The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.)
Abstract
1. Introduction
2. Materials and Methods
2.1. NP Characterization
2.2. Soil Characterization
2.3. Biofertilizer Preparation
2.3.1. Vermicompost Preparation
2.3.2. Isolation and Characterization of Microorganisms
2.3.3. Preparation of the Biofertilizer
2.4. Experimental Setup
2.5. Distribution and Experimental Conditions
2.6. Statistical Analysis
3. Results
3.1. NP Characterization
3.2. Results of Initial Soil Characterization
3.3. Biofertilizer
3.4. Greenhouse Experiment
3.4.1. Sampling at 60 DAS
3.4.2. Sampling at 130 DAS (Harvest)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, S.; Fanzo, J. Population and food systems: What does the future hold? Popul. Environ. 2023, 45, 20. [Google Scholar] [CrossRef]
- Cisse, A.; Arshad, A.; Wang, X.; Yattara, F.; Hu, Y. Contrasting impacts of long-term application of biofertilizers and organic manure on grain yield of winter wheat in North China Plain. Agronomy 2019, 9, 312. [Google Scholar] [CrossRef]
- Ahmadian, K.; Jalilian, J.; Pirzad, A. Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agric. Water Manag. 2021, 244, 106544. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Zinc oxide nanoparticles alleviate drought-induced alterations in sorghum performance, nutrient acquisition, and grain fortification. Sci. Total Environ. 2019, 688, 926–934. [Google Scholar] [CrossRef]
- Tian, H.; Kah, M.; Kariman, K. Are nanoparticles a threat to mycorrhizal and rhizobial symbioses? A critical review. Front. Microbiol. 2019, 10, 1660. [Google Scholar] [CrossRef] [PubMed]
- Kekeli, M.A.; Wang, Q.; Rui, Y. The role of nano-fertilizers in sustainable agriculture: Boosting crop yields and enhancing quality. Plants 2025, 14, 554. [Google Scholar] [CrossRef]
- Kumar, N.; Samota, S.R.; Venkatesh, K.; Tripathi, S. Global trends in use of nano-fertilizers for crop production: Advantages and constraints–a review. Soil Tillage Res. 2023, 228, 105645. [Google Scholar] [CrossRef]
- Cui, H.; Sun, W.; Delgado-Baquerizo, M.; Song, W.; Ma, J.Y.; Wang, K.; Ling, X. Cascading effects of N fertilization activate biologically driven mechanisms promoting P availability in a semi-arid grassland ecosystem. Funct. Ecol. 2021, 35, 1001–1011. [Google Scholar] [CrossRef]
- Zhang, H.; Shi, L.; Lu, H.; Shao, Y.; Liu, S.; Fu, S. Drought promotes soil phosphorus transformation and reduces phosphorus bioavailability in a temperate forest. Sci. Total Environ. 2020, 732, 139295. [Google Scholar] [CrossRef] [PubMed]
- Fasusi, O.A.; Cruz, C.; Babalola, O.O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 2021, 11, 163. [Google Scholar] [CrossRef]
- Ortiz, A.; Sansinenea, E.; Keswani, C.; Minkina, T.; Singh, S.P.; Rekadwad, B.; Borriss, R.; Hefferon, K.; Hoat, T.X.; Mitra, D. Bioengineering Bacillus spp. for sustainable crop production: Recent advances and resources for biotechnological applications. J. Plant Growth Regul. 2024, 44, 1868–1885. [Google Scholar] [CrossRef]
- Breedt, G.; Korsten, L.; Gokul, J.K. Enhancing multi-season wheat yield through plant growth-promoting rhizobacteria using consortium and individual isolate applications. Folia Microbiol. 2025, 5, 1–10. [Google Scholar] [CrossRef]
- Abulfaraj, A.A.; Jalal, R.S. Use of plant growth-promoting bacteria to enhance salinity stress in soybean (Glycine max L.) plants. Saudi J. Biol. Sci. 2021, 28, 3823–3834. [Google Scholar] [CrossRef]
- Rios, J.; Yepes-Molina, L.; Martinez-Alonso, A.; Carvajal, M. Nanobiofertilization as a novel technology for highly efficient foliar application of Fe and B in almond trees. R. Soc. Open Sci. 2020, 7, 200905. [Google Scholar] [CrossRef]
- Amrane, A.; Mohan, D.; Nguyen, T.A.; Assadi, A.A.; Yasin, G. Nanomaterials for Soil Remediation; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Babaei, K.; Seyed Sharifi, R.; Pirzad, A.; Khalilzadeh, R. Effects of bio fertilizer and nano Zn-Fe oxide on physiological traits, antioxidant enzymes activity and yield of wheat (Triticum aestivum L.) under salinity stress. J. Plant Interact. 2017, 12, 381–389. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Mazarji, M.; Shende, S.; Sushkova, S.; Mandzhieva, S.; Burachevskaya, M.; Chaplygin, V.; Singh, A.; Jatav, H. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. An. Edafol. Fisiol. 2020, 65, 137–143. [Google Scholar] [CrossRef]
- El-Temsah, Y.S.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2012, 27, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Jayara, A.S.; Kumar, R.; Shukla, A.; Singh, A.V.; Singh, A.P.; Pandey, P.; Singh, N.K.; Bhatt, M.K. Impact of nano-fertilizers and modified indigenous minerals on biomass accumulation, root growth, and soil parameters in wheat. J. Soil Sci. Plant Nutr. 2024, 24, 4581–4596. [Google Scholar] [CrossRef]
- Camacho-Casas, M.A.; Chávez-Villalba, G.; Figueroa-López, P.; Fuentes-Dávila, G.; Peña-Bautista, R.J.; Valenzuela-Herrera, V.; Félix-Fuentes, J.L.; Mendoza-Lugo, J.A. Samayoa C2004, nueva variedad de trigo cristalino para el sur de Sonora, México. Rev. Mex. Cienc. Agric. 2010, 1, 657–661. [Google Scholar]
- Schad, P. World Reference Base for Soil Resources—Its fourth edition and its history. J. Plant Nutr. Soil Sci. 2023, 186, 151–163. [Google Scholar] [CrossRef]
- Lawrence, P.G.; Roper, W.; Morris, T.F.; Guillard, K. Guiding soil sampling strategies using classical and spatial statistics: A review. Agronomy 2020, 112, 493–510. [Google Scholar] [CrossRef]
- Pérez Moreno, A.; Sarabia Castillo, C.R.; Medina Pérez, G.; Pérez Hernández, H.; Roque de la Puente, J.; González Pozos, S.; Corlay Chee, L.; Chamizo Checa, A.; Campos Montiel, R.G.; Fernández Luqueño, F. Nanomaterials modify the growth of crops and some characteristics of organisms from agricultural or forest soils: An experimental study at laboratory, greenhouse and land level. Mex. J. Biotechnol. 2019, 4, 29–49. [Google Scholar] [CrossRef]
- Sarabia-Castillo, C.R.; Pérez-Moreno, A.Y.; Fernández-Luqueño, F. Metal Oxide Nanoparticles (TiO2, Zno, and Fe2O3) change the functional groups, but not the plant tissue content of common bean plants grown in a greenhouse. Pol. J. Environ. Stud. 2023, 32, 1343–1352. [Google Scholar] [CrossRef]
- Castellini, M.; Giglio, L.; Modugno, F. Sampled soil volume effect on soil physical quality determination: A case study on conventional tillage and no-tillage of the soil under winter wheat. Soil Syst. 2020, 4, 72. [Google Scholar] [CrossRef]
- Singh, A.; Karmegam, N.; Singh, G.S.; Bhadauria, T.; Chang, S.W.; Awasthi, M.K.; Sudhakar, S.; Arunachalam, K.D.; Biruntha, M.; Ravindran, B. Earthworms and vermicompost: An eco-friendly approach for repaying nature’s debt. Environ. Geochem. Health 2020, 42, 1617–1642. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, A.E.; Nessim, M.G.; Abou-El-Seoud, I.I.; Darwish, K.M.; Shamseldin, A. Isolation and selection of highly effective phosphate solubilizing bacterial strains to promote wheat growth in Egyptian calcareous soils. Bull. Natl. Res. Cent. 2019, 43, 203. [Google Scholar] [CrossRef]
- Wakarera, P.W.; Ojola, P.; Njeru, E.M. Characterization and diversity of native Azotobacter spp. isolated from semi-arid agroecosystems of Eastern Kenya. Biol. Lett. 2022, 18, 20210612. [Google Scholar] [CrossRef] [PubMed]
- Solano-Alvarez, N.; Valencia-Hernández, J.A.; Rico-García, E.; Torres-Pacheco, I.; Ocampo-Velázquez, R.V.; Escamilla-Silva, E.M.; Romero-García, A.L.; Alpuche-Solís, Á.G.; Guevara-González, R.G. A novel isolate of Bacillus cereus promotes growth in tomato and inhibits Clavibacter michiganensis infection under greenhouse conditions. Plants 2021, 10, 506. [Google Scholar] [CrossRef]
- Varatharaju, G.; Nithya, K.; Suresh, P.; Rekha, M.; Balasubramanian, N.; Gomathinayagam, S.; Manoharan, P.; Shanmugaiah, V. Biocontrol properties and functional characterization of rice rhizobacterium Pseudomonas sp. VsMKU4036. J. Pure Appl. Microbiol. 2020, 14, 1545–1556. [Google Scholar] [CrossRef]
- Torres-Gómez, A.; Sarabia-Castillo, C.R.; Guillen-Cruz, G.; Fernández-Luqueño, F. Enhancing wheat yield (Triticum durum Desf.) through the application of TiO2, ZnO, FexOx, and Ag nanoparticles to agricultural land. Cereal Res. Commun. 2025, 1–9. [Google Scholar] [CrossRef]
- Kapila, R.; Verma, G.; Sen, A.; Nigam, A. Compositional evaluation of vermicompost prepared from different types of organic wastes using Eisenia fetida and studying its effect on crop growth. Indian J. Agric. Res. 2024, 58, 468–473. [Google Scholar] [CrossRef]
- Landa, P. Positive effects of metallic nanoparticles on plants: Overview of involved mechanisms. Plant. Physiol. Biochem. 2021, 161, 12–24. [Google Scholar] [CrossRef]
- He, S.; Feng, Y.; Ni, J.; Sun, Y.; Xue, L.; Feng, Y.; Yu, Y.; Lin, X.; Yang, L. Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 2016, 147, 195–202. [Google Scholar] [CrossRef]
- Galeote Cobos, M. Efecto de la Aplicación de Microorganismos (Bacillus subtilis Trichoderma asperellum T 34) y Ácidos Orgánicos, en un Medio Calcáreo en Diferentes Formas de Zn y Dosis de P, Sobre la Bioacumulación de P y Zn en Trigo. Ph.D. Thesis, Universidad de Sevilla Sevilla, Sevilla, Spain, 2017. [Google Scholar]
- Kumar, R.; Kumawat, N.; Sahu, Y.K. Role of biofertilizers in agriculture. Pop. Kheti 2017, 5, 63–66. [Google Scholar]
- Bakhtiari, M.; Moaveni, P.; Sani, B. The effect of iron nanoparticles spraying time and concentration on wheat. In Biological Forum; Research Trend: Runnemede, NJ, USA, 2015; Volume 7, pp. 679–683. [Google Scholar]
- Al-Amri, N.; Tombuloglu, H.; Slimani, Y.; Akhtar, S.; Barghouthi, M.; Almessiere, M.; Alshammari, T.; Baykal, A.; Sabit, H.; Ercan, I. Size effect of iron (III) oxide nanomaterials on the growth, and their uptake and translocation in common wheat (Triticum aestivum L.). Ecotoxicol. Environ. Saf. 2020, 194, 110377. [Google Scholar] [CrossRef] [PubMed]
- Furqan, A.; Ameer, K.; Shahzad, A. Impacts of nano-Ferric oxide on morpho-physiological traits of durum wheat. Int. J. Agric. Res. Environ. Sci. 2022, 3, 1–7. [Google Scholar]
- Eliaspour, S.; Seyed Sharifi, R.; Shirkhani, A.; Farzaneh, S. Effects of biofertilizers and iron nano-oxide on maize yield and physiological properties under optimal irrigation and drought stress conditions. Food Sci. Nutr. 2020, 8, 5985–5998. [Google Scholar] [CrossRef]
- Benedetti, T.; Tamagno, W.A.; Sordi, E.; Bortoluzzi, E.C. Iron oxide nanoparticles as enhancers of growth-promoting bacteria: A step towards developing nano-biofertilizers. Environ. Sci. Nano 2024, 11, 3053–3065. [Google Scholar] [CrossRef]
- Guardiola-Márquez, C.E.; López-Mena, E.R.; Segura-Jiménez, M.E.; Gutierrez-Marmolejo, I.; Flores-Matzumiya, M.A.; Mora-Godínez, S.; Hernández-Brenes, C.; Jacobo-Velázquez, D.A. Development and evaluation of zinc and iron nanoparticles functionalized with plant growth-promoting rhizobacteria (PGPR) and microalgae for their application as bio-nanofertilizers. Plants 2023, 12, 3657. [Google Scholar] [CrossRef]
- Farid, I.M.; Abbas, M.H.; El-Ghozoli, A. Wheat productivity as influenced by integrated mineral, organic and biofertilization. Egypt. J. Soil Sci. 2023, 63, 287–299. [Google Scholar] [CrossRef]
- Dimkpa, C.O.; Andrews, J.; Fugice, J.; Singh, U.; Bindraban, P.S.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Facile coating of urea with low-dose ZnO nanoparticles promotes wheat performance and enhances Zn uptake under drought stress. Front. Plant Sci. 2020, 11, 168. [Google Scholar] [CrossRef]
Treatment | Replicates | Type of NPs | Fertilizer |
---|---|---|---|
WF-TiO2 | 6 | TiO2 | Without |
WF-ZnO | 6 | ZnO | Without |
WF-FexOx | 6 | FexOx | Without |
WF-Ag | 6 | Ag | Without |
BF-TiO2 | 6 | TiO2 | Biofertilizer |
BF-ZnO | 6 | ZnO | Biofertilizer |
BF-FexOx | 6 | FexOx | Biofertilizer |
BF-Ag | 6 | Ag | Biofertilizer |
BF | 6 | No | Biofertilizer |
U-TiO2 | 6 | TiO2 | Urea |
U-ZnO | 6 | ZnO | Urea |
U-FexOx | 6 | FexOx | Urea |
U-Ag | 6 | Ag | Urea |
U | 6 | No | Urea |
Control | 6 | No | Without |
Chemical Elements (mg L−1) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ag | Al | Ca | Fe | K | Mg | Na | P | S | Ti | Zn | |
Biof | 0.01 ± 0.0 c | 0.025 ± 0.0 a | 0.4 ± 0.1 b | 0.1 ± 0.0 a | 21.3 ± 0.5 b | 122.8 ± 1.8 a | 107 ± 1.2 c | 5.7 ± 0.2 a | 8.8 ± 2.5 c | 0.05 ± 0.0 b | 0.05 ± 0.01 a |
Leachate | 0.02 ± 0.0 a | 0.025 ± 0.0 a | 348.0 ± 3.0 a | 0.1 ± 0.0 a | 1801.8 ± 25 a | 109.5 ± 1.3 b | 476.8 ± 7.1 a | 0.6 ± 0.1 b | 245.6 ± 2.1 b | 0.048 ± 0.0 c | 0.02 ± 0.00 a |
Irrigation | 0.01 ± 0.0 b | 0.025 ± 0.0 a | 355.3 ± 6.5 a | 0.1 ± 0.0 a | 8.7 ± 3.4 b | 60.6 ± 0.61 c | 248.9 ± 1.9 b | 0.1 ± 0.0 c | 292.1 ± 5.4 a | 0.05 ± 0.0 a | 0.05 ± 0.01 a |
Variables | |||||||||
---|---|---|---|---|---|---|---|---|---|
pH | EC | K | |||||||
Source of variation | Type of NPs | Fertilizer | NPs × Fertilizer | Type of NPs | Fertilizer | NPs × Fertilizer | Type of NPs | Fertilizer | NPs × Fertilizer |
SS X 102 | 106.2 | 165.9 | 311.0 | 1211.5 | 276.5 | 818.6 | 13.7 | 14.7 | 16.4 |
df | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 |
F | 14.68 | 45.87 | 21.49 | 130.44 | 59.54 | 44.07 | 13.07 | 28.03 | 7.80 |
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
P | N | C | |||||||
SS X 102 | 0.2 | 0.1 | 0.2 | 60.5 | 3.1 | 9.6 | 1543.0 | 109.5 | 364.1 |
df | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 |
F | 11.95 | 13.36 | 6.11 | 145.14 | 14.88 | 11.49 | 67.13 | 9.53 | 7.92 |
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
TOC | SOM | ||||||||
SS X 102 | 19.0 | 9.9 | 96.8 | 57.3 | 27.0 | 297.1 | |||
df | 4 | 2 | 8 | 4 | 2 | 8 | |||
F | 1.98 | 2.06 | 5.04 | 2.04 | 1.93 | 5.29 | |||
p-value | 0.11 | 0.14 | ≤0.001 | 0.10 | 0.15 | ≤0.001 |
Variable | Rank | Type of NPs | Fertilizer | Type of NPs × Fertilizer | |||
---|---|---|---|---|---|---|---|
pH | Highest | TiO2 | 8.12 a | Without | 8.15 a | WF–FexOx | 8.42 a |
Lowest | Ag | 7.80 c | Urea | 7.83 b | BF–FexOx | 7.47 f | |
EC (dS m−1) | Highest | No | 1.62 a | Urea | 1.14 a | U | 2.18 a |
Lowest | ZnO | 0.6 d | Without | 0.76 b | BF–ZnO | 0.42 g | |
K (g kg−1) | Highest | TiO2 | 4.3 a | Biofertilizer | 4.4 a | BF–FexOx | 5.0 a |
Lowest | No | 3.2 b | Urea | 3.4 b | U–FexOx | 2.6 f | |
P (g kg−1) | Highest | TiO2 | 0.5 a | Urea | 0.4 a | U–ZnO | 0.5 a |
Lowest | Ag | 0.3 b | Biofertilizer | 0.3 b | WF–Ag | 0.3 e | |
N (g kg−1) | Highest | FexOx | 3.1 a | Urea | 2.8 a | U–Ag | 4.1 a |
Lowest | No | 0.9 b | Without | 2.4 b | Control | 0.7 d | |
C (g kg−1) | Highest | ZnO | 42.4 a | Urea | 38.6 a | U–TiO2 | 45.1 a |
Lowest | No | 32.4 c | Biofertilizer | 35.9 b | BF | 29.5 f | |
TOC (g kg−1) | Highest | No significant effect | No significant effect | BF–FexOx | 12.7 a | ||
Lowest | BF | 8.7 b | |||||
SOM (g kg−1) | Highest | No significant effect | No significant effect | BF–FexOx | 21.8 a | ||
Lowest | BF | 14.7 b |
Variable | Rank | Type of NPs | Fertilizer | Type of NPs × Fertilizer | |||
---|---|---|---|---|---|---|---|
Yield (Mg ha−1) | Highest | FexOx | 6.13 a | Biofertilizer | 4.67 a | BF-FexOx | 8.48 a |
Lowest | Ag | 2.60 c | Without | 3.40 b | U-Ag | 2.28 d | |
Shoot (cm) | Highest | FexOx | 91.05 a | No significant effect | BF-ZnO | 95.33 a | |
Lowest | Ag | 56.07 b | WF-Ag | 42.33 f | |||
Root (cm) | Highest | TiO2 | 38.94 a | Biofertilizer | 40.38 a | BF-TiO2 | 65.73 a |
Lowest | No | 18.66 b | Urea | 22.04 b | U | 13.13 c | |
pH | Highest | TiO2 | 8.39 a | Without | 8.30 a | WF-TiO2 | 8.54 a |
Lowest | No | 7.90 b | Urea | 8.09 b | U | 7.84 f | |
EC (dS m−1) | Highest | ZnO | 2.38 a | Urea | 2.37 a | U-ZnO | 3.25 a |
Lowest | Ag | 1.68 c | Without | 1.79 b | Without | 1.18 d | |
K (g kg−1) | Highest | FexOx | 3.7 a | No significant effect | WF-FexOx | 4.4 a | |
Lowest | No | 3.0 b | U-Ag | 2.9 b | |||
P (g kg−1) | Highest | ZnO | 0.6 a | No significant effect | U-ZnO | 0.6 a | |
Lowest | Ag | 0.4 c | WF-Ag | 0.3 e | |||
N (g kg−1) | Highest | No significant effect | Without | 2.5 a | No significant effect | ||
Lowest | Biofertilizer | 0.9 b | |||||
C (g kg−1) | Highest | ZnO | 39.0 a | Urea | 36.8 a | U-ZnO | 43.5 a |
Lowest | Ag | 32.7 b | Biofertilizer | 32.8 b | BF | 30.6 b | |
TOC (g kg−1) | Highest | ZnO | 15.1 a | Without | 14.7 a | WF-TiO2 | 18.1 a |
Lowest | No | 10.6 c | Biofertilizer | 12.4 b | BF | 8.7 d | |
SOM (g kg−1) | Highest | ZnO | 25.9 a | Without | 24.5 a | WF-ZnO | 29.6 a |
Lowest | No | 18.2 c | Biofertilizer | 21.3 b | BF | 15.0 e |
Variable | |||||||||
---|---|---|---|---|---|---|---|---|---|
Yield | Shoot | Root | |||||||
Source of variation | Type of NPs | Fertilizer | NPs × Fertilizer | Type of NPs | Fertilizer | NPs × Fertilizer | Type of NPs | Fertilizer | NPs × Fertilizer |
SS X 102 | 1,723,777.23 | 2803.04 | 4132.59 | 1,525,464.93 | 155,359.09 | 1,647,142.13 | 519,294.93 | 521,781.42 | 450,620.80 |
df | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 |
F | 112.62 | 36.63 | 13.50 | 18.18 | 3.70 | 9.81 | 6.67 | 13.41 | 2.90 |
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | 0.029 | ≤0.001 | ≤0.001 | ≤0.001 | 0.007 |
pH | EC | K | |||||||
SS X 102 | 271.45 | 90.74 | 60.81 | 581.4 | 548.8 | 499.0 | 4.7 | 0.2 | 15.4 |
df | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 |
F | 41.65 | 27.85 | 4.67 | 15.96 | 30.12 | 6.85 | 3.91 | 0.25 | 6.37 |
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | 0.006 | 0.780 | ≤0.001 |
P | N | C | |||||||
SS X 102 | 0.61 | 0.01 | 0.07 | 11.76 | 36.31 | 17.15 | 541.64 | 254.20 | 228.28 |
df | 4 | 2 | 8 | 4 | 2 | 8 | 4 | 2 | 8 |
F | 65.34 | 2.29 | 3.80 | 1.07 | 6.60 | 0.78 | 6.96 | 6.53 | 1.47 |
p-value | ≤0.001 | 0.108 | ≤0.001 | 0.378 | 0.002 | 0.622 | ≤0.001 | 0.002 | 0.184 |
TOC | SOM | ||||||||
SS X 102 | 239.96 | 100.82 | 146.36 | 603.05 | 183.83 | 335.95 | |||
df | 4 | 2 | 8 | 4 | 2 | 8 | |||
F | 13.45 | 11.30 | 4.10 | 24.21 | 14.76 | 6.74 | |||
p-value | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 | ≤0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Gómez, A.; Sarabia-Castillo, C.R.; Juárez-Altamirano, R.; Fernández-Luqueño, F. The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.). Agriculture 2025, 15, 2093. https://doi.org/10.3390/agriculture15192093
Torres-Gómez A, Sarabia-Castillo CR, Juárez-Altamirano R, Fernández-Luqueño F. The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.). Agriculture. 2025; 15(19):2093. https://doi.org/10.3390/agriculture15192093
Chicago/Turabian StyleTorres-Gómez, Andrés, Cesar R. Sarabia-Castillo, René Juárez-Altamirano, and Fabián Fernández-Luqueño. 2025. "The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.)" Agriculture 15, no. 19: 2093. https://doi.org/10.3390/agriculture15192093
APA StyleTorres-Gómez, A., Sarabia-Castillo, C. R., Juárez-Altamirano, R., & Fernández-Luqueño, F. (2025). The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.). Agriculture, 15(19), 2093. https://doi.org/10.3390/agriculture15192093