Effects of Different Molasses Levels and Slow-Release Urea Combinations on Growth Performance, Serum Biochemistry, Rumen Fermentation, and Microflora of Holstein Fattening Bulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Experimental Design
2.2. Feed Analysis
2.3. Blood Sampling and Analysis
2.4. Rumen Fluid Sampling and Analysis
2.5. Growth Performance Measurement
2.6. Analysis of Bacterial Community in Rumen
2.7. Statistical Analysis
3. Results
3.1. Growth Performance
3.2. Nutrient Digestibility
3.3. Serum Biochemistry
3.4. Rumen Fermentation
3.5. Rumen Microbiota Diversity Analysis
3.6. Analysis of the Relative Abundance of Rumen Bacteria
3.7. LEfSe and Significant Difference Species Enrichment Analyses
3.8. Economic Benefit Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Meng, Q.; Li, S.; Jiang, L.; Wu, H. Effect of urea-supplemented diets on the ruminal bacterial and archaeal community composition of finishing bulls. Appl. Microbiol. Biotechnol. 2017, 101, 6205–6216. [Google Scholar] [CrossRef] [PubMed]
- Jin, D.; Zhao, S.; Zheng, N.; Bu, D.; Beckers, Y.; Denman, S.E.; McSweeney, C.S.; Wang, J. Differences in Ureolytic Bacterial Composition between the Rumen Digesta and Rumen Wall Based on ureC Gene Classification. Front. Microbiol. 2017, 8, 385. [Google Scholar] [CrossRef] [PubMed]
- Jonker, J.S.; Kohn, R.A.; High, J. Dairy herd management practices that impact nitrogen utilization efficiency. J. Dairy Sci. 2002, 85, 1218–1226. [Google Scholar] [CrossRef] [PubMed]
- Patra, A.K.; Aschenbach, J.R. Ureases in the gastrointestinal tracts of ruminant and monogastric animals and their implication in urea-N/ammonia metabolism: A review. J. Adv. Res. 2018, 13, 39–50. [Google Scholar] [CrossRef]
- Comparing the effectiveness of different roughage sources in Brazilian cattle feed. J. Anim. Sci. 2020, 98. [CrossRef]
- Thompson, L. Nonprotein Nitrogen Poisoning in Animals. Available online: https://www.merckvetmanual.com/toxicology/nonprotein-nitrogen-poisoning/nonprotein-nitrogen-poisoning-in-animals (accessed on 1 November 2024).
- Taylor-Edwards, C.C.; Hibbard, G.; Kitts, S.E.; McLeod, K.R.; Axe, D.E.; Vanzant, E.S.; Kristensen, N.B.; Harmon, D.L. Effects of slow-release urea on ruminal digesta characteristics and growth performance in beef steers. J. Anim. Sci. 2009, 87, 200–208. [Google Scholar] [CrossRef]
- Brito, A.F.; Petit, H.V.; Pereira, A.B.D.; Soder, K.J.; Ross, S. Interactions of corn meal or molasses with a soybean-sunflower meal mix or flaxseed meal on production, milk fatty acid composition, and nutrient utilization in dairy cows fed grass hay-based diets. J. Dairy Sci. 2015, 98, 443–457. [Google Scholar] [CrossRef]
- de Ondarza, M.B.; Emanuele, S.M.; Sniffen, C.J. Effect of increased dietary sugar on dairy cow performance as influenced by diet nutrient components and level of milk production. Prof. Anim. Sci. 2017, 33, 700–707. [Google Scholar] [CrossRef]
- Hussein, A.S.; Ayoub, M.A.; Elhwetiy, A.Y.; Ghurair, J.A.; Sulaiman, M.; Habib, H.M. Effect of dietary inclusion of sugar syrup on production performance, egg quality and blood biochemical parameters in laying hens. Anim. Nutr. 2018, 4, 59–64. [Google Scholar] [CrossRef]
- De Seram, E.L.; Penner, G.B.; Mutsvangwa, T. Nitrogen utilization, whole-body urea-nitrogen kinetics, omasal nutrient flow, and production performance in dairy cows fed lactose as a partial replacement for barley starch. J. Dairy Sci. 2019, 102, 6088–6108. [Google Scholar] [CrossRef]
- Aguiar, A.D.; Vendramini, J.M.B.; Arthington, J.D.; Sollenberger, L.E.; DiLorenzo, N.; Hersom, M.J. Performance of beef cows and calves fed different sources of rumen-degradable protein when grazing stockpiled limpograss pastures. J. Anim. Sci. 2015, 93, 1923–1932. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Jin, C.; Bai, H.; Liang, G.; Su, X.; Wang, D.; Yao, J. Low rumen degradable starch promotes the growth performance of goats by increasing protein synthesis in skeletal muscle via the AMPK-mTOR pathway. Anim. Nutr. 2023, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.T.; AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Artington, VA, USA, 1990. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Broderick, G.A.; Kang, J.H. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J. Dairy Sci. 1980, 63, 64–75. [Google Scholar] [CrossRef]
- Chibisa, G.E.; Mutsvangwa, T. Effects of feeding wheat or corn-wheat dried distillers grains with solubles in low- or high-crude protein diets on ruminal function, omasal nutrient flows, urea-N recycling, and performance in cows. J. Dairy Sci. 2013, 96, 6550–6563. [Google Scholar] [CrossRef]
- Grossi, S.; Compiani, R.; Rossi, L.; Dell’Anno, M.; Castillo, I.; Sgoifo Rossi, C.A. Effect of Slow-Release Urea Administration on Production Performance, Health Status, Diet Digestibility, and Environmental Sustainability in Lactating Dairy Cows. Animals 2021, 11, 2405. [Google Scholar] [CrossRef]
- Salami, S.A.; Moran, C.A.; Warren, H.E.; Taylor-Pickard, J. Meta-analysis and sustainability of feeding slow-release urea in dairy production. PLoS ONE 2021, 16, e0246922. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M.; Morgavi, D.P. Replacing urea with nitrate as a non-protein nitrogen source increases lambs’ growth and reduces methane production, whereas acacia tannin has no effect. Anim. Feed. Sci. Technol. 2020, 259, 114360. [Google Scholar] [CrossRef]
- Broderick, G.A.; Luchini, N.D.; Reynal, S.M.; Varga, G.A.; Ishler, V.A. Effect on production of replacing dietary starch with sucrose in lactating dairy cows. J. Dairy Sci. 2008, 91, 4801–4810. [Google Scholar] [CrossRef]
- Syamsi, A.N.; Ifani, M. Rumen Fermentation Profiles of Protein-Energy Synchronization Index-Based Ration: An In Vitro Study. J. Ilmu Ternak Dan Vet. 2023, 28, 22–33. [Google Scholar] [CrossRef]
- Dolatkhah, B.; Ghorbani, G.R.; Alikhani, M.; Hashemzadeh, F.; Mahdavi, A.H.; Sadeghi-Sefidmazgi, A.; Erfani, H.; Rezamand, P. Effects of hydrolyzed cottonseed protein supplementation on performance, blood metabolites, gastrointestinal development, and intestinal microbial colonization in neonatal calves. J. Dairy Sci. 2020, 103, 5102–5117. [Google Scholar] [CrossRef] [PubMed]
- Malekkhahi, M.; Tahmasbi, A.M.; Naserian, A.A.; Danesh-Mesgaran, M.; Kleen, J.L.; AlZahal, O.; Ghaffari, M.H. Effects of supplementation of active dried yeast and malate during sub-acute ruminal acidosis on rumen fermentation, microbial population, selected blood metabolites, and milk production in dairy cows. Anim. Feed. Sci. Technol. 2016, 213, 29–43. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of increasing availability of water-soluble carbohydrates on in vitro rumen fermentation. Anim. Feed. Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed. Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Anggraeny, Y.N.; Mariyono; Pamungkas, D.; Soetanto, H.; Kusmartono; Hartutik. Effect of synchronizing the rate degradation of protein and organic matter of feed base on corn waste on fermentation characteristic and synthesis protein microbial. IOP Conf. Ser. Earth Environ. Sci. 2021, 788, 012042. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, N.; Shen, W.; Zhao, S.; Wang, J. Synchrony Degree of Dietary Energy and Nitrogen Release Influences Microbial Community, Fermentation, and Protein Synthesis in a Rumen Simulation System. Microorganisms 2020, 8, 231. [Google Scholar] [CrossRef]
- Bryant, M.P. Normal Flora—Rumen Bacteria1. Am. J. Clin. Nutr. 1970, 23, 1440–1450. [Google Scholar] [CrossRef]
- Huber, J.T.; Kung, L. Protein and Nonprotein Nitrogen Utilization in Dairy Cattle1. J. Dairy Sci. 1981, 64, 1170–1195. [Google Scholar] [CrossRef]
- Tan, P.; Liu, H.; Zhao, J.; Gu, X.; Wei, X.; Zhang, X.; Ma, N.; Johnston, L.J.; Bai, Y.; Zhang, W.; et al. Amino acids metabolism by rumen microorganisms: Nutrition and ecology strategies to reduce nitrogen emissions from the inside to the outside. Sci. Total Environ. 2021, 800, 149596. [Google Scholar] [CrossRef]
- Lapierre, H.; Lobley, G.E. Nitrogen Recycling in the Ruminant: A Review. J. Dairy Sci. 2001, 84, E223–E236. [Google Scholar] [CrossRef]
- McBride, B.W.; Kelly, J.M. Energy cost of absorption and metabolism in the ruminant gastrointestinal tract and liver: A review. J. Anim. Sci. 1990, 68, 2997–3010. [Google Scholar] [CrossRef] [PubMed]
- Qiao, G.H.; Xiao, Z.G.; Li, Y.; Li, G.J.; Zhao, L.C.; Xie, T.M.; Wang, D.W. Effect of diet synchrony on rumen fermentation, production performance, immunity status and endocrine in Chinese Holstein cows. Anim. Prod. Sci. 2019, 59, 664–672. [Google Scholar] [CrossRef]
- Guo, H.; Zhou, G.; Tian, G.; Liu, Y.; Dong, N.; Li, L.; Zhang, S.; Chai, H.; Chen, Y.; Yang, Y. Changes in Rumen Microbiota Affect Metabolites, Immune Responses and Antioxidant Enzyme Activities of Sheep under Cold Stimulation. Animals 2021, 11, 712. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, F.; Mao, Y.; Kong, W.; Wang, J.; Zhang, G. Influence of Parturition on Rumen Bacteria and SCFAs in Holstein Cows Based on 16S rRNA Sequencing and Targeted Metabolomics. Animals 2023, 13, 782. [Google Scholar] [CrossRef]
- Shen, H.; Xu, Z.; Shen, Z.; Lu, Z. The Regulation of Ruminal Short-Chain Fatty Acids on the Functions of Rumen Barriers. Front. Physiol. 2019, 10, 1305. [Google Scholar] [CrossRef]
- Xie, Y.; Sun, H.; Xue, M.; Liu, J. Metagenomics reveals differences in microbial composition and metabolic functions in the rumen of dairy cows with different residual feed intake. Anim. Microbiome 2022, 4, 19. [Google Scholar] [CrossRef]
- Mu, Y.Y.; Qi, W.P.; Zhang, T.; Zhang, J.Y.; Mei, S.J.; Mao, S.Y. Changes in rumen fermentation and bacterial community in lactating dairy cows with subacute rumen acidosis following rumen content transplantation. J. Dairy Sci. 2021, 104, 10780–10795. [Google Scholar] [CrossRef]
- Hagey, J.V.; Laabs, M.; Maga, E.A.; DePeters, E.J. Rumen sampling methods bias bacterial communities observed. PLoS ONE 2022, 17, e0258176. [Google Scholar] [CrossRef]
- Liu, C.; Wu, H.; Liu, S.; Chai, S.; Meng, Q.; Zhou, Z. Dynamic Alterations in Yak Rumen Bacteria Community and Metabolome Characteristics in Response to Feed Type. Front. Microbiol. 2019, 10, 1116. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Yang, W.Z.; Rode, L.M. Effects of Particle Size of Alfalfa-Based Dairy Cow Diets on Chewing Activity, Ruminal Fermentation, and Milk Production. J. Dairy Sci. 2003, 86, 630–643. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Sarikhan, S.; Han, J.L.; Ding, X.Z.; Salekdeh, G.H. Functional and phylogenetic analyses of camel rumen microbiota associated with different lignocellulosic substrates. NPJ Biofilms Microbiomes 2022, 8, 46. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.Y.; Xie, Y.Y.; Zhong, Y.; Ma, X.J.; Sun, H.Z.; Liu, J.X. Integrated meta-omics reveals new ruminal microbial features associated with feed efficiency in dairy cattle. Microbiome 2022, 10, 32. [Google Scholar] [CrossRef]
- Xue, M.Y.; Xie, Y.Y.; Zang, X.W.; Zhong, Y.F.; Ma, X.J.; Sun, H.Z.; Liu, J.X. Deciphering functional groups of rumen microbiome and their underlying potentially causal relationships in shaping host traits. iMeta 2024, 3, e225. [Google Scholar] [CrossRef]
- Takizawa, S.; Shinkai, T.; Saito, K.; Fukumoto, N.; Arai, Y.; Hirai, T.; Maruyama, M.; Takeda, M. Effect of rumen microbiota transfaunation on the growth, rumen fermentation, and microbial community of early separated Japanese Black cattle. Anim. Sci. J. 2023, 94, e13876. [Google Scholar] [CrossRef]
- Wang, D.; Tang, G.; Zhao, L.; Wang, M.; Chen, L.; Zhao, C.; Liang, Z.; Chen, J.; Cao, Y.; Yao, J. Potential roles of the rectum keystone microbiota in modulating the microbial community and growth performance in goat model. J. Anim. Sci. Biotechnol. 2023, 14, 55. [Google Scholar] [CrossRef]
- Smith, P.E.; Kelly, A.K.; Kenny, D.A.; Waters, S.M. Differences in the Composition of the Rumen Microbiota of Finishing Beef Cattle Divergently Ranked for Residual Methane Emissions. Front. Microbiol. 2022, 13, 855565. [Google Scholar] [CrossRef]
- Lyons, T.; Bielak, A.; Doyle, E.; Kuhla, B. Variations in methane yield and microbial community profiles in the rumen of dairy cows as they pass through stages of first lactation. J. Dairy Sci. 2018, 101, 5102–5114. [Google Scholar] [CrossRef]
Items | Content (%) | |||
---|---|---|---|---|
CON | LMU | MMU | HMU | |
Corn silage | 55.60 | 55.60 | 55.60 | 55.60 |
Straw | 8.30 | 8.30 | 8.30 | 8.30 |
Corn | 21.66 | 27.30 | 27.51 | 27.94 |
Wheat | 5.41 | 3.83 | 2.71 | 1.30 |
Soybean meal | 6.86 | 1.01 | 1.19 | 1.44 |
Molasses | - | 0.71 | 1.44 | 2.17 |
Gelatinized starch urea | - | 1.08 | 1.08 | 1.08 |
NaHCO3 | 0.36 | 0.36 | 0.36 | 0.36 |
Premix 1 | 1.81 | 1.81 | 1.81 | 1.81 |
Total | 100 | 100 | 100 | 100 |
Nutrients | ||||
ME (MJ/kg) 2 | 5.56 | 5.56 | 5.56 | 5.56 |
DM | 48.17 | 48.19 | 48.13 | 48.16 |
NDF | 36.48 | 36.29 | 36.15 | 36.91 |
ADF | 17.87 | 17.63 | 17.70 | 17.71 |
CP | 15.43 | 15.41 | 15.40 | 15.45 |
EE | 2.19 | 2.13 | 2.17 | 2.23 |
Items | CON | LMU | MMU | HMU | SEM | p-Value |
---|---|---|---|---|---|---|
Initial Weight (kg) | 424.69 | 438.93 | 442.73 | 440.40 | 4.968 | 0.609 |
Final Weight (kg) | 502.62 | 517.53 | 531.07 | 437.1 | 5.148 | 0.298 |
ADG (kg) | 1.66 b | 1.67 b | 1.88 a | 1.71 b | 0.015 | <0.001 |
DMI (kg/d) | 11.46 | 11.70 | 11.73 | 11.60 | 0.048 | 0.206 |
DMI/ADG | 6.92 a | 7.04 a | 6.25 b | 6.81 a | 0.055 | <0.001 |
Items | CON | LMU | MMU | HMU | SEM | p-Value |
---|---|---|---|---|---|---|
DM, % | 86.60 | 86.59 | 86.74 | 86.81 | 0.105 | 0.865 |
OM, % | 65.68 b | 66.78 a | 66.30 ab | 66.63 a | 0.139 | 0.020 |
CP, % | 62.01 c | 63.65 bc | 66.15 a | 64.81 ab | 0.441 | 0.004 |
NDF, % | 49.95 | 50.88 | 50.08 | 51.37 | 0.736 | 0.900 |
ADF, % | 28.26 | 28.23 | 29.43 | 28.61 | 0.733 | 0.938 |
EE, % | 72.71 | 72.85 | 72.86 | 72.64 | 0.096 | 0.832 |
Items | CON | LMU | MMU | HMU | SEM | p-Value |
---|---|---|---|---|---|---|
TP (g/L) | 66.86 | 66.17 | 65.30 | 66.23 | 0.655 | 0.880 |
ALB (g/L) | 29.77 | 29.83 | 29.27 | 29.28 | 0.364 | 0.919 |
BUN (mg/dL) | 4.13 b | 4.03 b | 4.30 b | 5.39 a | 0.184 | 0.025 |
AN (µmol/L) | 27.01 a | 26.43 ab | 24.99 b | 24.66 b | 0.342 | 0.038 |
ALT (U/L) | 30.52 a | 28.45 ab | 25.92 b | 25.43 b | 0.724 | 0.044 |
AST (U/L) | 81.01 b | 92.33 a | 78.42 b | 79.26 b | 1.942 | 0.029 |
ALP (U/L) | 175.45 | 189.93 | 158.77 | 178.41 | 7.341 | 0.517 |
CREA (µmol/) | 77.55 b | 84.09 a | 73.30 ab | 79.14 ab | 1.381 | 0.039 |
LDH (U/L) | 1029.25 | 1100.31 | 989.88 | 1004.20 | 18.419 | 0.139 |
Items | CON | LMU | MMU | HMU | SEM | p-Value |
---|---|---|---|---|---|---|
pH | 6.80 a | 6.67 ab | 6.66 b | 6.50 c | 0.031 | 0.002 |
MCP (mg/dL) | 154.44 b | 170.81 ab | 176.73 a | 183.95 a | 3.700 | 0.022 |
NH3-N (mg/dL) | 15.69 | 17.63 | 13.65 | 18.71 | 1.343 | 0.588 |
TVFA (mmol/L) | 87.41 c | 91.64 bc | 97.43 ab | 100.91 a | 1.610 | 0.006 |
Acetate (mmol/L) | 59.72 c | 63.76 bc | 67.03 ab | 70.25 a | 1.226 | 0.008 |
Propionate (mmol/L) | 16.70 b | 16.68 b | 18.92 a | 19.09 a | 0.397 | 0.024 |
Butyrate (mmol/L) | 10.74 | 10.98 | 11.23 | 11.33 | 0.880 | 0.067 |
Isobutyrate (mmol/L) | 0.05 | 0.05 | 0.04 | 0.05 | 0.001 | 0.368 |
Valerate (mmol/L) | 0.12 | 0.10 | 0.13 | 0.12 | 0.004 | 0.093 |
Isovalerate (mmol/L) | 0.08 | 0.07 | 0.07 | 0.09 | 0.003 | 0.285 |
Acetate/Propionate | 3.59 | 3.86 | 3.54 | 3.69 | 0.059 | 0.231 |
Items | CON | LMU | MMU | HMU |
---|---|---|---|---|
Weight gain (kg/day/head) | 1.66 | 1.67 | 1.88 | 1.71 |
Unit price of live cattle (yuan/kg) | 25.12 | 25.12 | 25.12 | 25.12 |
Weight gain income (yuan/day/head) | 41.65 | 42.00 | 47.23 | 42.83 |
Feed cost (yuan/day/head) | 33.31 | 31.53 | 31.69 | 31.92 |
Feed cost per unit weight gain (yuan/day/head) | 20.09 | 18.86 | 16.86 | 18.72 |
Breeding income (Yuan/day/head) | 8.34 | 10.47 | 15.53 | 10.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Li, S.; Yu, F.; Huang, Y.; Xie, T.; Bian, H.; Lv, L.; Hu, Y.; Tao, R.; Fan, C.; et al. Effects of Different Molasses Levels and Slow-Release Urea Combinations on Growth Performance, Serum Biochemistry, Rumen Fermentation, and Microflora of Holstein Fattening Bulls. Agriculture 2025, 15, 183. https://doi.org/10.3390/agriculture15020183
Xu Z, Li S, Yu F, Huang Y, Xie T, Bian H, Lv L, Hu Y, Tao R, Fan C, et al. Effects of Different Molasses Levels and Slow-Release Urea Combinations on Growth Performance, Serum Biochemistry, Rumen Fermentation, and Microflora of Holstein Fattening Bulls. Agriculture. 2025; 15(2):183. https://doi.org/10.3390/agriculture15020183
Chicago/Turabian StyleXu, Zhiyuan, Shuaihong Li, Fangzhou Yu, Yinghao Huang, Tao Xie, Hanbing Bian, Longfei Lv, Yapeng Hu, Ruoran Tao, Caiyun Fan, and et al. 2025. "Effects of Different Molasses Levels and Slow-Release Urea Combinations on Growth Performance, Serum Biochemistry, Rumen Fermentation, and Microflora of Holstein Fattening Bulls" Agriculture 15, no. 2: 183. https://doi.org/10.3390/agriculture15020183
APA StyleXu, Z., Li, S., Yu, F., Huang, Y., Xie, T., Bian, H., Lv, L., Hu, Y., Tao, R., Fan, C., Liu, S., & Cheng, J. (2025). Effects of Different Molasses Levels and Slow-Release Urea Combinations on Growth Performance, Serum Biochemistry, Rumen Fermentation, and Microflora of Holstein Fattening Bulls. Agriculture, 15(2), 183. https://doi.org/10.3390/agriculture15020183