Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Measurement of Pruning Capacity and Plant Biomass Removal
2.3. Measurement of Flower Set and Tree Growth Characteristics
2.4. Measurement of Sunlight Penetration, Leaf Chlorophyll and Nitrogen Contents, and Photosynthetic Parameters
2.5. Measurement of Tree Production, Yield, and Fruit Quality Characteristics
2.6. Statistical Analysis
3. Results
3.1. Pruning Time and Plant Biomass Removal
3.2. Tree Growth Characteristics
3.3. Light Penetration, Leaf Chlorophyll and Nitrogen Content, and Photosynthetic Parameters
3.4. Flower Set, Tree Production, Yield, Fruit Weight, and Size
3.5. Fruit Quality Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Statista. Global Fruit Production in 2023, by Selected Variety (in Million Metric Tons). Available online: https://statista.com/statistics/264001/worldwide-production-of-fruit-by-variety/ (accessed on 1 June 2025).
- USDA. Korea’s Apple Update. Available online: https://www.fas.usda.gov/data/south-korea-koreas-apple-update (accessed on 21 December 2023).
- Korea Statistical Information Service (KOSIS). Available online: https://kosis.kr/eng/ (accessed on 1 June 2025).
- He, L.; Schupp, J. Sensing and automation in pruning of apple trees: A review. Agronomy 2018, 8, 211. [Google Scholar] [CrossRef]
- Zhang, L.; Koc, A.B.; Wang, X.N.; Jiang, Y.X. A review of pruning fruit trees. IOP Conf. Ser. Earth. Environ. Sci. 2018, 153, 062029. [Google Scholar] [CrossRef]
- Karkee, M.; Adhikari, B.; Amatya, S.; Zhang, Q. Identification of pruning branches in tall spindle apple trees for automated pruning. Comput. Electron. Agric. 2014, 103, 127–135. [Google Scholar] [CrossRef]
- Mika, A.; Buler, Z.; Treder, W. Mechanical pruning of apple trees as an alternative to manual pruning. Acta Sci. Pol. Hortorum Caltus 2016, 15, 113–121. [Google Scholar]
- Kendell, A.; Alexander, T.R.; LaHue, G.T.; Miles, C.A. Summer mechanical hedging to prune eight cider apple cultivars. HortTechnology 2022, 32, 313–320. [Google Scholar] [CrossRef]
- Vivaldi, G.A.; Strippoli, G.; Pascuzzi, S.; Stellacci, A.M.; Camposeo, S. Olive genotypes cultivated in an adult high-density orchard respond differently to canopy restraining by mechanical and manual pruning. Sci. Hortic. 2015, 192, 391–399. [Google Scholar] [CrossRef]
- Albarracín, V.; Hall, A.J.; Searles, P.S.; Rousseaux, M.C. Responses of vegetative growth and fruit yield to winter and summer pruning in olive trees. Sci. Hortic. 2017, 225, 185–194. [Google Scholar] [CrossRef]
- Biddlecombe, C.T.; Dalton, A. To investigate the effect of four timings of mechanical pruning on yield and fruit quality compared to a hand pruned control in an intensive ‘Gala’ M9 orchard planted as a fruit wall. Acta Hortic. 2018, 1228, 97–104. [Google Scholar] [CrossRef]
- Barcia, F.; Prieto, J.; Trentacoste, E.R. Effects of mechanical box pruning intensity on bud development, vegetative growth, and yield components on cv. Cabernet-Sauvignon in Mendoza, Argentina. OENO One 2023, 57, 153–163. [Google Scholar] [CrossRef]
- Lodolini, E.M.; Polverigiani, S.; Giorgi, V.; Famiani, F.; Neri, D. Time and type of pruning affect tree growth and yield in high-density olive orchards. Sci. Hortic. 2023, 311, 111831. [Google Scholar] [CrossRef]
- Sazo, M.M. New advances to narrower canopy systems: Transitioning from 3-D to 2-D canopies or fruiting walls—Part 3. Fruit Q. 2018, 26, 31–36. [Google Scholar]
- Scalisi, A.; O’Connell, M.G.; Stefanelli, D.; Zhou, S.; Pitt, T.; Graetz, D.; Dodds, K.; Han, L.; De Bei, R.; Stanley, J.; et al. Narrow orchard systems for pome and stone fruit—A review. Sci. Hortic. 2024, 338, 113815. [Google Scholar] [CrossRef]
- Badrulhisham, N.; Othman, N. Knowledge in tree pruning for sustainable practices in urban setting: Improving our quality of life. Proc. Soc. Behav. Sci. 2016, 234, 210–217. [Google Scholar] [CrossRef]
- Morales, P.; Davies, F.S.; Littell, R.C. Pruning and skirting affect canopy microclimate, yields, and fruit quality of ‘Orlando’ Tangelo. HortScience 2000, 35, 30–35. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Hofmann, T.A.; Doss, C.G.P. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosyn. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef]
- Fonte, A.; Garcerá, C.; Chueca, P. Influence of mechanical and manual pruning on the incidence of pests in ‘Clemenules’ mandarins. Pest Manag. Sci. 2023, 79, 4390–4402. [Google Scholar] [CrossRef]
- Wu, W.; Chen, L.; Liang, R.; Huang, S.; Li, X.; Huang, B.; Luo, H.; Zhang, M.; Wang, X.; Zhu, H. The role of light in regulating plant growth, development and sugar metabolism: A review. Front. Plant Sci. 2025, 15, 1507628. [Google Scholar] [CrossRef]
- Lin, L.; Niu, Z.; Jiang, C.; Yu, L.; Wang, H.; Qiao, M. Influences of open-central canopy on photosynthetic parameters and fruit quality of apples (Malus × domestica) in the Loess Plateau of China. Hortic. Plant J. 2022, 8, 133–142. [Google Scholar] [CrossRef]
- Vosnjak, M.; Mrzlic, D.; Usenik, V. Summer pruning of sweet cherry: A way to control sugar content in different organs. J. Sci. Food Agric. 2022, 102, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.S.; Kwon, S.I.; Kim, J.H.; Park, M.Y.; Park, J.T.; Lee, J. ‘Arisoo’, a midseason apple. HortScience 2021, 56, 1139–1141. [Google Scholar] [CrossRef]
- Westerfield, B.; Chavez, D.; Smith, E. Home Orchard Pruning Techniques. UGA Cooperative Extension Circular 1087. 2020. Available online: https://fieldreport.caes.uga.edu/publications/C1087/home-fruit-orchard-pruning-techniques/ (accessed on 1 July 2025).
- Lodolini, E.M.; de Ludicibus, A.; Lucchese, P.G.; Casas, G.L.; Torrisi, B.; Nicolosi, E.; Giuffrida, A.; Ferlito, F. Comparison of canopy architecture of five olive cultivars in a high-density planting system in Sicily. Agriculture 2023, 13, 1612. [Google Scholar] [CrossRef]
- Win, N.M.; Yoo, J.; Do, V.G.; Yang, S.; Kwon, S.I.; Kweon, H.J.; Kim, S.; Lee, Y.; Kang, I.K.; Park, J. Effects of pneumatic defoliation on fruit quality and skin coloration in ‘Fuji’ apples. Agriculture 2024, 14, 1582. [Google Scholar] [CrossRef]
- Lee, Y.; Kweon, H.J.; Park, M.Y.; Lee, D. Field assessment of macronutrients and nitrogen in apple leaves using a chlorophyll meter. HortTechnology 2019, 29, 300–307. [Google Scholar] [CrossRef]
- Bhusal, N.; Bhusal, S.J.; Yoo, T.M. Comparisons of physiological and anatomical characteristics between two cultivars in bi-leader apple trees (Malus × domestica Borkh.). Sci. Hortic. 2018, 231, 73–81. [Google Scholar] [CrossRef]
- Blanpied, G.D.; Silsby, K.J. Predicting Harvest Windows for Apples. Cornell Cooperative Extension Publication, Information Bulletin 221. 1992. Available online: https://www.researchgate.net/publication/277061616_Predicting_Harvest_Date_Windows_for_Apples (accessed on 1 July 2025).
- Xu, Y.; Uoy, C.; Xu, C.; Zhang, C.; Hu, X.; Li, X.; Ma, H.; Gong, J.; Sun, X. Red and blue light promote tomato fruit coloration through modulation of hormone homeostasis and pigment accumulation. Postharvest Biol. Technol. 2024, 207, 112588. [Google Scholar] [CrossRef]
- Fonte, A.; Torregrosa, A.; Garcera, C.; Mateu, G.; Chueca, P. Mechanical pruning of ‘Clemenules’ mandarins in Spain: Yield effects and economic analysis. Agronomy 2022, 12, 761. [Google Scholar] [CrossRef]
- Lehnert, R. Italian Researcher Studies Mechanical Pruning That Also Reaches Inside the Canopy; Good Fruit Grower: Yakima, WA, USA, 2013; pp. 26–27. Available online: https://goodfruit.com/fruiting-walls-with-windows/ (accessed on 1 June 2025).
- Martin-Gorriz, B.; Porras, I.; Torregrosa, A. Effect of mechanical pruning on the yield and quality of ‘Fortune’ mandarins. Span. J. Agric. Res. 2014, 12, 952–959. [Google Scholar] [CrossRef]
- Atucha, A.; Merwin, I.A.; Brown, M. Long-term effects of four groundcover management systems in an apple orchard. HortScience 2011, 46, 1176–1183. [Google Scholar] [CrossRef]
- Dogbatse, J.A.; Arthur, A.; Awudzi, G.K.; Quaye, A.K.; Konlan, S.; Amaning, A.A. Effects of organic and inorganic fertilizers on growth and nutrient uptake by young cacao (Theobroma cacao L.). Int. J. Agron. 2021, 7, 5516928. [Google Scholar] [CrossRef]
- Laužikė, K.; Sigedaitė-Šėžienė, V.; Uselis, N.; Samuoliene, G. The impacts of stress caused by light penetration and agrotechnological tools on photosynthesis behavior of apple trees. Sci. Rep. 2020, 10, 9177. [Google Scholar] [CrossRef]
- Cherbiy-Hoffmann, S.U.; Searles, P.S.; Hall, A.J.; Rousseaux, M.C. Influence of light environment on yield determinants and components in large olive hedgerows following mechanical pruning in the subtropics of the Southern Hemisphere. Sci. Hortic. 2012, 137, 36–42. [Google Scholar] [CrossRef]
- Dias, A.B.; Peça, J.O.; Pinheiro, A. Long-term evaluation of the influence of mechanical pruning on olive growing. Agron. J. 2012, 104, 22–25. [Google Scholar] [CrossRef]
- Velázques, B.; Fernández, E. The influence of mechanical pruning in cost reduction, production of fruit, and biomass waste in citrus orchards. Appl. Eng. Agric. 2010, 26, 531–540. [Google Scholar] [CrossRef]
- Serra, S.; Leisso, R.; Giordani, L.; Kalcsits, L.; Musacchi, S. Crop load influences fruit quality, nutritional balance, and return bloom in ‘Honeycrisp’ apple. HortScience 2016, 51, 236–244. [Google Scholar] [CrossRef]
- Krueger, W.H.; Niederholzer, F.; Fichtner, E. Investigation of pruning strategies for dried plums including hand, mechanical and combinations. Acta Hortic. 2013, 985, 201–207. [Google Scholar] [CrossRef]
- Musacchi, S.; Serra, S. Apple fruit quality: Overview on pre-harvest factors. Sci. Hortic. 2018, 234, 409–430. [Google Scholar] [CrossRef]
- Do, V.G.; Lee, Y.; Kim, J.H.; Kwon, Y.S.; Park, J.T.; Yang, S.; Park, J.; Win, N.M.; Kim, S. The synergistic effects of environmental and genetic factors on the regulation of anthocyanin accumulation in plant tissues. Int. J. Mol. Sci. 2023, 24, 12946. [Google Scholar] [CrossRef]
- Peavey, M.; Scalisi, A.; Islam, M.S.; Goodwin, I. Fruit position, light exposure and fruit surface temperature affect color expression in a dark-red apple cultivar. Horticulturae 2024, 10, 725. [Google Scholar] [CrossRef]
- Mei, Z.; Li, Z.; Lu, X.; Zhang, S.; Liu, W.; Zou, Q.; Yu, L.; Fang, H.; Zhang, Z.; Mao, Z.; et al. Supplementation of natural light duration promotes accumulation of sugar and anthocyanins in apple (Malus domestica Borkh.) fruit. Environ. Exp. Bot. 2023, 205, 105133. [Google Scholar] [CrossRef]
- Madhumala, K.; Kumar, V.; Kumar, K. Physiology and mechanism of pruning in fruit crops. Int. J. Adv. Biochem. Res. 2024, 8, 443–445. [Google Scholar] [CrossRef]
- Bui, T.A.T.; Stridh, H.; Molin, M. Influence of weather conditions on the quality of ‘Ingrid Marie’ apples and their susceptibility to grey mould infection. J. Agric. Food Res. 2021, 3, 100104. [Google Scholar] [CrossRef]
Pruning Treatments | Experiment Year | Pruning Time (h/ha) | Plant Biomass (kg/tree) |
---|---|---|---|
HP | 2023 | 88.9 ± 3.1 z a y | 2.8 ± 0.6 a |
MP | 5.9 ± 0.1 c | 1.5 ± 0.4 b | |
MP + HP | 42.9 ± 1.6 b | 2.5 ± 0.3 a | |
HP | 2024 | 92.6 ± 4.9 a | 3.0 ± 0.4 a |
MP | 6.0 ± 0.1 c | 1.7 ± 0.3 b | |
MP + HP | 46.8 ± 6.9 b | 3.2 ± 0.5 a |
Pruning Treatments | Experiment Year | TCSA (cm2) | Shoot Length (cm) | Canopy Height (m) | Canopy Diameter (m) | Canopy Volume (m3) | |
---|---|---|---|---|---|---|---|
Along the Row | Across the Row | ||||||
HP | 2023 | 3.9 ± 0.2 z a y | 19.1 ± 0.6 b | 3.5 ± 0.3 a | 1.3 ± 0.1 b | 1.5 ± 0.1 a | 9.2 ± 1.1 a |
MP | 3.7 ± 0.1 a | 22.8 ± 2.0 a | 3.3 ± 0.1 a | 1.6 ± 0.0 a | 1.2 ± 0.0 b | 5.1 ± 0.1 b | |
MP + HP | 3.8 ± 0.1 a | 20.6 ± 0.7 ab | 3.6 ± 0.1 a | 1.5 ± 0.1 ab | 1.2 ± 0.1 b | 6.5 ± 1.0 b | |
HP | 2024 | 4.4 ± 0.2 a | 18.8 ± 3.0 ab | 3.7 ± 0.2 a | 1.5 ± 0.2 a | 1.7 ± 0.1 a | 10.3 ± 1.4 a |
MP | 4.2 ± 0.1 a | 22.5 ± 1.8 a | 3.4 ± 0.2 a | 1.8 ± 0.2 a | 1.3 ± 0.1 b | 7.2 ± 1.1 b | |
MP + HP | 4.2 ± 0.1 a | 17.9 ± 1.3 b | 3.7 ± 0.2 a | 1.6 ± 0.2 a | 1.3 ± 0.1 b | 7.3 ± 1.2 b |
Pruning Treatments | Experiment Year | PAR (µmol m−2 s−1) | SPAD (µmol m−2) | Leaf Nitrogen (%) |
---|---|---|---|---|
HP | 2023 | 475.0 ± 37.7 z a y | 53.1 ± 0.6 a | 2.2 ± 0.1 a |
MP | 227.7 ± 13.5 b | 50.9 ± 0.7 b | 2.0 ± 0.0 b | |
MP + HP | 483.3 ± 23.7 a | 51.7 ± 1.0 ab | 2.0 ± 0.1 ab | |
HP | 2024 | 417. 8 ± 29.3 a | 51.2 ± 1.5 a | 2.0 ± 0.1 a |
MP | 210. 8 ± 11.2 b | 50.6 ± 0.9 a | 1.9 ± 0.2 a | |
MP + HP | 409.0 ± 17.2 a | 52.5 ± 0.8 a | 2.2 ± 0.1 a |
Pruning Treatments | Experiment Year | Flower Set/Tree (no.) | Fruits/Tree (no.) | Yield (kg/tree) | Fruit Weight (g) | Fruit Size (mm) | L/D Ratio | |
---|---|---|---|---|---|---|---|---|
Length (L) | Diameter (D) | |||||||
HP | 2023 | 132.5 ± 14.3 z a y | 71.0 ± 5.6 ab | 14.6 ± 1.2 a | 228.3 ± 3.0 a | 73.9 ± 0.9 a | 79.4 ± 0.9 ab | 0.9 ± 0.0 a |
MP | 152.4 ± 18.7 a | 74.7 ± 3.8 a | 14.3 ± 0.7 a | 218.4 ± 2.2 b | 73.7 ± 1.4 a | 77.2 ± 0.3 b | 0.9 ± 0.0 a | |
MP + HP | 144.2 ± 12.5 a | 65.0 ± 2.1 b | 13.7 ± 0.8 a | 233.6 ± 8.1 a | 72.1 ± 1.3 a | 81.8 ± 0.9 a | 0.9 ± 0.0 a | |
HP | 2024 | 147.5 ± 12.5 a | 68.5 ± 2.0 b | 16.0 ± 0.5 a | 225.3 ± 6.5 a | 72.5 ± 0.8 a | 76.0 ± 1.3 ab | 0.9 ± 0.0 a |
MP | 165.5 ± 25.1 a | 78.3 ± 4.1 a | 15.4 ± 1.3 a | 204.1 ± 5.8 b | 70.1 ± 0.8 b | 74.8 ± 0.8 b | 0.9 ± 0.0 a | |
MP + HP | 134.2 ± 9.6 a | 63.4 ± 1.6 b | 15.7 ± 0.6 a | 235.1 ± 4.2 a | 73.5 ± 0.8 a | 78.7 ± 0.5 a | 0.9 ± 0.0 a |
Pruning Treatments | Experiment Year | SPI Score (1–8) | Firmness (N) | SSC (°Brix) | TA (%) | Color Index | Fruit Skin Color Value | ||
---|---|---|---|---|---|---|---|---|---|
L* | a* | b* | |||||||
HP | 2023 | 7.7 ± 0.2 z a y | 70.2 ± 2.3 a | 13.7 ± 0.2 a | 0.5 ± 0.1 a | 10.8 ± 0.6 a | 59.1 ± 1.0 a | 13.2 ± 0.6 a | 20.1 ± 0.2 b |
MP | 7.8 ± 0.2 a | 70.4 ± 0.5 a | 13.3 ± 0.3 a | 0.5 ± 0.1 a | 8.7 ± 0.5 b | 60.3 ± 0.6 a | 11.2 ± 0.2 b | 23.0 ± 0.8 a | |
MP + HP | 7.4 ± 0.3 a | 69.6 ± 1.6 a | 13.8 ± 0.2 a | 0.4 ± 0.0 a | 10.3 ± 0.4 a | 60.2 ± 0.6 a | 13.4 ± 0.3 a | 22.4 ± 0.4 a | |
HP | 2024 | 8.0 ± 0.0 a | 65.4 ± 0.5 ab | 14.6 ± 0.2 a | 0.3 ± 0.0 a | 22.2 ± 1.2 a | 43.6 ± 2.3 a | 18.7 ± 0.6 a | 15.7 ± 1.0 a |
MP | 8.0 ± 0.0 a | 64.3 ± 1.2 b | 13.8 ± 0.1 b | 0.3 ± 0.0 a | 18.3 ± 0.5 b | 45.8 ± 0.8 a | 16.8 ± 0.5 b | 16.4 ± 0.4 a | |
MP + HP | 7.9 ± 0.1 a | 67.3 ± 0.8 a | 14.8 ± 0.1 a | 0.3 ± 0.0 a | 21.5 ± 0.7 a | 44.9 ± 1.6 a | 18.9 ± 0.6 a | 16.0 ± 0.8 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Win, N.M.; Park, J.; Kim, S.; Lee, Y.; Do, V.G.; Kwon, J.-G.; Kwon, S.-I.; Yoo, J.; Kang, I.-K.; Kweon, H.-J. Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees. Agriculture 2025, 15, 2118. https://doi.org/10.3390/agriculture15202118
Win NM, Park J, Kim S, Lee Y, Do VG, Kwon J-G, Kwon S-I, Yoo J, Kang I-K, Kweon H-J. Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees. Agriculture. 2025; 15(20):2118. https://doi.org/10.3390/agriculture15202118
Chicago/Turabian StyleWin, Nay Myo, Juhyeon Park, Seonae Kim, Youngsuk Lee, Van Giap Do, Jung-Geun Kwon, Soon-Il Kwon, Jingi Yoo, In-Kyu Kang, and Hun-Joong Kweon. 2025. "Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees" Agriculture 15, no. 20: 2118. https://doi.org/10.3390/agriculture15202118
APA StyleWin, N. M., Park, J., Kim, S., Lee, Y., Do, V. G., Kwon, J.-G., Kwon, S.-I., Yoo, J., Kang, I.-K., & Kweon, H.-J. (2025). Effects of Mechanical Pruning on Tree Growth, Yield, and Fruit Quality of ‘Arisoo’ Apple Trees. Agriculture, 15(20), 2118. https://doi.org/10.3390/agriculture15202118