Co-Application of Arbuscular Mycorrhizal Fungi and Silicon Nanoparticles: A Strategy for Optimizing Volatile Profile, Phenolic Content, and Flower Yield in Rosa damascena Genotypes
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. Mycorrhizal Inoculation and Silicon Nanoparticle Treatments
2.3. Experimental Design
2.4. Determination of Yield-Related Flower Traits
2.5. Characterization of Volatile Compounds by HS-SPME-GC-MS
2.6. Quantification of Phenolic Compounds by HPLC
2.7. Determination of Total Phenolic Content (TPC)
2.8. Determination of Total Flavonoid Content (TFC)
2.9. Total Antioxidant Activity (TAA)
2.10. Essential Oil Extraction (EO)
2.11. Statistical Analysis
3. Results
3.1. Morphological Traits
| AMF | SiNP | Gen | pedicle length (cm) | pedicle diameter (mm) | florescence length (cm) | petal length (mm) | petal diameter (mm) |
| 0 | 0 | D231 | 4.06 ± 0.29 g | 9.17 ± 0.23 g | 106.0 ± 0.90 fg | 22.69 ± 1.78 g | 19.59 ± 0.68 e |
| 0 | 0 | C193 | 5.05 ± 0.80 ef | 9.66 ± 0.94 fg | 102.2 ± 1.58 g | 25.89 ± 0.96 ef | 21.41 ± 1.41 cde |
| 0 | 2 | D231 | 4.11 ± 0.08 g | 11.20 ± 0.21 de | 110.8 ± 5.83 efg | 23.89 ± 1.01 fg | 20.32 ± 0.63 de |
| 0 | 2 | C193 | 5.02 ± 0.41 ef | 9.71 ± 0.35 fg | 111.1 ± 3.50 efg | 26.06 ± 0.83 def | 21.46 ± 1.52 cde |
| 0 | 4 | D231 | 4.64 ± 1.00 fg | 13.33 ± 0.59 c | 118.9 ± 5.39 de | 26.26 ± 0.81 de | 22.48 ± 1.07 a–d |
| 0 | 4 | C193 | 5.85 ± 0.06 cd | 10.46 ± 0.89 ef | 124.4 ± 1.54 cd | 26.79 ± 2.70 cde | 21.94 ± 1.02 b–d |
| 1 | 0 | D231 | 6.50 ± 0.17 bc | 14.48 ± 0.49 b | 124.5 ± 1.88 cd | 27.00 ± 0.78 cde | 22.70 ± 1.43 a–d |
| 1 | 0 | C193 | 5.63 ± 0.26 de | 11.25 ± 0.38 de | 116.8 ± 1.28 def | 28.29 ± 1.04 bcd | 22.46 ± 2.25 a–d |
| 1 | 2 | D231 | 6.57 ± 0.47 abc | 14.73 ± 0.50 b | 131.5 ± 0.79 c | 28.67 ± 0.61 abc | 23.15 ± 1.94 abc |
| 1 | 2 | C193 | 6.09 ± 0.14 bcd | 11.61 ± 0.74 d | 132.3 ± 3.45 c | 30.22 ± 0.65 ab | 23.06 ± 2.50 abc |
| 1 | 4 | D231 | 7.27 ± 0.28 a | 16.24 ± 0.34 a | 165.1 ± 19.47 a | 30.81 ± 1.56 a | 24.82 ± 1.87 a |
| 1 | 4 | C193 | 6.80 ± 0.19 ab | 15.87 ± 0.54 a | 144.5 ± 2.21 b | 30.19 ± 1.39 ab | 24.40 ± 1.13 ab |
| AMF | SiNP | Gen | petal numbers | flower size (cm) | flower number | flower fresh weight (g) | flower dry weight (g) |
| 0 | 0 | D231 | 34.67 ± 1.53 f | 5.81 ± 0.12 b | 27.18 ± 0.60 g | 43.71 ± 2.55 h | 9.16 ± 0.68 f |
| 0 | 0 | C193 | 38.33 ± 1.53 ef | 5.92 ± 0.02 b | 33.76 ± 2.64 f | 59.26 ± 1.83 ef | 11.49 ± 1.60 e |
| 0 | 2 | D231 | 36.00 ± 1.00 ef | 5.79 ± 0.03 b | 35.12 ± 2.23 ef | 59.13 ± 1.71 ef | 11.89 ± 0.92 de |
| 0 | 2 | C193 | 42.33 ± 2.52 cde | 6.00 ± 0.14 ab | 40.27 ± 0.48 d | 73.07 ± 1.53 c | 14.81 ± 0.56 bc |
| 0 | 4 | D231 | 47.33 ± 1.15 bcd | 5.81 ± 0.11 b | 54.09 ± 2.17 a | 83.40 ± 1.23 b | 17.90 ± 0.43 a |
| 0 | 4 | C193 | 46.67 ± 3.21 bcd | 5.94 ± 0.25 b | 44.45 ± 0.60 c | 72.20 ± 1.43 dc | 15.36 ± 1.00 b |
| 1 | 0 | D231 | 41.00 ± 3.61 efd | 5.92 ± 0.42 b | 35.36 ± 2.60 ef | 51.82 ± 1.13 g | 11.47 ± 0.82 e |
| 1 | 0 | C193 | 46.00 ± 7.94 bcd | 5.40 ± 0.17 c | 38.06 ± 1.00 de | 60.79 ± 1.29 e | 13.57 ± 0.27 cd |
| 1 | 2 | D231 | 48.00 ± 6.24 bc | 6.05 ± 0.17 ab | 40.48 ± 1.01 d | 69.67 ± 1.03 d | 13.25 ± 0.98 cd |
| 1 | 2 | C193 | 51.00 ± 5.29 b | 6.29 ± 0.30 a | 50.27 ± 1.97 b | 94.48 ± 1.32 a | 19.54 ± 0.91 a |
| 1 | 4 | D231 | 62.00 ± 3.61 a | 5.91 ± 0.05 b | 35.12 ± 3.68 ef | 56.94 ± 2.26 f | 11.94 ± 1.35 de |
| 1 | 4 | C193 | 58.00 ± 4.58 a | 5.98 ± 0.17 ab | 36.97 ± 0.61 ef | 59.31 ± 1.13 ef | 12.26 ± 1.54 de |
3.2. Phenolic Components
3.3. Volatile Compounds
3.4. Essential Oil Content and Antioxidant Capacity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| AMF | Arbuscular mycorrhizal fungi |
| SiNPs/Si | Silicon nanoparticles |
| HPLC | High-performance liquid chromatography |
| TPC | Total phenolic content |
| TFC | Total flavonoid content |
| TAA | Total antioxidant activity |
| EO | Essential oil |
| DF | Degrees of freedom |
| GEN | Genotypes |
| ND | Non-detected |
| DPPH | 2,2-diphenyl-1-picrylhydrazyl |
| ICP-OES | Inductively Coupled Plasma Optical Emission Spectrometry |
| HS-SPME | Headspace Solid-Phase Microextraction |
| GC-MS | Gas Chromatography–Mass Spectrometry |
| Si | Silicon |
| DW | Dry Weight |
| TAE | Tannic Acid Equivalents |
| QE | Quercetin Equivalents |
| KOH | Potassium Hydroxide |
| H2O2 | Hydrogen Peroxide |
| HCl | Hydrochloric Acid |
| ANOVA | Analysis of Variance |
| LSD | Least Significant Difference |
| ns | Non-significant |
| SD | Standard Deviation |
| TIC | Total Ion Current |
| RI | Retention Index |
| rpm | Revolutions per Minute |
References
- Venkatesha, K.T.; Gupta, A.; Rai, A.N.; Jambhulkar, S.J.; Bisht, R.; Padalia, R.C. Recent developments, challenges, and opportunities in genetic improvement of essential oil-bearing rose (Rosa damascena): A review. Ind. Crops Prod. 2022, 184, 114984. [Google Scholar] [CrossRef]
- Chroho, M.; Bouymajane, A.; Oulad El Majdoub, Y.; Cacciola, F.; Mondello, L.; Aazza, M.; Zair, T.; Bouissane, L. Phenolic composition, antioxidant and antibacterial activities of extract from flowers of Rosa damascena from Morocco. Separations 2022, 9, 247. [Google Scholar] [CrossRef]
- Zgheib, R.; Najm, W.; Azzi-Achkouty, S.; Sadaka, C.; Ouaini, N.; Beyrouthy, M. Essential oil chemical composition of Rosa corymbifera Borkh., Rosa phoenicia Boiss. and Rosa damascena Mill. from Lebanon. J. Essent. Oil Bear. Plants 2020, 23, 1161–1172. [Google Scholar] [CrossRef]
- Katekar, V.P.; Rao, A.B.; Sardeshpande, V.R. Review of the rose essential oil extraction by hydrodistillation: An investigation for the optimum operating condition for maximum yield. Sustain. Chem. Pharm. 2022, 29, 100783. [Google Scholar] [CrossRef]
- ISO 9842:2003; Essential Oil of Rose (Rosa damascena Miller)—Definition and Specifications. International Organization for Standardization: Geneva, Switzerland, 2003.
- Rusanov, K.; Kovacheva, N.; Stefanova, K.; Atanassov, A.; Atanassov, I. Rosa damascena—Genetic resources and capacity building for molecular breeding. Biotechnol. Biotechnol. Equip. 2009, 23, 1436–1439. [Google Scholar] [CrossRef]
- Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; John Wiley & Sons: Hoboken, NJ, USA, 1997. [Google Scholar]
- Quan, W.; Jin, J.; Qian, C.; Li, C.; Zhou, H. Characterization of volatiles in flowers from four Rosa chinensis cultivars by HS-SPME-GC× GC-QTOFMS. Front. Plant Sci. 2023, 14, 1060747. [Google Scholar] [CrossRef]
- Behnamnia, S.; Rahimmalek, M.; Haghighi, M.; Nikbakht, A.; Gharibi, S.; Pachura, N.; Szumny, A.; Łyczko, J. Variation in Flavonoid Compounds, Volatiles and Yield Related Traits in Different Iranian Rosa damascena Mill. Cultivars Based on SPME Arrow and LC-MS/MS. Foods 2024, 13, 668. [Google Scholar] [CrossRef]
- Mohsen, E.; Younis, I.Y.; Farag, M.A. Metabolites profiling of Egyptian Rosa damascena Mill. flowers as analyzed via ultra-high-performance liquid chromatography-mass spectrometry and solid-phase microextraction gas chromatography-mass spectrometry in relation to its anti-collagenase skin effect. Ind. Crops Prod. 2020, 155, 112818. [Google Scholar]
- Facelli, E.; Smith, S.E.; Smith, F.A. Mycorrhizal symbiosis—Overview and new insights into roles of arbuscular mycorrhizas in agro-and natural ecosystems. Australas. Plant Pathol. 2009, 38, 338–344. [Google Scholar] [CrossRef]
- Abdel-Salam, E.; Alatar, A.; El-Sheikh, M. Inoculation with arbuscular mycorrhizal fungi alleviates harmful effects of drought stress on damask rose. Saudi J. Biol. Sci. 2018, 25, 1772–1780. [Google Scholar] [CrossRef] [PubMed]
- Solgi, M.; Bagnazari, M.; Mohammadi, M.; Azizi, A. Thymbra spicata extract and arbuscular mycorrhizae improved the morphophysiological traits, biochemical properties, and essential oil content and composition of Rosemary (Rosmarinus officinalis L.) under salinity stress. BMC Plant Biol. 2025, 25, 220. [Google Scholar] [CrossRef]
- Laane, H.-M. The effects of foliar sprays with different silicon compounds. Plants 2018, 7, 45. [Google Scholar] [CrossRef]
- Li, F.; Hou, Y.; Chen, L.; Qiu, Y. Advances in silica nanoparticles for agricultural applications and biosynthesis. Adv. Biotechnol. 2025, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Farahani, H.; Sajedi, N.A.; Madani, H.; Changizi, M.; Naeini, M.R. Effect of foliar-applied silicon on flower yield and essential oil composition of damask rose (Rosa damascena Miller) under water deficit stress. Silicon 2021, 13, 4463–4472. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Gill, S.; Ramzan, M.; Ahmad, M.Z.; Danish, S.; Huang, P.; Al Obaid, S.; Alharbi, S.A. Uncovering the impact of AM fungi on wheat nutrient uptake, ion homeostasis, oxidative stress, and antioxidant defense under salinity stress. Sci. Rep. 2023, 13, 8249. [Google Scholar] [CrossRef]
- Begum, N.; Akhtar, K.; Ahanger, M.A.; Iqbal, M.; Wang, P.; Mustafa, N.S.; Zhang, L. Arbuscular mycorrhizal fungi improve growth, essential oil, secondary metabolism, and yield of tobacco (Nicotiana tabacum L.) under drought stress conditions. Environ. Sci. Pollut. Res. 2021, 28, 45276–45295. [Google Scholar] [CrossRef]
- El-Naggar, H.M. and A.R. Osman, Enhancing growth and bioactive metabolites characteristics in Mentha pulegium L. via silicon nanoparticles during in vitro drought stress. BMC Plant Biol. 2024, 24, 657. [Google Scholar] [CrossRef] [PubMed]
- Gunasekera, D.; Ratnasekera, D.; Ali, B.; Islam, M.S.; Younis, U.; Ahmed, S.; Açikbaş, S.; Turan, N.; Seydoşoğlu, S.; El Sabagh, A. Nano-Silicon-Mediated Abiotic Stress Resistance in Plants: Mechanisms of Stress Mitigation, in Nanotechnology for Agriculture; Apple Academic Press: Palm Bay, FL, USA, 2025; pp. 77–94. [Google Scholar]
- Ahmadi-Nouraldinvand, F.; Sharifi, R.S.; Siadat, S.A.; Khalilzadeh, R. Fascinating role of silicon dioxide nanoparticles and co-inoculation of mycorrhiza and rhizobacteria to combat NaCl stress: Changes in physiological characteristics, uptake of nutrient elements, and enhancing photosystem ii activities in wheat. J. Soil Sci. Plant Nutr. 2024, 24, 277–294. [Google Scholar] [CrossRef]
- Islam, A.T.; Ullah, H.; Himanshu, S.K.; Tisarum, R.; Cha-um, S.; Datta, A. The interactive effects of silicon and arbuscular mycorrhizal fungi on growth, physio-biochemical traits, and cob yield of baby corn plants under salt stress. Silicon 2023, 15, 4457–4471. [Google Scholar] [CrossRef]
- Page, A.L. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982. [Google Scholar]
- Bilgili, A. The effectiveness of arbuscular mycorrhizal fungal species (Funneliformis mosseae, Rhizophagus intraradices, and Claroideoglomus etunicatum) in the biocontrol of root and crown rot pathogens, Fusarium solani and Fusarium mixture in pepper. PeerJ 2025, 13, e18438. [Google Scholar] [CrossRef]
- Hashemi, R.H.; Nikbakht, A.; Aalipour, H. Synergistic effects of oxygen nanobubble, nano-silicon and seaweed extract on promoting quality and postharvest performance of two cut rose flowers. Sci. Hortic. 2024, 338, 113637. [Google Scholar] [CrossRef]
- Arabsalehi, F.; Rahimmalek, M.; Sabzalian, M.R.; Barzegar-Sadeghabad, A.; Matkowski, A.; Szumny, A. Metabolic and physiological effects of water stress on Moshgak (Ducrosia anethifolia Boiss) populations using GC-MS and multivariate analyses. Sci. Rep. 2022, 12, 22148. [Google Scholar] [CrossRef]
- Farouk, S.; Elhindi, K.M.; Alotaibi, M.A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 2020, 206, 111396. [Google Scholar] [CrossRef]
- Haghighi, T.M.; Saharkhiz, M.; Zarei, M. Interactive effects of silicon and arbuscular mycorrhiza on root growth, uptake of several soil elements, antioxidant potential, and secondary metabolites of Licorice (Glycyrrhiza glabra L.) under water-deficit condition. Res. Sq. 2022, 1, 1–26. [Google Scholar]
- Hessini, K.; Wasli, H.; Al-Yasi, H.M.; Ali, E.F.; Issa, A.A.; Hassan, F.; Siddique, K. Graded moisture deficit effect on secondary metabolites, antioxidant, and inhibitory enzyme activities in leaf extracts of Rosa damascena Mill. var. trigentipetala. Horticulturae 2022, 8, 177. [Google Scholar] [CrossRef]
- Nada, R.S.; Soliman, M.; Zarad, M.; Sheta, M.; Ullah, S.; Abdel-Gawad, A.; Ghoneim, A.; Elateeq, A. Effect of organic fertilizer and plant growth-promoting microbes on growth, flowering, and oleanolic acid content in Calendula officinalis under greenhouse conditions. Egypt. J. Soil Sci. 2024, 64, 815–831. [Google Scholar] [CrossRef]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresour. Technol. 2004, 93, 307–311. [Google Scholar] [CrossRef] [PubMed]
- SeyedHajizadeh, H.; Esmaili, S.; Zahedi, S.M.; Fakhrghazi, H.; Kaya, O. Silicon dioxide and selenium nanoparticles enhance vase life and physiological quality in black magic roses. Sci. Rep. 2024, 14, 22848. [Google Scholar] [CrossRef] [PubMed]
- Attia, E.A.; Elhawat, N. Combined foliar and soil application of silica nanoparticles enhances the growth, flowering period and flower characteristics of marigold (Tagetes erecta L.). Sci. Hortic. 2021, 282, 110015. [Google Scholar] [CrossRef]
- Chettri, K.; Majumder, J.; Mahanta, M.; Mitra, M.; Gantait, S. Genetic diversity analysis and molecular characterization of tropical rose (Rosa spp.) varieties. Sci. Hortic. 2024, 332, 113243. [Google Scholar] [CrossRef]
- Tofighi Alikhani, T.; Tabatabaei, S.J.; Mohammadi Torkashvand, A.; Khalighi, A.; Talei, D. Effects of silica nanoparticles and calcium chelate on the morphological, physiological and biochemical characteristics of gerbera (Gerbera jamesonii L.) under hydroponic condition. J. Plant Nutr. 2021, 44, 1039–1053. [Google Scholar] [CrossRef]
- Baydar, H.; Schulz, H.; Krüger, H.; Erbas, S.; Kineci, S. Influences of fermentation time, hydro-distillation time and fractions on essential oil composition of Damask Rose (Rosa damascena Mill.). J. Essent. Oil Bear. Plants 2008, 11, 224–232. [Google Scholar] [CrossRef]
- Zrig, A.; Alsherif, A.; Aloufi, A.; Korany, S.M.; Selim, S.; Almuhayawi, H.; Tarabulsi, M.; Nhs, M.; Albasri, H.; Bouqellah, N. The biomass and health-enhancing qualities of lettuce are amplified through the inoculation of arbuscular mycorrhizal fungi. BMC Plant Biol. 2025, 25, 521. [Google Scholar] [CrossRef]
- Lone, R.; Mushtaq, G.; Hassan, N.; Malla, N.A.; Rohella, G.K.; Khan, S. Role of Phenolics in Establishing Mycorrhizal Association in Plants for Management of Biotic Stress, in Plant Phenolics in Biotic Stress Management; Springer: Heidelberg, Germany, 2024; pp. 35–74. [Google Scholar]
- Mitra, D.; Djebaili, R.; Pellegrini, M.; Mahakur, B.; Sarker, A.; Chaudhary, P.; Khoshru, B.; Gallo, M.; Kitouni, M.; Barik, D. Arbuscular mycorrhizal symbiosis: Plant growth improvement and induction of resistance under stressful conditions. J. Plant Nutr. 2021, 44, 1993–2028. [Google Scholar] [CrossRef]
- Khalediyan, N.; Weisany, W.; Schenk, P.M. Arbuscular mycorrhizae and rhizobacteria improve growth, nutritional status and essential oil production in Ocimum basilicum and Satureja hortensis. Ind. Crops Prod. 2021, 160, 113163. [Google Scholar] [CrossRef]
- Hazzoumi, Z.; Moustakime, Y.; Joutei, K.A. Effect of arbuscular mycorrhizal fungi and water stress on ultrastructural change of glandular hairs and essential oil compositions in Ocimum gratissimum. Chem. Biol. Technol. Agric. 2017, 4, 1–13. [Google Scholar] [CrossRef]
- Israel, A.; Langrand, J.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Significance of arbuscular mycorrhizal fungi in mitigating abiotic environmental stress in medicinal and aromatic plants: A review. Foods 2022, 11, 2591. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Rémus-Borel, W.; Menzies, J.; Bélanger, R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Guntzer, F.; Keller, C.; Meunier, J.D. Benefits of plant silicon for crops: A review. Agron. Sustain. Dev. 2012, 32, 201–213. [Google Scholar] [CrossRef]
- Fleck, A.T.; Schulze, S.; Hinrichs, M.; Specht, A.; Wassmann, F.; Schreiber, L.; Schenk, M. Silicon promotes exodermal Casparian band formation in Si-accumulating and Si-excluding species by forming phenol complexes. PLoS ONE 2015, 10, e0138555. [Google Scholar] [CrossRef] [PubMed]
- Hassan, K.M.; Ajaj, R.; Abdelhamid, A.; Ebrahim, M.; Hassan, I.; Hassan, F.; Alam-Eldein, S.; Ali, M. Silicon: A powerful aid for medicinal and aromatic plants against abiotic and biotic stresses for sustainable agriculture. Horticulturae 2024, 10, 806. [Google Scholar] [CrossRef]
- Arora, H.; Sharma, A.; Poczai, P.; Sharma, S.; Haron, F.F.; Gafur, A.; Sayyed, R.Z. Plant-derived protectants in combating soil-borne fungal infections in tomato and chilli. J. Fungi 2022, 8, 213. [Google Scholar] [CrossRef]
- Carvalho, A.V.; de Andrade Mattietto, R.; de Oliveira Rios, A.; de Almeida Maciel, R.; Moresco, K.S.; de Souza Oliveira, T.C. Bioactive compounds and antioxidant activity of pepper (C. apsicum sp.) genotypes. J. Food Sci. Technol. 2015, 52, 7457–7464. [Google Scholar] [CrossRef]
- Aghaei, M.; Hassani, A.; Darvishzadeh, R. Study on phenotypic variation of total phenol and antioxidant capacity among Iranian basil (Ocimum basilicum L.) landraces. Iran. J. Med. Aromat. Plants 2014, 30, 283–290. [Google Scholar]
- Farhat, M.B.; Jordán, M.; Chaouch-Hamada, R.; Landoulsi, A.; Sotomayor, J. Phenophase effects on sage (Salvia officinalis L.) yield and composition of essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 87–93. [Google Scholar] [CrossRef]
- Rodriguez, R.; Sotomayor, J.F.; Arnold, A.E.; Redman, R.S. Fungal endophytes: Diversity and functional roles. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Kanani, M.; Chamani, E.; Shokouhian, A.A.; Torabi-Giglou, M. Plant secondary metabolism and flower color changes in damask rose at different flowering development stages. Acta Physiol. Plant. 2021, 43, 1–10. [Google Scholar] [CrossRef]
- Shameh, S.; Hosseini, B.; Alirezalu, A.; Maleki, R. Phytochemical composition and antioxidant activity of petals of six Rosa species from Iran. J. AOAC Int. 2018, 101, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Wu, Y.; He, Y. Soil application of SiNPs suppress pathogen population and improved plant resistance and antioxidant activity for disease management. S. Afr. J. Bot. 2024, 172, 31–41. [Google Scholar] [CrossRef]
- Zare, A.S.; Ganjeali, A.; Kakhki, M.R.; Mashreghi, M.; Cheniany, M. Additive effects of arbuscular mycorrhizae and TiO2 nanoparticles on growth and essential oils enhancement of peppermint. Rhizosphere 2023, 25, 100659. [Google Scholar] [CrossRef]
- Tak, Y.; Kaur, M.; Gautam, C.; Kumar, R.; Tilgam, J.; Natta, S. Phenolic Biosynthesis and Metabolic Pathways to Alleviate Stresses in Plants, in Plant Phenolics in Abiotic Stress Management; Springer: Heidelberg, Germany, 2023; pp. 63–87. [Google Scholar]
- Kumar, D.; Roy, S.; Babu, A.; Pandey, A. Harnessing fungal bioagents rich in volatile metabolites for sustainable crop protection: A critical review. J. Basic Microbiol. 2025, 65, e70003. [Google Scholar] [CrossRef] [PubMed]
- Mostafa, S.; Wang, Y.; Zeng, W.; Jin, B. Floral scents and fruit aromas: Functions, compositions, biosynthesis, and regulation. Front. Plant Sci. 2022, 13, 860157. [Google Scholar] [CrossRef]
- Feng, Z.; Liu, X.; Zhu, H.; Yao, Q. Responses of arbuscular mycorrhizal symbiosis to abiotic stress: A lipid-centric perspective. Front. Plant Sci. 2020, 11, 578919. [Google Scholar] [CrossRef]
- Ding, R.; Li, Y.; Yu, Y.; Sun, Z.; Duan, J. Prospects and hazards of silica nanoparticles: Biological impacts and implicated mechanisms. Biotechnol. Adv. 2023, 69, 108277. [Google Scholar] [CrossRef]
- Vareda, J.P.; García-González, C.A.; Valente, A.J.; Simón-Vázquez, R.; Stipetic, M.; Durães, L. Insights on toxicity, safe handling and disposal of silica aerogels and amorphous nanoparticles. Environ. Sci. Nano 2021, 8, 1177–1195. [Google Scholar] [CrossRef]

| AMF | Gen | SiNP | Si (mg/gDW) | AMF Root Colonization (%) | AMF | Genotype | SiNPs (mg/L) | Si (mg/gDW) | AMF Root Colonization (%) |
|---|---|---|---|---|---|---|---|---|---|
| 0 | D231 | 0 | 0.0026 ± 0.0004 | 6.00 ± 1.05 | 1 | D231 | 0 | 0.0037 ± 0.0002 | 42.44 ± 1.41 |
| 2 | 0.0033 ± 0.0002 | 7.00 ± 1.07 | 2 | 0.0044 ± 0.0003 | 45.21 ± 2.48 | ||||
| 4 | 0.0046 ± 0.0004 | 9.67 ± 0.58 | 4 | 0.0078 ± 0.0001 | 48.53 ± 1.47 | ||||
| C193 | 0 | 0.0014 ± 0.0008 | 6.67 ± 1.15 | C193 | 0 | 0.0019 ± 0.0006 | 54.89 ± 0.16 | ||
| 2 | 0.0028 ± 0.0005 | 9.67 ± 0.61 | 2 | 0.0030 ± 0.0008 | 61.41 ± 2.19 | ||||
| 4 | 0.0049 ± 0.0002 | 11.33 ± 0.59 | 4 | 0.0052 ± 0.0002 | 63.72 ± 1.08 | ||||
| LSD (p ≤ 0.05) | 0.0009 | 1.63 | LSD (p ≤ 0.05) | 0.0007 | 2.91 | ||||
| AMF | SiNP | Gen | vanillic acid | apigenin | gallic acid | caffeic acid | 4-hydroxy benzoic acid | syringic acid | p-coumaric acid |
| 0 | 0 | D231 | 11.7 ± 1.29 h | ND | 4.65 ± 0.26 i | 3.85 ± 0.58 h | ND | 13.4 ± 0.55 f | 3.25 ± 0.05 bc |
| 0 | 0 | C193 | 18.5 ± 1.19 de | 1.65 ± 0.06 cd | 8.76 ± 1.03 e | 6.98 ± 0.31 bcd | ND | ND | 3.83 ± 0.31 a |
| 0 | 2 | D231 | 15.7 ± 0.46 fg | 1.07 ± 0.04 fg | 5.40 ± 0.43 hi | 5.80 ± 0.25 fg | ND | ND | 3.02 ± 0.09 def |
| 0 | 2 | C193 | 20.5 ± 1.20 c | 2.23 ± 0.09 b | 16.6 ± 0.73 b | 7.57 ± 0.47 b | ND | ND | 3.72 ± 0.08 a |
| 0 | 4 | D231 | 16.2 ± 0.53 fg | 1.31 ± 0.06 e | 6.83 ± 0.52 fg | 6.48 ± 0.32 de | ND | ND | 2.98 ± 0.08 def |
| 0 | 4 | C193 | 25.9 ± 1.49 a | 2.42 ± 0.09 a | 24.2 ± 0.80 a | 9.81 ± 0.20 a | 15.4 ± 1.02 a | ND | 3.05 ± 0.17 def |
| 1 | 0 | D231 | 11.3 ± 1.14 h | 0.64 ± 0.10 h | 5.15 ± 0.67 hi | 4.04 ± 0.09 h | ND | 14.3 ± 0.43 f | 3.09 ± 0.07 cd |
| 1 | 0 | C193 | 17.1 ± 0.38 ef | 1.54 ± 0.16 d | 10.0 ± 0.39 d | 5.63 ± 0.31 fg | ND | 27.2 ± 0.94 c | 3.41 ± 0.03 b |
| 1 | 2 | D231 | 14.6 ± 0.60 g | 0.93 ± 0.07 g | 5.77 ± 0.60 gh | 5.24 ± 0.39 g | ND | 23.3 ± 0.74 e | 2.88 ± 0.02 ef |
| 1 | 2 | C193 | 19.3 ± 0.48 cd | 1.74 ± 0.15 c | 13.2 ± 0.50 c | 6.77 ± 0.59 cd | ND | 34.1 ± 1.68 b | 2.98 ± 0.05 def |
| 1 | 4 | D231 | 15.5 ± 0.82 fg | 1.21 ± 0.05 ef | 7.63 ± 0.73 f | 5.91 ± 0.17 ef | ND | 25.5 ± 1.28 d | 2.85 ± 0.002 f |
| 1 | 4 | C193 | 22.8 ± 1.63 b | 2.15 ± 0.08 b | 16.1 ± 0.47 b | 7.23 ± 0.38 bc | 11.6 ± 0.59 b | 43.0 ± 0.54 a | 2.87 ± 0.01 ef |
| AMF | SiNP | Gen | rutin | ferulic acid | chlorogenic acid | elagic acid | rosmarinic acid | quercetin | |
| 0 | 0 | D231 | 18.7 ± 0.44 i | 13.3 ± 1.66 b | ND | ND | 7.23 ± 0.71 d | ND | |
| 0 | 0 | C193 | 61.7 ± 0.42 d | ND | ND | 3.87 ± 0.20 d | 10.2 ± 0.62 c | 1.22 ± 0.22 c | |
| 0 | 2 | D231 | 40.5 ± 0.58 g | 2.64 ± 0.69 d | ND | ND | 7.34 ± 0.26 d | ND | |
| 0 | 2 | C193 | 103 ± 2.56 b | ND | ND | 5.24 ± 0.33 b | 12.3 ± 1.48 b | 1.35 ± 0.03 b | |
| 0 | 4 | D231 | 52.9 ± 0.33 e | 0.10 ± 0.03 e | ND | ND | 9.98 ± 0.28 c | ND | |
| 0 | 4 | C193 | 110 ± 0.58 a | ND | ND | 6.78 ± 0.32 a | 17.3 ± 0.57 a | 1.68 ± 0.10 a | |
| 1 | 0 | D231 | 19.3 ± 1.26 i | 22.3 ± 2.98 a | 0.80 ± 0.05 de | ND | 4.00 ± 0.26 e | ND | |
| 1 | 0 | C193 | 54.0 ± 1.56 e | ND | 0.73 ± 0.06 e | 2.73 ± 0.35 e | 7.00 ± 0.54 d | 1.17 ± 0.02 c | |
| 1 | 2 | D231 | 30.2 ± 0.45 h | 8.75 ± 2.15 c | 1.00 ± 0.10 c | ND | 6.40 ± 1.03 d | ND | |
| 1 | 2 | C193 | 50.3 ± 0.15 f | ND | 0.92 ± 0.09 cd | 4.60 ± 0.34 c | 10.1 ± 0.68 c | 1.21 ± 0.03 c | |
| 1 | 4 | D231 | 85.4 ± 0.83 c | ND | 1.43 ± 0.16 a | ND | 9.46 ± 0.54 c | ND | |
| 1 | 4 | C193 | 86.5 ± 1.70 c | ND | 1.15 ± 0.14 b | 5.16 ± 0.22 b | 13.1 ± 0.45 b | 1.38 ± 0.08 b | |
| AMF | SiNP | Gen | hex-(2e)-enal | benzaldehyde | phenylacetaldehyde | para-cymene | linalool | rose oxide | citronellol | α-geraniol |
| 0 | 0 | D231 | 0.13 ± 0.02 c | 1.26 ± 0.032 b | 0.81 ± 0.09 d | 0.09 ± 0.01 d | 0.16 ± 0.01 d | 0.19 ± 0.01 h | 1.45 ± 0.03 f | 0.73 ± 0.11 e |
| 0 | 0 | C193 | 0.16 ± 0.01 b | 1.83 ± 0.38 a | 1.41 ± 0.08 b | 0.12 ± 0.01 c | 0.17 ± 0.01 cd | 0.66 ± 0.03 a | 2.09 ± 0.02 bc | 0.76 ± 0.10 e |
| 0 | 2 | D231 | 0.10 ± 0.01 d | 1.37 ± 0.24 b | 1.81 ± 0.04 a | 0.09 ± 0.01 d | 0.12 ± 0.01 f | 0.26 ± 0.02 f | 1.88 ± 0.12 de | 0.77 ± 0.07 e |
| 0 | 2 | C193 | 0.14 ± 0.01 c | 1.95 ± 0.16 a | 1.16 ± 0.21 c | 0.13 ± 0.02 c | 0.17 ± 0.01 cd | 0.57 ± 0.01 c | 2.11 ± 0.06 abc | 0.80 ± 0.08 e |
| 0 | 4 | D231 | 0.07 ± 0.01 e | 1.13 ± 0.07 b | 1.67 ± 0.17 a | 0.08 ± 0.01 d | 0.13 ± 0.01 ef | 0.25 ± 0.01 f | 1.85 ± 0.05 de | 0.94± 0.04 d |
| 0 | 4 | C193 | 0.11 ± 0.02 d | 1.32 ± 0.08 b | 0.73 ± 0.11 de | 0.12 ± 0.01 c | 0.21 ± 0.02 b | 0.46 ± 0.01 d | 1.93 ± 0.09 d | 1.17 ± 0.12 c |
| 1 | 0 | D231 | 0.08 ± 0.01 e | 0.65 ± 0.05 c | 0.56 ± 0.07 f | 0.10 ± 0.01 d | 0.12 ± 0.01 f | 0.23 ± 0.02 g | 1.88 ± 0.04 de | 1.68 ± 0.09 a |
| 1 | 0 | C193 | 0.28 ± 0.01 a | 1.35 ± 0.14 b | 1.05 ± 0.02 c | 0.17 ± 0.01 b | 0.25 ± 0.01 a | 0.63 ± 0.01 b | 2.20 ± 0.01 ab | 1.32 ± 0.01 b |
| 1 | 2 | D231 | 0.10 ± 0.02 d | 1.10 ± 0.01 b | 0.83 ± 0.02 d | 0.08 ± 0.01 d | 0.12 ± 0.01 f | 0.25 ± 0.01 f | 2.22 ± 0.09 a | 0.94 ± 0.06 d |
| 1 | 2 | C193 | 0.14 ± 0.01 c | 1.27 ± 0.11 b | 0.63 ± 0.05 f | 0.13 ± 0.01 c | 0.20 ± 0.02 b | 0.44 ± 0.02 e | 1.78 ± 0.01 e | 1.55 ± 0.10 a |
| 1 | 4 | D231 | 0.13 ± 0.01 c | 1.12 ± 0.06 b | 1.07 ± 0.01 c | 0.09 ± 0.02 d | 0.14 ± 0.01 e | 0.23 ± 0.02 g | 1.86 ± 0.13 de | 0.95 ± 0.08 d |
| 1 | 4 | C193 | 0.11 ± 0.02 d | 0.75 ± 0.10 c | 1.03 ± 0.08 c | 0.19 ± 0.01 a | 0.17 ± 0.01 cd | 0.43 ± 0.01 e | 2.08 ± 0.03 c | 1.63 ± 0.03 a |
| AMF | SiNP | Gen | β-geranial | phenethyl formate | 2-phenethyl acetate | 2-undecanone | pentanoic acid | 1-hexanol | phenethyl alcohol | |
| 0 | 0 | D231 | 0.09 ± 0.02 gh | 0.16 ± 0.01 bcd | 0.46 ± 0.04 bc | 3.24 ± 0.56 d | 0.10 ± 0.01 i | 0.85 ± 0.07 ef | 87.2 ± 0.78 a | |
| 0 | 0 | C193 | 0.14 ± 0.01 cd | 0.16 ± 0.01 bcd | 0.40 ± 0.01 cde | 4.30 ± 0.30 bc | 0.12 ± 0.01 gh | 1.12 ± 0.09 bc | 83.7 ± 0.49 def | |
| 0 | 2 | D231 | 0.10 ± 0.01 fg | 0.15 ± 0.01 cde | 0.41 ± 0.02 cde | 3.64 ± 0.49 cd | 0.12 ± 0.01 gh | 0.82 ± 0.10 efg | 85.5 ± 1.10 a–d | |
| 0 | 2 | C193 | 0.16 ± 0.02 b | 0.15 ± 0.01 cde | 0.39 ± 0.03 de | 4.60 ± 0.06 b | 0.16 ± 0.01 e | 1.30 ± 0.11 b | 83.1 ± 0.30 ef | |
| 0 | 4 | D231 | 0.11 ± 0.01 ef | 0.18 ± 0.01 a | 0.60 ± 0.06 a | 3.18 ± 0.32 d | 0.15 ± 0.01 ef | 0.61 ± 0.13 g | 85.9 ± 0.43 abc | |
| 0 | 4 | C193 | 0.23 ± 0.02 a | 0.14 ± 0.01 e | 0.50 ± 0.07 b | 4.89 ± 0.68 b | 0.21 ± 0.01 c | 1.00 ± 0.10 cde | 83.8 ± 1.19 def | |
| 1 | 0 | D231 | 0.14 ± 0.02 cd | 0.17 ± 0.02 ab | 0.50 ± 0.03 b | 4.72 ± 0.50 b | 0.24 ± 0.01 b | 0.72 ± 0.03 fg | 84.9 ± 2.17 b–e | |
| 1 | 0 | C193 | 0.15 ± 0.01 bc | 0.14 ± 0.01 e | 0.37 ± 0.02 e | 6.72 ± 0.22 a | 0.23 ± 0.01 b | 1.52 ± 0.17 a | 80.1 ± 0.17 g | |
| 1 | 2 | D231 | 0.12 ± 0.01 de | 0.16 ± 0.01 bcd | 0.46 ± 0.03 bc | 3.37 ± 0.49 d | 0.14 ± 0.01 f | 1.00 ± 0.09 cde | 86.1 ± 0.53 abc | |
| 1 | 2 | C193 | 0.17 ± 0.01 b | 0.15 ± 0.02 cde | 0.41 ± 0.07 cde | 4.30 ± 0.19 bc | 0.18 ± 0.01 d | 1.08 ± 0.17 cd | 84.0 ± 0.85 cde | |
| 1 | 4 | D231 | 0.11 ± 0.01 ef | 0.18 ± 0.02 a | 0.50 ± 0.04 b | 3.46 ± 0.44 d | 0.14 ± 0.01 f | 0.97 ± 0.18 cde | 86.3 ± 0.17 ab | |
| 1 | 4 | C193 | 0.07 ± 0.001 h | 0.17 ± 0.01 ab | 0.39 ± 0.06 de | 6.46 ± 0.60 a | 0.34 ± 0.04 a | 0.87 ± 0.12 def | 81.8 ± 2.79 fg | |
| AMF | SiNP | Gen | TPC (mg/gDW) | TFC (mg/gDW) | TAA (mmol/gDW) | EO (%) |
|---|---|---|---|---|---|---|
| 0 | 0 | D231 | 29.23 ± 0.67 g | 4.98 ± 0.21 f | 0.518 ± 0.09 f | 0.036 ± 0.002 c |
| 0 | 0 | C193 | 48.24 ± 2.30 e | 4.52 ± 0.29 f | 0.589 ± 0.01 c–f | 0.040 ± 0.003 bc |
| 0 | 2 | D231 | 47.98 ± 1.20 e | 4.99 ± 0.35 f | 0.664 ± 0.06 a–d | 0.042 ± 0.004 b |
| 0 | 2 | C193 | 43.71 ± 2.15 f | 6.18 ± 0.27 de | 0.625 ± 0.08 b–e | 0.041 ± 0.005 bc |
| 0 | 4 | D231 | 51.66 ± 2.14 d | 4.64 ± 0.24 f | 0.575 ± 0.03 def | 0.041 ± 0.005 bc |
| 0 | 4 | C193 | 43.61 ± 2.35 f | 6.85 ± 0.13 d | 0.717 ± 0.05 ab | 0.048 ± 0.003 a |
| 1 | 0 | D231 | 56.34 ± 1.35 c | 10.63 ± 0.39 c | 0.675 ± 0.01 abc | 0.047 ± 0.002 a |
| 1 | 0 | C193 | 69.54 ± 1.16 b | 6.00 ± 0.32 e | 0.737 ± 0.04 a | 0.049 ± 0.002 a |
| 1 | 2 | D231 | 55.14 ± 3.55 c | 6.23 ± 0.77 de | 0.559 ± 0.03 ef | 0.048 ± 0.002 a |
| 1 | 2 | C193 | 56.58 ± 0.65 c | 5.97 ± 0.57 e | 0.733 ± 0.10 a | 0.050 ± 002 a |
| 1 | 4 | D231 | 74.31 ± 3.07 a | 23.24 ± 0.93 a | 0.755 ± 0.6 a | 0.049 ± 0.004 a |
| 1 | 4 | C193 | 46.63 ± 1.04 ef | 12.46 ± 0.42 b | 0.529 ± 0.03 f | 0.052 ± 0.004 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharaei, N.; Nikbakht, A.; Rahimmalek, M.; Szumny, A. Co-Application of Arbuscular Mycorrhizal Fungi and Silicon Nanoparticles: A Strategy for Optimizing Volatile Profile, Phenolic Content, and Flower Yield in Rosa damascena Genotypes. Agriculture 2025, 15, 2188. https://doi.org/10.3390/agriculture15212188
Gharaei N, Nikbakht A, Rahimmalek M, Szumny A. Co-Application of Arbuscular Mycorrhizal Fungi and Silicon Nanoparticles: A Strategy for Optimizing Volatile Profile, Phenolic Content, and Flower Yield in Rosa damascena Genotypes. Agriculture. 2025; 15(21):2188. https://doi.org/10.3390/agriculture15212188
Chicago/Turabian StyleGharaei, Nasrin, Ali Nikbakht, Mehdi Rahimmalek, and Antoni Szumny. 2025. "Co-Application of Arbuscular Mycorrhizal Fungi and Silicon Nanoparticles: A Strategy for Optimizing Volatile Profile, Phenolic Content, and Flower Yield in Rosa damascena Genotypes" Agriculture 15, no. 21: 2188. https://doi.org/10.3390/agriculture15212188
APA StyleGharaei, N., Nikbakht, A., Rahimmalek, M., & Szumny, A. (2025). Co-Application of Arbuscular Mycorrhizal Fungi and Silicon Nanoparticles: A Strategy for Optimizing Volatile Profile, Phenolic Content, and Flower Yield in Rosa damascena Genotypes. Agriculture, 15(21), 2188. https://doi.org/10.3390/agriculture15212188

