Riga, 2023; 489p. Available online: https://unfccc.int/documents/627724 (accessed on 15 August 2025).
- ISO 14067/2018; Greenhouse Gases—Carbon Footprint of Products—Requirements and Guidelines for Quantification Standards. International Organization for Standardization (ISO): Geneva, Switzerland, 2018.
- Statistics Netherlands. What Is the Scale of Greenhouse Gas Emissions? 2025. Available online: https://www.cbs.nl/en-gb/dossier/greenhouse-gas-emissions/what-is-the-scale-of-greenhouse-gas-emissions- (accessed on 4 September 2025).
- Statistical Database. Business Sectors: Agriculture. Livestock. LAL090. Number of Livestock and Poultry at the End of the Year (Thousand Heads) 1915–2024. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__LA__LAL/LAL090/ (accessed on 2 September 2025).
- Statistical Database. Business Sectors: Agriculture. Livestock. LAL070. Livestock Productivity 1940–2024. Available online: https://data.stat.gov.lv/pxweb/en/OSP_PUB/START__NOZ__LA__LAL/LAL070/ (accessed on 2 September 2025).
- Pilvere, A. Datasets for Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes. 2025; DataverseLV. Available online: https://dv.dataverse.lv/dataset.xhtml?persistentId=doi:10.71782/DATA/ZRTIQV (accessed on 10 September 2025).
- Central Statistical Bureau of Latvia. Agriculture of Latvia. Collection of Statistics. 2025; 84p. Available online: https://admin.stat.gov.lv/system/files/publication/2025-06/Nr_13_Latvijas_Lauksaimnieciba_2025_%2825_00%29_LV_EN_1.pdf (accessed on 31 August 2025).
- PRé Sustainability. SimaPro Database Manual, Methods Library. 2022. Available online: https://simapro.com/wp-content/uploads/2022/07/DatabaseManualMethods.pdf (accessed on 19 August 2025).
- Zanon, T.; Hörtenhuber, S.; Fichter, G.; Peratoner, G.; Zollitsch, W.; Gatterer, M.; Gauly, M. Effect of management system and dietary seasonal variability on environmental efficiency and human net food supply of mountain dairy farming systems. J. Dairy Sci. 2025, 108, 597–610. [Google Scholar] [CrossRef] [PubMed]
- Fariña, S.; Chilibroste, P. Opportunities and challenges for the growth of milk production from pasture: The case of farm systems in Uruguay. Agric. Syst. 2019, 176, 102631. [Google Scholar] [CrossRef]
- Holly, M.A.; Kleinman, P.J.A.; Bryant, R.B.; Bjorneberg, D.L.; Rotz, C.A.; Baker, J.M.; Boggess, M.; Bräuer, D.; Chintala, R.; Feyereisen, G.W.; et al. Short communication: Identifying challenges and opportunities for improved nutrient management through the USDA’s Dairy Agroecosystem Working Group. J. Dairy Sci. 2018, 101, 6632. [Google Scholar] [CrossRef]
- Gillespie, J.; Njuki, E.; Terán, A. Structure, costs, and technology used on U.S. dairy farms. Econ. Res. Serv. 2024, 334, 34. [Google Scholar] [CrossRef]
- Nipers, A.; Pilvere, I.; Valdovska, A.; Proskina, L. Assessment of Key Aspects of Technologies and Cow farming for Milk Production in Latvia. In Proceedings of the 15th International Scientific Conference “Engineering for Rural Development”, Jelgava, Latvia, 25–27 May 2016; pp. 175–181. Available online: https://www.iitf.lbtu.lv/conference/proceedings2016/Papers/N029.pdf (accessed on 15 October 2025).
- Singh, A.B.; Bhakar, V.; Gaurav, G.; Khandelwal, C.; Sarkar, P.K.; Singh, H.; Dangayach, G.S. Environmental sustainability of milk production: A comparative environmental impact analysis and sustainability evaluation. Front. Sustain. 2024, 5, 1352572. [Google Scholar] [CrossRef]
- Herron, J.; O’Brien, D.; Shallo, L. Life cycle assessment of pasture-based dairy production systems: Current and future performance. J. Dairy Sci. 2022, 105, 5849–5869. Available online: https://www.journalofdairyscience.org/article/S0022-0302%2822%2900305-8/fulltext (accessed on 15 October 2025). [CrossRef] [PubMed]
- Zanni, S.; Roccaro, M.; Bocedi, F.; Peli, A.; Bonoli, A. LCA to Estimate the Environmental Impact of Dairy Farms: A Case Study. Sustainability 2022, 14, 6028. [Google Scholar] [CrossRef]
- Kwon, H.-C.; Jung, H.S.; Kothuri, V.; Han, S.G. Current status and challenges for cell-cultured milk technology: A systematic review. J. Anim. Sci. Biotechnol. 2024, 15, 81. [Google Scholar] [CrossRef]
- Salari, F.; Marconi, C.; Sodi, I.; Altomonte, I.; Martini, M. Environmental Sustainability of Dairy Cattle in Pasture-Based Systems vs. Confined Systems. Sustainability 2025, 17, 3976. [Google Scholar] [CrossRef]
- Chase, L.E.; Fortina, R. Environmental and Economic Responses to Precision Feed Management in Dairy Cattle Diets. Agriculture 2023, 13, 1032. [Google Scholar] [CrossRef]
- Eisert, J.; Sahraei, A.; Knob, D.A.; Lambertz, C.; Zollitsch, W.; Hörtenhuber, S.; Kral, I.; Breuer, L.; Gattinger, A. Transforming the feeding regime towards low-input increases the environmental impact of organic milk production on a case study farm in central Germany. Int. J. Life Cycle Assess. 2025, 30, 79–92. [Google Scholar] [CrossRef]
- Reddy, P.R.K.; Kumar, D.; Rao, E.R.; Seshiah, C.V.; Sateesh, K.; Rao, K.A.; Reddy, Y.P.K.; Hyder, I. Environmental sustainability assessment of tropical dairy buffalo farming vis-a-vis sustainable feed replacement strategy. Sci. Rep. 2019, 9, 16745. [Google Scholar] [CrossRef]
- Ni, H.; Zeng, H.; Liu, Z.; Li, W.; Miao, S.; Yang, A.; Wang, Y. Towards decarbonizing the supply chain of dairy industry: Current practice and emerging strategies. Carbon Neutrality 2025, 4, 8. [Google Scholar] [CrossRef]
- Silvi, R.; Pereira, L.G.R.; Paiva, C.A.V.; Tomich, T.R.; Teixeira, V.A.; Sacramento, J.P.; Ferreira, R.; Coelho, S.G.; Machado, F.S.; Campos, M.M.; et al. Adoption of Precision Technologies by Brazilian Dairy Farms: The Farmer’s Perception. Animals 2021, 11, 3488. [Google Scholar] [CrossRef]
- Bhat, R.; Infascelli, F. The Path to Sustainable Dairy Industry: Addressing Challenges and Embracing Opportunities. Sustainability 2025, 17, 3766. [Google Scholar] [CrossRef]
- Thorup, V.; Munksgaard, L.; Terré, M.; Henriksen, J.; Weisbjerg, M.; Løvendahl, P. The relationship between feed efficiency and behaviour differs between lactating Holstein and Jersey cows. J. Dairy Res. 2023, 90, 257–260. [Google Scholar] [CrossRef]
- Clasen, J.; Fikse, W.F.; Ramin, M.; Lindberg, M. Effects of herd management decisions on dairy cow longevity, farm profitability, and emissions of enteric methane—A simulation study of milk and beef production. Animal 2023, 18, 101051. [Google Scholar] [CrossRef] [PubMed]
- Britt, J.H.; Cushman, R.A.; Dechow, C.D.; Dobson, H.; Humblot, P.; Hutjens, M.F.; Jones, G.; Mitloehner, F.M.; Ruegg, P.L.; Sheldon, I.M.; et al. Review: Perspective on high-performing dairy cows and herds. Animal 2021, 15, 100298. [Google Scholar] [CrossRef]
- March, M.D.; Hargreaves, P.; Sykes, A.J.; Rees, R.M. Effect of Nutritional Variation and LCA Methodology on the Carbon Footprint of Milk Production from Holstein Friesian Dairy Cows. Front. Sustain. Food Syst. 2021, 5, 588158. [Google Scholar] [CrossRef]
- Ferronato, G.; Tobanelli, N.; Bani, P.; Cattaneo, L. Carbon Footprint Assessment of Dairy Milk and Grana Padano PDO Cheese and Improvement Scenarios: A Case Study in the Po Valley (Italy). Animals 2025, 15, 811. [Google Scholar] [CrossRef]
- Lovarelli, D.; Bava, L.; Zucali, M.; D’Imporzano, G.; Adani, F.; Tamburini, A.; Sandrucci, A. Improvements to dairy farms for environmental sustainability in Grana Padano and Parmigiano Reggiano production systems. Ital. J. Anim. Sci. 2019, 18, 1035–1048. [Google Scholar] [CrossRef]
- O’Brien, D.; Brennan, P.; Humphreys, J.; Ruane, E.M.; Shalloo, L. An appraisal of carbon footprint of milk from commercial grass-based dairy farms in Ireland according to a certified life cycle assessment methodology. Int. J. Life Cycle Assess. 2014, 19, 1469. [Google Scholar] [CrossRef]
- Proietti, L.; Pauselli, M.; Paolotti, L.; Attard, G. Environmental impact evaluation of dairy farms through life cycle assessment: A case study in Malta. In Proceedings of the 10th Convegno dell’ Associazione Rete Italiana LCA 2016, Ravenna, Italy, 23–24 June 2016; pp. 246–255. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/126944800/ATTI_RETE_LCA_2016.pdf (accessed on 15 October 2025).
- Mondière, A.; Corson, M.S.; Auberger, J.; Durant, D.; Foray, S.; Glinec, J.-F.; Green, P.; Novak, S.; Signoret, F.; Werf, H.v.D. Trade-offs between higher productivity and lower environmental impacts for biodiversity-friendly and conventional cattle-oriented systems. Agric. Syst. 2024, 213, 103798. [Google Scholar] [CrossRef]
- Triky, S.; Kissinger, M. An Integrated Analysis of Dairy Farming: Direct and Indirect Environmental Interactions in Challenging Bio-Physical Conditions. Agriculture 2022, 12, 480. [Google Scholar] [CrossRef]
- Nipers, A.; Krieviņa, A.; Pilvere, I. Projecting Value Added in Agriculture in Latvia. In Proceedings of the 17th International Scientific Conference “En-gineering for Rural Development”, Jelgava, Latvia, 23–25 May 2018; Volume 17, pp. 1084–1090. [Google Scholar] [CrossRef]
- Hamelin, L.; Wenzel, H. Methodological aspects of environmental assessment of livestock production by LCA (Life Cycle Assessment). In Proceedings of the IX International Livestock Environment Symposium (ILES IX), Valencia, Spain, 8–12 July 2023; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2012. ILES12-0945. [Google Scholar] [CrossRef]
- Díaz de Otálora, X.; del Prado, A.; Dragoni, F.; Estellés, F.; Amon, B. Evaluating Three-Pillar Sustainability Modelling Approaches for Dairy Cattle Production Systems. Sustainability 2021, 13, 6332. [Google Scholar] [CrossRef]
- Neethirajan, S. Innovative Strategies for Sustainable Dairy Farming in Canada amidst Climate Change. Sustainability 2023, 16, 265. [Google Scholar] [CrossRef]
- Berton, M.; Bittante, G.; Sturaro, E.; Gallo, L. Thirty years of global warming potential evolution for the Italian dairy cow sector measured by two different metrics. Ital. J. Anim. Sci. 2024, 23, 1002. [Google Scholar] [CrossRef]
Size Groups, 000 EUR/Indicators | Average per Farm | 4–<15 | 15–<25 | 25–<50 | 50–<100 | 100–<500 | ≥500 |
---|---|---|---|---|---|---|---|
Number of farms 2023 | 270 | 7 | 42 | 63 | 61 | 84 | 13 |
Number of farms 2022 | 276 | 29 | 47 | 64 | 59 | 67 | 10 |
Number of farms 2021 | 278 | 25 | 46 | 71 | 59 | 69 | 8 |
Farms represented 2023 | 5347 | 350 | 2085 | 1387 | 817 | 601 | 107 |
Farms represented 2022 | 5484 | 2101 | 1434 | 966 | 462 | 441 | 80 |
Farms represented 2021 | 5547 | 1974 | 1522 | 1068 | 460 | 454 | 69 |
Dairy farms as % of the total in the dairy farm sector 2023 | 5% | 2% | 2% | 5% | 7% | 14% | 12% |
Dairy farms as % total farms 2023 | 24% | 5% | 39% | 34% | 32% | 23% | 18% |
Average gross income per farm, EUR 2023 | 33,824 | −14 | 8439 | 10,761 | 25,973 | 84,605 | 713,972 |
Average gross income per farm, EUR 2022 | 44,169 | 5876 | 10,360 | 21,362 | 48,764 | 159,853 | 1,266,762 |
Average gross income per farm, EUR 2021 | 30,731 | 5654 | 8041 | 15,575 | 33,159 | 125,697 | 843,218 |
Average farm net income per farm, EUR 2023 | 9586 | −939 | 6959 | 7664 | 16,627 | 23,877 | −13,976 |
Average farm net income per farm, EUR 2022 | 26,470 | 7473 | 10,687 | 17,696 | 32,326 | 82,687 | 570,454 |
Average farm net income per farm, EUR 2021 | 13,035 | 4396 | 6438 | 11,359 | 16,338 | 43,052 | 212,423 |
Average farm net income to gross income 2023 | 28% | n.a. | 83% | 71% | 64% | 28% | −2% |
Average number of dairy cows 2023 | 20 | 3 | 5 | 9 | 18 | 54 | 344 |
Average number of dairy cows 2022 | 21 | 5 | 7 | 14 | 27 | 75 | 422 |
Average number of dairy cows 2021 | 21 | 5 | 7 | 13 | 28 | 78 | 455 |
Milk yield per cow, tons per year 2023 | 7.37 | 5.34 | 5.10 | 5.21 | 5.66 | 6.60 | 10.24 |
Milk yield per cow, tons per year 2022 | 7.26 | 5.22 | 4.84 | 5.45 | 6.03 | 7.22 | 9.79 |
Milk yield per cow, tons per year 2021 | 7.14 | 5.64 | 4.61 | 5.27 | 5.87 | 7.34 | 9.58 |
Indicators/Number of Cows per Herd | 1–50 | 51–200 | ≥201 | Total/Overall Average |
---|---|---|---|---|
Total number of herds (365-day average) | 2404 | 311 | 79 | 2794 |
Average milk yield kg/per cow/per year | 6990 | 8826 | 11,220 | 7314 |
Total number of cows | 32,776 | 30,021 | 38,308 | 101,105 |
Total milk output, tons per year | 231,060 | 273,248 | 441,392 | 945,701 |
% of total milk | 24% | 29% | 47% | 100% |
Average fat content, % | 4.17 | 4.07 | 3.90 | 4.15 |
Minimum fat content, % | 2.27 | 2.74 | 3.04 | 2.27 |
Maximum fat content, % | 6.04 | 5.63 | 4.74 | 6.04 |
Average protein content, % | 3.34 | 3.38 | 3.43 | 3.34 |
Minimum protein content, % | 2.84 | 2.90 | 3.13 | 2.84 |
Maximum protein content, % | 4.49 | 3.85 | 3.70 | 4.49 |
Fat- and protein-corrected milk FPCM (kg/per cow/per year) (FAO formula) | 5748 | 7164 | 8875 | 5999 |
Fat- and protein-corrected milk FPCM (kg/per cow/per year) (IDF formula) | 7150 | 8962 | 11,185 | 7470 |
Deviation IDF/FAO formula | 124% | 125% | 126% | 125% |
Impact Category/Indicators | Unit | Life Cycle Impact Assessment of | Deviation | ||||
---|---|---|---|---|---|---|---|
Small Farms (1–50 Cows) | Medium Farms (51–200 Cows) | Large Farms (≥201 Cows) | Medium—Small Farms | Large—Medium Farms | Large—Small Farms | ||
Water consumption, Aquatic ecosystems | species.yr * | 5.44 × 10−12 | 8.00 × 10−12 | 9.01 × 10−12 | 47% | 13% | 66% |
Water consumption, Terrestrial ecosystems | species. yr | 4.06 × 10−8 | 5.81 × 10−8 | 6.31 × 10−8 | 43% | 9% | 55% |
Water consumption, Human health | DALY * | 5.38 × 10−6 | 7.60 × 10−6 | 8.35 × 10−6 | 41% | 10% | 55% |
Fossil resource scarcity | USD2013 | 41.47 | 54.28877 | 57.91831 | 31% | 7% | 40% |
Mineral resource scarcity | USD2013 | 0.86 | 1.085099 | 1.137804 | 26% | 5% | 32% |
Land use | species.yr | 1.05 × 10−5 | 1.66 × 10−5 | 1.73 × 10−5 | 58% | 4% | 65% |
Human non-carcinogenic toxicity | DALY | 0.000206 | 0.00021 | 0.000211 | 2% | 0% | 2% |
Human carcinogenic toxicity | DALY | 0.000511 | 0.000634 | 0.0007 | 24% | 10% | 37% |
Marine ecotoxicity | species.yr | 5.48 × 10−9 | 6.59 × 10−9 | 7.19 × 10−9 | 20% | 9% | 31% |
Freshwater ecotoxicity | species.yr | 2.80 × 10−8 | 3.38 × 10−8 | 3.69 × 10−8 | 20% | 9% | 32% |
Terrestrial ecotoxicity | species.yr | 2.08 × 10−8 | 2.71 × 10−8 | 2.84 × 10−8 | 30% | 5% | 36% |
Marine eutrophication | species.yr | 3.71 × 10−9 | 6.58 × 10−9 | 6.99 × 10−9 | 77% | 6% | 88% |
Freshwater eutrophication | species.yr | 2.36 × 10−7 | 3.03 × 10−7 | 3.37 × 10−7 | 28% | 11% | 43% |
Terrestrial acidification | species.yr | 1.92 × 10−6 | 2.08 × 10−6 | 1.92 × 10−6 | 8% | −8% | 0% |
Ozone formation, Terrestrial ecosystems | species.yr | 2.60 × 10−7 | 3.45 × 10−7 | 3.58 × 10−7 | 33% | 4% | 38% |
Fine particulate matter formation | DALY | 0.001186 | 0.001397 | 0.001415 | 18% | 1% | 19% |
Ozone formation, Human health | DALY | 1.78 × 10−6 | 2.35 × 10−6 | 2.44 × 10−6 | 32% | 4% | 38% |
Ionising radiation | DALY | 3.21 × 10−7 | 3.69 × 10−7 | 4.21 × 10−7 | 15% | 14% | 31% |
Stratospheric ozone depletion | DALY | 3.55 × 10−6 | 5.24 × 10−6 | 5.27 × 10−6 | 48% | 1% | 48% |
Global warming, Freshwater ecosystems | species.yr | 5.31 × 10−11 | 7.51 × 10−11 | 8.10 × 10−11 | 41% | 8% | 52% |
Global warming, Terrestrial ecosystems | species.yr | 1.95 × 10−6 | 2.75 × 10−6 | 2.96 × 10−6 | 41% | 8% | 52% |
Global warming, Human health | DALY | 0.000645 | 0.000911 | 0.000983 | 41% | 8% | 52% |
Indicators and Sources | Small Farms (1–50 Cows) | Medium Farms (51–200 Cows) | Large Farms (≥201 Cows) | |||
---|---|---|---|---|---|---|
Pt | % of Total | Pt | % of Total | Pt | % of Total | |
Total of all processes | 47 | 100% | 59.2 | 100% | 62.1 | 100% |
Alfalfa–grass mixture, Swiss integrated | 3.10 | 7% | 2.88 | 5% | 1.38 | 2% |
Alfalfa silage, Global | 4.59 | 10% | 9.98 | 17% | 11.4 | 18% |
Barley grain, feed, Swiss production | 3.38 | 7% | 4.44 | 8% | 4.15 | 7% |
Fodder beet, Swiss | 0.11 | 0% | 0 | 0% | 0 | 0% |
Grass silage, Swiss | 5.34 | 11% | 6.04 | 10% | 4.99 | 8% |
Hay, Swiss | 6.90 | 15% | 2.99 | 5% | 2.65 | 4% |
Maize chop, Rest of the world | 0.20 | 0% | 0.433 | 1% | 0.494 | 1% |
Maize silage Swiss | 0.14 | 0% | 0.356 | 1% | 0.453 | 1% |
Milking process | 16.20 | 34% | 20.2 | 34% | 25 | 40% |
Mineral supplement, Global | 0.54 | 1% | 0.641 | 1% | 0.624 | 1% |
Molasses, Global | 0.08 | 0% | 0.0984 | 0% | 0.125 | 0% |
Rape meal, Global | 1.06 | 2% | 2.6 | 4% | 2.09 | 3% |
Soybean feed, Global | 1.70 | 4% | 3.69 | 6% | 4.2 | 7% |
Straw, Europe | 0.12 | 0% | 0.0999 | 0% | 0.0777 | 0% |
Total mixed ratio | 0.00 | 0% | 0.00151 | 0% | 0.00172 | 0% |
Wheat grain, feed, Swiss | 3.63 | 8% | 4.77 | 8% | 4.45 | 7% |
Indicators/Number of Dairy Cows | Unit | 1–50 | 51–200 | ≥201 | Total |
---|---|---|---|---|---|
Total number of cows in the size group | cows | 32,776 | 30,021 | 38,308 | 101,105 |
CH4 (fermentation) | kg | 4,627,999 | 4,238,979 | 5,409,090 | 14,276,068 |
CH4 (manure) | kg | 566,373 | 518,765 | 661,962 | 1,747,100 |
CH4 to CO2eq | kg | 145,442,421 | 133,216,830 | 169,989,452 | 448,648,702 |
N2ODmm (direct manure) | kg | 10,807 | 9899 | 12,631 | 33,337 |
N2O to CO2eq | kg | 2,766,626 | 2,534,069 | 3,233,563 | 8,534,258 |
Total CO2eq, by size groups | tons | 148,209 | 135,751 | 173,223 | 457,183 |
FPCM kg per cow, per year (FAO formula) | kg | 5748 | 7164 | 8875 | 5999 |
CO2eq per 1 kg of milk | kg | 0.79 | 0.63 | 0.51 | 0.75 |
Indicators/Number of Dairy Cows | Unit | 1–50 | 51–200 | ≥201 |
---|---|---|---|---|
Total number of cows | cows | 32,776 | 30,021 | 38,308 |
Carbon dioxide, biogenic, per cow | kg | 35.6 | 53.2 | 50.3 |
Carbon dioxide, fossil, per cow | kg | 414 | 541 | 596 |
Carbon dioxide in the air, per cow | kg | 2610 | 3290 | 3000 |
Carbon dioxide, land transformation, per cow | kg | 49.7 | 107 | 122 |
Carbon dioxide non-fossil resource correction, per cow | kg | −96.9 | −114 | −155 |
Total carbon dioxide, per cow | kg | 3012 | 3877 | 3613 |
Total carbon dioxide per whole group | tons | 987,350 | 1,163,978 | 1,384,183 |
Nitrogen oxide N2O per cow | kg | 1.84 | 2.44 | 2.53 |
Nitrogen oxide per group | tons | 60 | 73 | 97 |
Nitrogen in CO2eq | tons | 15,982 | 19,412 | 25,684 |
Methane biogenic, per cow | kg | 0.0482 | 0.0608 | 0.0733 |
Methane fossil, per cow | kg | 1.27 | 1.66 | 1.8 |
Methane total per cow | kg | 1.3182 | 1.7208 | 1.8733 |
Methane per group | tons | 43 | 52 | 72 |
Menthane in CO2eq | tons | 1210 | 1446 | 2009 |
Total CO2 in CO2eq, p.a. | tons | 1,004,542 | 1,184,836 | 1,411,876 |
Deviation from the previous group | % | N/A | 18% | 19% |
FPCM kg per cow, per year (FAO formula) | kg | 5748 | 7164 | 8875 |
CO2eq per 1 kg of FPCM milk | kg | 5.33 | 5.51 | 4.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilvere, A. Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes. Agriculture 2025, 15, 2201. https://doi.org/10.3390/agriculture15212201
Pilvere A. Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes. Agriculture. 2025; 15(21):2201. https://doi.org/10.3390/agriculture15212201
Chicago/Turabian StylePilvere, Aija. 2025. "Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes" Agriculture 15, no. 21: 2201. https://doi.org/10.3390/agriculture15212201
APA StylePilvere, A. (2025). Efficiency and Emissions Performance in Latvian Dairy Farming: An LCA-Based Comparison Across Farm Sizes. Agriculture, 15(21), 2201. https://doi.org/10.3390/agriculture15212201