Assessment of the Impact of Biodegradable Coated Fertilizers on Corn Yield
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Design of the Experiment
- HTC < 0.5—drought,
- 0.5–1.0—dry conditions,
- 1.0–1.5—moderate conditions,
- 1.5—favorable conditions.
2.2. Statistical Analysis
3. Results
4. Discussion
4.1. Yield Efficiency
4.2. Impact of Meteorological Conditions
4.3. Comparison of Different Types of Fertilizers
4.4. Biometric Parameters of Plants
4.5. Dry Matter Content
4.6. Environmental Implications
4.7. Economic Efficiency
4.8. Mechanisms of Action
4.9. Limitations and Prospects for Research
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Erenstein, O.; Jaleta, M.; Sonder, K.; Mottaleb, K.; Prasanna, B.M. Global maize production, consumption and trade: Trends and R&D implications. Food Secur. 2022, 14, 1295–1319. [Google Scholar] [CrossRef]
- Zheng, Y.; van Geen, A.; Stute, M. Human arsenic exposure risk via crop consumption and global trade from groundwater-irrigated areas. Environ. Sci. Technol. 2021, 55, 14329–14338. [Google Scholar]
- Searchy, J.; Smith, R. Extreme weather events, climate expectations, and agricultural export dynamics. Nat. Clim. Chang. 2025, 15, 45–58. [Google Scholar]
- Li, P.; Zhang, G. Mycotoxin risk management in maize gluten meal. Compr. Rev. Food Sci. Food Saf. 2023, 22, 1892–1910. [Google Scholar]
- Kumar, A.; Singh, V. Assessment of genetic diversity in the inbred lines for forage traits in maize. Crop Sci. 2024, 64, 567–578. [Google Scholar]
- Wang, Y.; Doebley, J. Improving architectural traits of maize inflorescences. Plant Cell 2021, 33, 1203–1215. [Google Scholar]
- Qin, X.; Wu, B.; Zeng, H.; Zhang, M.; Tian, F. Global Gridded Crop Production Dataset at 10 km Resolution from 2010 to 2020. Nat. Sci. Data 2024, 11, 123. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655857/ (accessed on 5 May 2025). [CrossRef]
- Wahengbam, B.; Gill, R.; Menon, S.; Patel, M. Effects of Varietal Selection and Plant Spacing Patterns on the Growth of Maize (Zea mays L.) in Irrigated Agro-Eco-Systems of Punjab. Asian Res. J. Agric. 2024, 17, 1000–1011. Available online: https://www.semanticscholar.org/paper/bfb9c187e753a2c5b951cd32d5f60636e89a0499 (accessed on 17 December 2024). [CrossRef]
- Statista. Corn Production Worldwide from 2012/2013 to 2023/2024, by Country (in Million Metric Tons). Available online: https://www.statista.com/statistics/254292/global-corn-production-by-country/ (accessed on 5 May 2025).
- FAO FAOSTAT Statistical Database. Food and Agriculture Organization of the United Nations. 2024. Available online: https://www.fao.org/faostat/en/#data/QC (accessed on 5 May 2025).
- Food and Agriculture Organization of the United Nations (FAO). Cereal Supply and Demand Brief: Global Cereal Production and Utilization. 2023. Available online: https://www.fao.org/worldfoodsituation/csdb/en/ (accessed on 8 May 2025).
- United States Department of Agriculture (USDA). World Agricultural Supply and Demand Estimates (WASDE). 2024. Available online: https://www.usda.gov/oce/commodity/wasde (accessed on 3 June 2025).
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, H.; Roser, M.; Corn (Maize) Production. Our World in Data. 2021. Available online: https://ourworldindata.org/grapher/maize-production (accessed on 5 May 2025).
- Surve, V.; Patel, P.; Patel, T.; Jinjala, H. Integrated Nutrient Management for Enhancing Cereal Crop Production: A Review. Annu. Res. Rev. Biol. 2024, 39, 5–8. [Google Scholar] [CrossRef]
- Smetanová, A.; Nunes, J.P.; Symeonakis, E.; Brevik, E.; Schindelwolf, M. Guest Editorial-Special Issue: Mapping and modelling soil erosion to address societal challenges in a changing world. Land Degrad. Dev. 2019, 31, 2519–2524. [Google Scholar] [CrossRef]
- Herrick, J.E.; Sala, O.E.; Karl, J.W. Land degradation and climate change: A sin of omission? Front. Ecol. Environ. 2013, 11, 267–272. [Google Scholar] [CrossRef]
- Chaves, M.M. Drought effects and water use efficiency: Improving crop production in dry environments. Funct. Plant Biol. 2010, 37, 85–89. [Google Scholar] [CrossRef]
- Song, Y.; Ma, L.; Duan, Q.; Xie, H.; Dong, X.; Zhang, H.; Yu, L. Development of Slow-Release Fertilizers with Function of Water Retention Using Eco-Friendly Starch Hydrogels. Molecules 2024, 29, 4835. [Google Scholar] [CrossRef] [PubMed]
- PN-R-04033:1998; Gleby i Utwory Mineralne—Podział na Frakcje i Grupy Granulometryczne. Polski Komitet Normalizacyjny: Warszawa, Poland, 1998; ISBN 8323610851/9788323610854.
- Wu, K.; Wang, L.; Zhang, L.; Han, M.; Gong, P.; Xue, Y.; Song, Y.; Wu, Z.; Zhang, L. The Impact of Applying Different Fertilizers on Greenhouse Gas Emissions and Ammonia Volatilization from Northeast Spring Corn. Agronomy 2024, 14, 2798. [Google Scholar] [CrossRef]
- Beresiów, P.K.; Strażyński, P.; Mrówczyński, M. (Eds.) Program Wieloletni 2016–2020 Ochrona Roślin Uprawnych z Uwzględnieniem Bezpieczeństwa Żywności oraz Ograniczenia Strat w Plonach i Zagrożeń dla Zdrowia Ludzi, Zwierząt Domowych i Środowiska; Ministerstwo Rolnictwa i Rozwoju Wsi: Warszawa, Poland, 2020. [Google Scholar]
- Rusek, Ł.; Brodowska, M.S.; Schab, S.; Rusek, P. Technologia produkcji mineralnych nawozów o kontrolowanym uwalnianiu (CRF) z wykorzystaniem materiałów biodegradowalnych w procesie powlekania. Przemysł Chem. 2024, 103, 2. [Google Scholar] [CrossRef]
- Skowera, B.; Puła, J. Skrajne Warunki Pluwiometryczne w Okresie Wiosennym na Obszarze Polskim w Latach 1971–2000. Acta Agrophysica 2004, 3, 171–177. [Google Scholar]
- Xu, X.; He, P.; Wei, J.; Cui, R.; Sun, J.; Qiu, S.; Zhao, S.; Zhou, W. Use of Controlled-Release Urea to Improve Yield, Nitrogen Utilization, and Economic Return and Reduce Nitrogen Loss in Wheat-Maize Crop Rotations. Agronomy 2021, 11, 723. [Google Scholar] [CrossRef]
- Firmanda, A.; Fahma, F.; Syamsu, K.; Suryanegara, L.; Wood, K. Controlled/slow-release fertilizer based on cellulose composite and its impact on sustainable agriculture: Review. Biofuels Bioprod. Bioref. 2022, 16, 1909–1930. [Google Scholar] [CrossRef]
- Rubel, R.I.; Wei, L. Economic Assessment of Biochar-Based Controlled-Release Nitrogen Fertilizer Production at Different Industrial Scales. In Waste and Biomass Valorization; Springer: Berlin/Heidelberg, Germany, 2025. [Google Scholar] [CrossRef]
- MK, G.; DA, G. Determining effective waste human hair hydrolyzing parameters combination and its typical physicochemical characteristics in synthesizing liquid nitrogenous organic fertilizer. Sci. Rep. 2024, 14, 27382. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef] [PubMed]
- Boarino, A.; Carrara, N.; Padoan, E.; Celi, L.; Klok, H.A. Biodegradable Polymers for Plant Nutrient Delivery and Recovery. Macromol. Biosci. 2025, 25, e2500042. [Google Scholar] [CrossRef] [PubMed]
| Parameter | Value | Description | Unit |
|---|---|---|---|
| Soil category | mean | ||
| pH | 6.1 | slightly sour | |
| Liming needs | related | ||
| P2O5 | 242 | very high | mg·kg−1 soil |
| K2O | 169 | mean | mg·kg−1 soil |
| Mg | 59 | mean | mg/kg−1 soil |
| S-generally | 0.027 | mean | In % psm |
| ‘N Point 0–30 cm | |||
| N-NO3 | 22.39 | very high | mg·kg−1 dry soil |
| N-NH4 | <0.83 | very high | mg·kg−1 dry soil |
| N min | 96.30 | very high | kg·ha−1 |
| N Point 30–60 cm | |||
| N-NO3 | 7.72 | very high | mg·kg−1 dry soil |
| N-NH4 | 1.45 | very high | mg·kg−1 dry soil |
| N min | 39.40 | very high | kg·ha−1 |
| N min in layers 0–60 cm | 135.70 | very high | kg·ha−1 |
| Variant | Fertilizer | Coating | N Dose (kg ha−1) |
|---|---|---|---|
| 1 | No fertilization (control) | - | 0 |
| 2 | Start of Polifoska | none | 180 |
| 3 | Start of Polifoska | none | 135 |
| 4 | Start of Polifoska | linen | 180 |
| 5 | Start of Polifoska | linen | 135 |
| 6 | Start of Polifoska | Hemp | 180 |
| 7 | Start of Polifoska | Hemp | 135 |
| 8 | Urea + PK | none | 180 |
| 9 | Urea + PK | none | 135 |
| 10 | Urea + PK | linen | 180 |
| 11 | Urea + PK | linen | 135 |
| 12 | Urea + PK | Hemp | 180 |
| 13 | Urea + PK | Hemp | 135 |
| Years | Months | ||||||
|---|---|---|---|---|---|---|---|
| IV | V | VI | VII | VIII | IX | ||
| I | 5.9 | 12.8 | 19.4 | 19.4 | 20.5 | 10.8 | 13.1 |
| II | 8.2 | 12.9 | 17.4 | 20 | 21 | 17.6 | 16.1 |
| III | 11 | 16.3 | 19.5 | 21.7 | 20.8 | 17.1 | 17.7 |
| Avg. | 8.4 | 14.0 | 18.8 | 20.4 | 20.8 | 15.2 | |
| Avg. 2011–2020 | 9.5 | 14.4 | 18.5 | 20.1 | 19.7 | 14.7 |
| Years | Months | ||||||
|---|---|---|---|---|---|---|---|
| IV | V | VI | VII | VIII | IX | ||
| I | 53.2 | 36.3 | 38.7 | 111.8 | 52.3 | 112.3 | 67.4 |
| II | 57.9 | 66 | 60 | 84.7 | 46.4 | 28.5 | 57.3 |
| III | 25.3 | 14.9 | 107.4 | 61.3 | 134.2 | 42.4 | 64.25 |
| Avg. | 45.5 | 39.1 | 68.7 | 85.9 | 77.6 | 61.1 | |
| Avg. 2011–2020 | 40.8 | 80.3 | 64.3 | 91.3 | 54.9 | 60.2 |
| Years | Months | |||||
|---|---|---|---|---|---|---|
| IV | V | VI | VII | VIII | IX | |
| I | 3.01 | 0.91 | 0.66 | 1.86 | 0.82 | 3.47 |
| II | 2.35 | 1.65 | 1.15 | 1.37 | 0.71 | 0.54 |
| III | 0.77 | 0.29 | 1.84 | 0.91 | 2.08 | 0.83 |
| Years | N Dose, kg N·ha−1 (C) | Type of Fertilizer (A) | Without Fertilization | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Urea | NPK | |||||||||
| Coating Type (B) | ||||||||||
| 0 | 1 | 2 | Avg. | 0 | 1 | 2 | Avg. | |||
| I | 180 | 88.17 bc | 99.23 c–f | 99.67 d–f | 95.69 C | 91.43 b–e | 107.33 f | 101.97 ef | 100.24 C | 71.13 a |
| 135 | 83.43 b | 90.03 b–d | 92.73 b–e | 88.73 B | 88.18 bc | 88.83 b–d | 94.10 b–e | 90.37 B | A | |
| Avg. | 85.80 B | 94.63 CD | 96.20 CD | 89.81 BC | 98.08 D | 98.03 D | A | |||
| Avg. | 92.21 B | 95.31 B | A | |||||||
| A—η2p = 17.83% B—η2p = 63.15% | C—η2p = 62.98% | AxB—n.s. AxC—n.s. | BxC—η2p = 28.65% AxBxC—n.s. | |||||||
| II | 180 | 82.90 ab | 96.18 bc | 90.97 bc | 90.02 BC | 85.00 a–c | 101.25 bc | 104.07 c | 96.77 C | 67.07 a |
| 135 | 80.57 ab | 86.98 a–c | 87.30 a–c | 84.95 B | 83.90 a–c | 98.27 bc | 96.15 bc | 92.77 BC | A | |
| Avg. | 81.73 AB | 91.85 BC | 89.13 BC | 84.45 B | 99.78 C | 100.11 C | A | |||
| Avg. | 87.48 B | 94.77 C | A | |||||||
| A—η2p = 26.96% B—η2p = 47.43% | C—n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
| III | 180 | 84.70 b | 89.00 b | 89.13 b | 87.61 B | 86.37 b | 105.10 c | 106.72 c | 99.39 C | 62.50 a |
| 135 | 82.63 b | 85.10 b | 82.33 b | 83.36 B | 83.63 b | 90.33 b | 86.07 b | 86.68 B | A | |
| Avg. | 83.67 B | 87.05 B | 85.73 B | 85.00 B | 97.72 C | 96.39 C | A | |||
| Avg. | 85.48 B | 93.04 C | A | |||||||
| A—η2p = 59.26% B—η2p = 55.89% | C—η2p = 64.74% | AxB—η2p = 33.02% AxC—η2p = 31.33% | BxC—η2p = 35.65% AxBxC—n.s. | |||||||
| Avg. | 180 | 85.26 bc | 94.81 d | 93.26 cd | 91.11 C | 87.60 b–d | 104.56 e | 104.25 e | 98.80 D | 66.90 a |
| 135 | 82.21 b | 87.37 b–d | 87.46 b–d | 85.68 B | 85.24 bc | 92.48 cd | 92.10 cd | 89.94 C | A | |
| Avg. | 83.73 B | 91.09 C | 90.36 C | 86.42 BC | 98.52 D | 98.18 D | A | |||
| Avg. | 88.39 B | 94.37 C | A | |||||||
| A—η2p = 22.79% B—η2p = 39.70% | C—η2p = 29.65% | AxB—η2p = n.s. AxC—η2p = n.s. | BxC—η2p = 7.60% AxBxC—n.s. | |||||||
| Years | N Dose, kg N·ha−1 (C) | Type of Fertilizer (A) | Without Fertilization | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Urea | NPK | |||||||||
| Coating Type (B) | ||||||||||
| 0 | 1 | 2 | Avg. | 0 | 1 | 2 | Avg. | |||
| I | 180 | 300.17 de | 278.04 ab | 289.75 b–d | 289.32 A | 295.83 c–e | 307.17 e | 300.50 de | 301.17 B | 306.42 de |
| 135 | 306.67 e | 266.83 a | 283.29 a–c | 285.60 A | 309.71 e | 300.38 de | 309.96 e | 306.68 B | B | |
| Avg. | 303.42 C | 272.44 A | 286.52 B | 302.77 C | 303.77 C | 305.23 C | C | |||
| Avg. | 287.46 A | 303.92 B | B | |||||||
| A—η2p = 17.50% B—η2p = 10.49% | C—n.s. | AxB—η2p = 11.92% AxC—η2p = 1.64% | BxC—η2p = 4.59% AxBxC—n.s. | |||||||
| II | 180 | 279.04 bc | 280.67 c | 279.13 bc | 279.61 CD | 263.75 a | 279.92 bc | 274.96 a–c | 278.88 B | 262.00 a |
| 135 | 274.25 a–c | 284.79 c | 283.71 c | 280.92 D | 267.33 ab | 277.75 bc | 278.42 bc | 274.50 BC | A | |
| Avg. | 276.65 B | 282.73 B | 281.42 B | 265.54 A | 278.83 B | 276.69 B | A | |||
| Avg. | 280.26 C | 273.69 B | A | |||||||
| A—η2p = 5.37% B—η2p = 8.54% | C—n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
| III | 180 | 283.54 b | 281.75 b | 275.88 b | 280.39 B | 280.25 b | 277.46 b | 271.17 b | 276.29 B | 238.50 a |
| 135 | 278.83 b | 272.17 b | 278.21 b | 276.40 B | 282.75 b | 279.67 b | 280.29 b | 280.39 B | A | |
| Avg. | 281.19 B | 276.96 B | 277.04 B | 281.50 B | 278.56 B | 275.73 B | A | |||
| Avg. | 278.40 B | 278.60 BC | A | |||||||
| A—n.s. B—η2p = 2.27% | C—n.s. | AxB—n.s. AxC—η2p = 2.40% | BxC—η2p = 2.06% AxBxC—n.s. | |||||||
| Avg. | 180 | 287.58 c | 280.15 bc | 281.58 bc | 283.11 BC | 279.94 a-c | 288.18 c | 282.21 bc | 283.44 BC | 268.97 a |
| 135 | 286.58 c | 274.60 ab | 281.74 bc | 280.97 B | 286.60 c | 285.93 c | 289.56 c | 287.36 C | A | |
| Avg. | 287.08 C | 277.38 AB | 281.66 BC | 283.27 BC | 287.06 C | 285.88 C | A | |||
| Avg. | 282.04 B | 285.40 C | A | |||||||
| A—η2p = 0.66% B—n.s. | C—n.s. | AxB—η2p = 1.77% AxC—η2p = 0.53% | BxC—η2p = 0.68% AxBxC—n.s. | |||||||
| Years | N Dose, kg N·ha−1 (C) | Type of Fertilizer (A) | Without Fertilization | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Urea | NPK | |||||||||
| Coating Type (B) | ||||||||||
| 0 | 1 | 2 | Avg. | 0 | 1 | 2 | Avg. | |||
| I | 180 | 0.51 a | 0.53 a | 0.53 a | 0.52 A | 0.53 a | 0.53 a | 0.52 a | 0.53 A | 0.51 a |
| 135 | 0.54 a | 0.51 a | 0.55 a | 0.53 A | 0.53 a | 0.53 a | 0.52 a | 0.53 A | A | |
| Avg. | 0.53 A | 0.52 A | 0.54 A | 0.53 A | 0.53 A | 0.52 A | A | |||
| Avg. | 0.53 A | 0.53 A | A | |||||||
| A—η2p = n.s. B—η2p = n.s. | C—η2p = n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
| II | 180 | 0.53 a | 0.51 a | 0.53 a | 0.52 A | 0.52 a | 0.53 a | 0.53 a | 0.53 AB | 0.56 a |
| 135 | 0.50 a | 0.54 a | 0.53 a | 0.52 A | 0.53 a | 0.53 a | 0.54 a | 0.53 AB | B | |
| Avg. | 0.51 A | 0.53 AB | 0.53 AB | 0.52 AB | 0.53 AB | 0.53 AB | B | |||
| Avg. | 0.52 A | 0.53 A | B | |||||||
| A—n.s. B—n.s. | C—n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
| III | 180 | 0.53 a | 0.53 a | 0.53 a | 0.53 A | 0.54 a | 0.53 a | 0.53 a | 0.53 A | 0.53 a |
| 135 | 0.53 a | 0.52 a | 0.52 a | 0.52 A | 0.54 a | 0.53 a | 0.53 a | 0.53 A | A | |
| Avg. | 0.53 A | 0.52 A | 0.52 A | 0.54 A | 0.53 A | 0.53 A | A | |||
| Avg. | 0.52 A | 0.53 A | A | |||||||
| A—n.s. B—n.s. | C—n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
| Avg. | 180 | 0.52 a | 0.52 a | 0.53 a | 0.52 A | 0.53 a | 0.53 a | 0.53 a | 0.53 A | 0.53 a |
| 135 | 0.52 a | 0.52 a | 0.53 a | 0.53 A | 0.53 a | 0.53 a | 0.52 a | 0.53 A | A | |
| Avg. | 0.52 A | 0.52 A | 0.53 A | 0.53 A | 0.53 A | 0.53 A | A | |||
| Avg. | 0.52 A | 0.53 A | A | |||||||
| A—n.s. B—n.s. | C—n.s. | AxB—n.s. AxC—n.s. | BxC—n.s. AxBxC—n.s. | |||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusek, Ł.; Brodowska, M.S.; Bogusz, P.; Rusek, P. Assessment of the Impact of Biodegradable Coated Fertilizers on Corn Yield. Agriculture 2025, 15, 2191. https://doi.org/10.3390/agriculture15212191
Rusek Ł, Brodowska MS, Bogusz P, Rusek P. Assessment of the Impact of Biodegradable Coated Fertilizers on Corn Yield. Agriculture. 2025; 15(21):2191. https://doi.org/10.3390/agriculture15212191
Chicago/Turabian StyleRusek, Łukasz, Marzena Sylwia Brodowska, Paulina Bogusz, and Piotr Rusek. 2025. "Assessment of the Impact of Biodegradable Coated Fertilizers on Corn Yield" Agriculture 15, no. 21: 2191. https://doi.org/10.3390/agriculture15212191
APA StyleRusek, Ł., Brodowska, M. S., Bogusz, P., & Rusek, P. (2025). Assessment of the Impact of Biodegradable Coated Fertilizers on Corn Yield. Agriculture, 15(21), 2191. https://doi.org/10.3390/agriculture15212191

