Computer Vision and Artificial Intelligence Driving the Advancement of Agricultural Intelligence in Dynamic Environments
Acknowledgments
Conflicts of Interest
References
- Xin, C.; Li, H.; Li, Y.; Wang, M.; Lin, W.; Wang, S.; Zhang, W.; Xiao, M.; Zou, X. Research on an Identification and Grasping Device for Dead Yellow-Feather Broilers in Flat Houses Based on Deep Learning. Agriculture 2024, 14, 1614. [Google Scholar] [CrossRef]
- Sun, W.; Chen, C.; Liu, T.; Jiang, H.; Tian, L.; Fu, X.; Niu, M.; Huang, S.; Hu, F. YOLOv8-Pearpollen: Method for the Lightweight Identification of Pollen Germination Vigor in Pear Trees. Agriculture 2024, 14, 1348. [Google Scholar] [CrossRef]
- Chen, Z.; Qian, M.; Zhang, X.; Zhu, J. Chinese Bayberry Detection in an Orchard Environment Based on an Improved YOLOv7-Tiny Model. Agriculture 2024, 14, 1725. [Google Scholar] [CrossRef]
- Jing, J.; Zhai, M.; Dou, S.; Wang, L.; Lou, B.; Yan, J.; Yuan, S. Optimizing the YOLOv7-Tiny model with multiple strategies for citrus fruit yield estimation in complex scenarios. Agriculture 2024, 14, 303. [Google Scholar] [CrossRef]
- Lin, Y.; Huang, Z.; Liang, Y.; Liu, Y.; Jiang, W. Ag-yolo: A rapid citrus fruit detection algorithm with global context fusion. Agriculture 2024, 14, 114. [Google Scholar] [CrossRef]
- Jin, Z.; Hong, W.; Wang, Y.; Jiang, C.; Zhang, B.; Sun, Z.; Liu, S. A Transformer-Based Symmetric Diffusion Segmentation Network for Wheat Growth Monitoring and Yield Counting. Agriculture 2025, 15, 670. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, X.; Wang, H.; Wei, H.; Zhang, Y.; Zhou, G. Pear Fruit Detection Model in Natural Environment Based on Lightweight Transformer Architecture. Agriculture 2024, 15, 24. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, Y.; He, P.; Hu, L.; Gao, W.; Gu, L. Identifying Tomato Growth Stages in Protected Agriculture with StyleGAN3–Synthetic Images and Vision Transformer. Agriculture 2025, 15, 120. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Cui, Y.; Xu, Y.; Zhou, Y.; Tang, X.; Jiang, C.; Song, Y.; Dong, H.; Yan, S. A Semi-Supervised Diffusion-Based Framework for Weed Detection in Precision Agricultural Scenarios Using a Generative Attention Mechanism. Agriculture 2025, 15, 434. [Google Scholar] [CrossRef]
- Wang, Z.; Cui, W.; Huang, C.; Zhou, Y.; Zhao, Z.; Yue, Y.; Dong, X.; Lv, C. Framework for Apple Phenotype Feature Extraction Using Instance Segmentation and Edge Attention Mechanism. Agriculture 2025, 15, 305. [Google Scholar] [CrossRef]
- Chen, H.; Huang, H.; Peng, Y.; Zhou, H.; Hu, H.; Liu, M. Quality Grading of Oudemansiella raphanipes Using Three-Teacher Knowledge Distillation with Cascaded Structure for LightWeight Neural Networks. Agriculture 2025, 15, 301. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, M.; Lee, W.H.; Seo, S.; Lee, D.H. Mastitis Classification in Dairy Cows Using Weakly Supervised Representation Learning. Agriculture 2024, 14, 2084. [Google Scholar] [CrossRef]
- Yang, Y.; Deng, Y.; Li, J.; Liu, M.; Yao, Y.; Peng, Z.; Gu, L.; Peng, Y. An Effective Yak Behavior Classification Model with Improved YOLO-Pose Network Using Yak Skeleton Key Points Images. Agriculture 2024, 14, 1796. [Google Scholar] [CrossRef]
- Wu, L.; Yang, L.; Li, Y.; Shi, J.; Zhu, X.; Zeng, Y. Evaluation of the Habitat Suitability for Zhuji Torreya Based on Machine Learning Algorithms. Agriculture 2024, 14, 1077. [Google Scholar] [CrossRef]
- Wu, M.; Yun, L.; Xue, C.; Chen, Z.; Xia, Y. Walnut Recognition Method for UAV Remote Sensing Images. Agriculture 2024, 14, 646. [Google Scholar] [CrossRef]
- Pacioni, E.; Abengózar, E.; Macías Macías, M.; García-Orellana, C.J.; Gallardo, R.; González Velasco, H.M. Towards Intelligent Pruning of Vineyards by Direct Detection of Cutting Areas. Agriculture 2025, 15, 1154. [Google Scholar] [CrossRef]
Authors | Objects | Models | Contributions |
---|---|---|---|
Xin et al. [1] | Dead yellow-feather broilers | YOLOv6 | Real-time detection and robotic grasping of dead yellow-feather broilers |
Sun et al. [2] | Pollen germination vigor in pear trees | YOLOv8 | Real-time detection of pollen germination vigor in pear trees |
Chen et al. [3] | Bayberry | YOLOv7-Tiny | Real-time detection and picking of Chinese bayberries |
Jing et al. [4] | Citrus | YOLOv7-Tiny | Citrus fruit recognition under varying occlusion scenarios and lighting conditions |
Lin et al. [5] | Citrus | YOLO, NextViT | Citrus fruit detection in complex environments |
Jin et al. [6] | Wheat | Transformer, Symmetric Diffusion | Precise monitoring of wheat growth status and yield prediction in high-density agricultural environments |
Huang et al. [7] | Pear | RT-DETR | Rapid detection of Xinli No. 7 fruit in natural environments |
Huo et al. [8] | Tomato | StyleGAN3, Transformer | Recognition of growth stages in greenhouse tomato cultivation |
Li et al. [9] | Weed | Semi-Supervised Diffusion Model | Weed detection in agricultural scenarios |
Wang et al. [10] | Apple | Edge Attention Mechanism | Extraction of apple phenotypic features and recognition of growth abnormalities |
Chen et al. [11] | Oudemansiella raphanipes | CNN, Three-Teacher Knowledge Distillation | Quality grading of Oudemansiella raphanipes |
Cho et al. [12] | Dairy cows | Weakly Supervised Representation Learning | Classification and detection of mastitis in dairy cows |
Yang et al. [13] | Yak | YOLOv7-pose | Detection and classification of behavior patterns in yaks |
Wu et al. [14] | Zhuji Torreya | Machine Learning | Suitable habitats for Torreya in Zhuji City |
Wu et al. [15] | Walnut | w-YOLO | Identification and counting of small walnut fruits in UAV remote sensing images |
Pacioni et al. [16] | Vineyard shoots | Mask R-CNN (ResNet50 backbone), YOLOv8 | Direct detection of vine shoot cutting areas for intelligent pruning |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, X.; Zhu, X.; Zhang, W.; Qian, Y.; Li, Y. Computer Vision and Artificial Intelligence Driving the Advancement of Agricultural Intelligence in Dynamic Environments. Agriculture 2025, 15, 2112. https://doi.org/10.3390/agriculture15202112
Zou X, Zhu X, Zhang W, Qian Y, Li Y. Computer Vision and Artificial Intelligence Driving the Advancement of Agricultural Intelligence in Dynamic Environments. Agriculture. 2025; 15(20):2112. https://doi.org/10.3390/agriculture15202112
Chicago/Turabian StyleZou, Xiuguo, Xiaochen Zhu, Wentian Zhang, Yan Qian, and Yuhua Li. 2025. "Computer Vision and Artificial Intelligence Driving the Advancement of Agricultural Intelligence in Dynamic Environments" Agriculture 15, no. 20: 2112. https://doi.org/10.3390/agriculture15202112
APA StyleZou, X., Zhu, X., Zhang, W., Qian, Y., & Li, Y. (2025). Computer Vision and Artificial Intelligence Driving the Advancement of Agricultural Intelligence in Dynamic Environments. Agriculture, 15(20), 2112. https://doi.org/10.3390/agriculture15202112