Manure Production Projections for Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions
Abstract
1. Introduction
2. Materials and Methods
2.1. Manure Production and Management
2.2. Calculation of Greenhouse Gas Emissions from Manure Management
- (1)
- CH4 emissions from manure management;
- (2)
- Direct and indirect N2O emissions from manure management;
- (3)
- Direct and indirect N2O emissions from livestock grazing;
- (4)
- Direct and indirect N2O emissions from manure use (incorporation into soil).
2.3. Projections of Manure Production and Greenhouse Gas Emissions by 2050
3. Results
3.1. Manure Production and Its Projection up to 2050 in Latvia
3.2. Amounts of Greenhouse Gases from Manure Management and Their Projections up to 2050 in Latvia
4. Discussion
4.1. The Need to Improve the Production, Use, and Management of Manure
4.2. Potential Reduction in GHG Emissions from Manure Management
4.3. Manure Production Trends in EU Member States
4.4. Limitations of the Study and Uncertainties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
% | Percentage rate |
CH4 | Methane |
CO2 | Carbon dioxide |
CO2 eq. | Carbon dioxide equivalent |
EF | Emission factors |
EU | European Union |
FAO | Food and Agriculture Organization of the United Nations |
GHG | Greenhouse Gases |
IPCC | Intergovernmental Panel on Climate Change |
Kg | Kilogram |
Kt | Kilotonnes |
LASAM | Latvian Agricultural Sector Analysis Model |
N | Nitrogen |
N2O | Nitrous oxide |
NECP | National Energy and Climate Plan (Latvia) |
NH3 | Ammonia |
NIR | Latvia’s National Inventory Report |
Nox | Nitrous oxide |
t | Tonne |
Thou. | Thousand |
References
- Giosanu, D.; Bucura, F.; Constantinescu, M.; Zaharioiu, A.; Vîjan, L.E.; Mățăoanu, G. The Nutrient Potential of Organic Manure and its Risk to the Environment. Curr. Trends Nat. Sci. 2022, 11, 153. [Google Scholar] [CrossRef]
- Jagadeesha, G.S.; Prakasha, H.C.; Shivakumara, M.N.; Govinda, K.; Yogananda, S.B. Evaluation of Rock Phosphate Enriched Compost on Soil Nutrient Status after Harvest of Finger Millet-Cowpea Cropping Sequence in High Phosphorus Soils of Cauvery Command Area, Karnataka. Int. J. Plant Soil Sci. 2021, 33, 17–35. [Google Scholar] [CrossRef]
- Devianti, D.; Yusmanizar, Y.; Syakur, S.; Munawar, A.A.; Yunus, Y. Organic fertilizer from agricultural waste: Determination of phosphorus content using near infrared reflectance. IOP Conf. Ser. Earth Environ. Sci. 2021, 644, 12002. [Google Scholar] [CrossRef]
- Arha, A.; Kaushik, R.A.; Lakhawat, S.S.; Bairwa, H.L.; Verma, A. Effect of Integrated Nutrient Management on Growth, Flowering and Yield of Gaillardia. Int. J. Curr. Microbiol. Appl. Sci. 2021, 10, 3461. [Google Scholar] [CrossRef]
- Ponmozhi, C.N.I.; Kumar, R.; Baba, Y.A.; Rao, G.M. Effect of Integrated Nutrient Management on Growth and Yield of Maize (Zea mays L.). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 2675. [Google Scholar] [CrossRef]
- Kandil, E.; Abdelsalam, N.R.; Mansour, M.A.; Ali, H.M.; Siddiqui, M.H. Potentials of organic manure and potassium forms on maize (Zea mays L.) growth and production. Sci. Rep. 2020, 10, 8752. [Google Scholar] [CrossRef]
- Hirich, E.H.; Bouizgarne, B.; Zouahri, A.; Ibn Halima, O.; Azim, K. How Does Compost Amendment Affect Stevia Yield and Soil Fertility? Environ. Sci. Proc. 2022, 16, 46. [Google Scholar] [CrossRef]
- Patel, A. Application of Nano Organic Materials in Agriculture farming and yield analysis for Groundnut crop with comparison to conventional inorganic farming. IOP Conf. Ser. Earth Environ. Sci. 2021, 785, 12008. [Google Scholar] [CrossRef]
- Feng, X.; Smith, W.; VanderZaag, A. Dairy manure nutrient recovery reduces greenhouse gas emissions and transportation cost in a modeling study. Front. Anim. Sci. 2023, 4, 1134817. [Google Scholar] [CrossRef]
- Maldaner, L.; Wagner-Riddle, C.; VanderZaag, A.; Gordon, R.J.; Duke, C. Methane emissions from storage of digestate at a dairy manure biogas facility. Agric. For. Meteorol. 2018, 258, 96. [Google Scholar] [CrossRef]
- Philippe, F.-X.; Nicks, B. Review on greenhouse gas emissions from pig houses: Production of carbon dioxide, methane and nitrous oxide by animals and manure. Agric. Ecosyst. Environ. 2014, 199, 10. [Google Scholar] [CrossRef]
- FAO. Pathways Towards Lower Emissions—A Global Assessment of the Greenhouse Gas Emissions and Mitigation Options From Livestock Agrifood Systems; FAO: Rome, Italy, 2023. [Google Scholar] [CrossRef]
- Moran, D.; Wall, E. Livestock production and greenhouse gas emissions: Defining the problem and specifying solutions. Anim. Front. 2011, 1, 19. [Google Scholar] [CrossRef]
- Gerber, P.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock. 2013. Available online: https://www.fao.org/4/i3437e/i3437e.pdf (accessed on 22 July 2025).
- Kreidenweis, U.; Breier, J.; Herrmann, C.; Libra, J.A.; Prochnow, A. Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. J. Clean. Prod. 2020, 280, 124969. [Google Scholar] [CrossRef]
- Lynch, J.; Cain, M.; Frame, D.J.; Pierrehumbert, R.T. Agriculture’s Contribution to Climate Change and Role in Mitigation Is Distinct From Predominantly Fossil CO2-Emitting Sectors. Front. Sustain. Food Syst. 2021, 518039. [Google Scholar] [CrossRef] [PubMed]
- Martín-Hernández, E.; Montero-Rueda, C.; Ruiz-Mercado, G.J.; Vaneeckhaute, C.; Martín, M. Multi-scale techno-economic assessment of nitrogen recovery systems for livestock operations. Sustain. Prod. Consum. 2023, 41, 49. [Google Scholar] [CrossRef]
- Symeon, G.K.; Akamati, K.; Dotas, V.; Karatosidi, D.; Bizelis, I.; Laliotis, G.P. Manure Management as a Potential Mitigation Tool to Eliminate Greenhouse Gas Emissions in Livestock Systems. Sustainability 2025, 17, 586. [Google Scholar] [CrossRef]
- Zong, L.; Wang, X. Chapter 26—Manure Treatment and Utilization in Production System. In Elsevier eBooks; Fuller, W., Bazer, G., Lamb, C., Wu, G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 455–467. [Google Scholar] [CrossRef]
- Camilleri-Rumbau, M.S.; Briceño, K.; Søtoft, L.F.; Christensen, K.V.; Roda-Serrat, M.C.; Errico, M.; Norddahl, B. Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18, 3107. [Google Scholar] [CrossRef]
- Ravi, R.; Beyers, M.; Vingerhoets, R.; Brienza, C.; Luo, H.; Bruun, S.; Meers, E. In the quest for sustainable management of liquid fraction of manure—Insights from a life cycle assessment. Sustain. Prod. Consum. 2023, 43, 251. [Google Scholar] [CrossRef]
- Vingerhoets, R.; Brienza, C.; Sigurnjak, I.; Buysse, J.; Vlaeminck, S.E.; Spiller, M.; Meers, E. Ammonia stripping and scrubbing followed by nitrification and denitrification saves costs for manure treatment based on a calibrated model approach. Chem. Eng. J. 2023, 477, 146984. [Google Scholar] [CrossRef]
- Brodny, J.; Tutak, M. Analyzing Similarities between the European Union Countries in Terms of the Structure and Volume of Energy Production from Renewable Energy Sources. Energies 2020, 13, 913. [Google Scholar] [CrossRef]
- Krämer, L. Planning for Climate and the Environment: The EU Green Deal. J. Eur. Environ. Plan. Law 2020, 17, 267. [Google Scholar] [CrossRef]
- Bellanca, M. What, How and Where: An Assessment of Multi-Level European Climate Mitigation Policies. Res. Sq. 2024, 3, 119. [Google Scholar] [CrossRef]
- Ciot, M. Implementation Perspectives for the European Green Deal in Central and Eastern Europe. Sustainability 2022, 14, 3947. [Google Scholar] [CrossRef]
- Almeida, D.V.; Kolinjivadi, V.; Ferrando, T.; Roy, B.; Herrera, H.; Gonçalves, M.V.; Hecken, G.V. The “Greening” of Empire: The European Green Deal as the EU first agenda. Political Geogr. 2023, 105, 102925. [Google Scholar] [CrossRef]
- Barrett, J.; Pye, S.; Betts-Davies, S.; Broad, O.; Price, J.; Eyre, N.; Anable, J.; Brand, C.; Bennett, G.; Carr-Whitworth, R.; et al. Energy demand reduction options for meeting national zero-emission targets in the United Kingdom. Nat. Energy 2022, 7, 726. [Google Scholar] [CrossRef]
- Konara, K.M.G.K.; Tokai, A. Evaluating the Energy Metabolic System in Sri Lanka. J. Sustain. Dev. 2020, 13, 235. [Google Scholar] [CrossRef]
- Kļaviņš, M.; Bruneniece, I.; Bisters, V. Development of national climate and adaptation policy in Latvia. International J. Clim. Chang. Strateg. Manag. 2009, 1, 75. [Google Scholar] [CrossRef]
- Latvia’s National Energy and Climate Plan 2021–2030. 2024, 135p. Available online: https://commission.europa.eu/document/download/3e07cbed-22c0-4b69-a8e5-887e0c6aa09e_en?filename=LV_FINAL%20UPDATED%20NECP%202021-2030%20%28English%29_0.pdf (accessed on 8 July 2025).
- Research “Forecasting Agricultural Development and Developing Policy Scenarios Until 2050” (in Latvian). LBTU, 2024, 166p. Available online: https://www.lbtu.lv/sites/default/files/files/projects/S486_Irina_Pilvere_24-00-S0INZ03-000006.pdf (accessed on 12 July 2025).
- Pilvere, I.; Nipers, A.; Krievina, A.; Upite, I.; Kotovs, D. LASAM Model: An Important Tool in the Decision Support System for Policymakers and Farmers. Agriculture 2022, 12, 705. [Google Scholar] [CrossRef]
- Pilvere, I.; Krievina, A.; Upite, I.; Nipers, A. Datasets for Manure Projections in Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions. 2025. Available online: https://dv.dataverse.lv/dataset.xhtml?persistentId=doi:10.71782/DATA/DWMW7G (accessed on 20 August 2025).
- Latvia’s National Inventory Report under the UNFCCC “Greenhouse Gas Emissions in Latvia from 1990 to 2022”. Riga, 2024. Available online: https://videscentrs.lvgmc.lv/files/Klimats/SEG_emisiju_un_ETS_monitorings/Zinojums_par_klimatu/SEG_zinojums/2024/ (accessed on 2 July 2025).
- IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. In Prepared by the National. Greenhouse Gas Inventories Programme; Eggleston, H.S., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., Eds.; IGES: Hayama, Japan, 2006; Available online: https://www.ipcc-nggip.iges.or.jp/public/2006gl/vol1.html (accessed on 7 July 2025).
- Makutėnienė, D.; Perkumienė, D.; Makutėnas, V. Logarithmic Mean Divisia Index Decomposition Based on Kaya Identity of GHG Emissions from Agricultural Sector in Baltic States. Energies 2022, 15, 1195. [Google Scholar] [CrossRef]
- Republic of Latvia Cabinet Regulation No. 834 Adopted 23 December 2014 Requirements Regarding the Protection of Water, Soil and Air from Pollution Caused by Agricultural Activity. Available online: https://likumi.lv/ta/id/271376-noteikumi-par-udens-un-augsnes-aizsardzibu-no-lauksaimnieciskas-darbibas-izraisita-piesarnojuma-ar-nitratiem (accessed on 14 July 2025).
- Research “Development of a Methodology for Calculating GHG Emissions in the Agricultural Sector and Data Analysis with a Modeling Tool, Integrating Climate Change”, Sub-Project “Studies of Manure Management Systems in Latvia” (in Latvian). 2016, 141p. Available online: https://ppdb.mk.gov.lv/wp-content/uploads/2023/06/petijums_VARAM_2017_Lauksaimn_SEG_emisij_aprek_metodolog_un_datu_analiz_ar_model_riku_izstrad_integrej_klim_mainas.pdf (accessed on 30 June 2025).
- Shepherd, M. Managing manures in organic farming. Proc. Br. Soc. Anim. Sci. 2003, 2003, 240. [Google Scholar] [CrossRef]
- Giamouri, E.; Zisis, F.; Mitsiopoulou, C.; Christodoulou, C.; Pappas, A.C.; Simitzis, P.; Kamilaris, C.; Galliou, F.; Manios, T.; Mavrommatis, A.; et al. Sustainable Strategies for Greenhouse Gas Emission Reduction in Small Ruminants Farming. Sustainability 2023, 15, 4118. [Google Scholar] [CrossRef]
- Ronga, D.; Mantovi, P.; Pacchioli, M.T.; Pulvirenti, A.; Bigi, F.; Allesina, G.; Pedrazzi, S.; Tava, A.; Prà, A.D. Combined Effects of Dewatering, Composting and Pelleting to Valorize and Delocalize Livestock Manure, Improving Agricultural Sustainability. Agronomy 2020, 10, 661. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Tsai, W. Valorization of Value-Added Resources from the Anaerobic Digestion of Swine-Raising Manure for Circular Economy in Taiwan. Fermentation 2020, 6, 81. [Google Scholar] [CrossRef]
- Meester, S.D.; Demeyer, J.; Velghe, F.; Peene, A.; Langenhove, H.V.; Dewulf, J. The environmental sustainability of anaerobic digestion as a biomass valorization technology. Bioresour. Technol. 2012, 121, 396. [Google Scholar] [CrossRef]
- Li, L.; Awada, T.; Shi, Y.; Jin, V.L.; Kaiser, M. Global Greenhouse Gas Emissions From Agriculture: Pathways to Sustainable Reductions. Glob. Chang. Biol. 2024, 31, e70015. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, Y.; Duan, W.; Qiao, C.; Shen, Q.; Li, R. Microbial community composition turnover and function in the mesophilic phase predetermine chicken manure composting efficiency. Bioresour. Technol. 2020, 313, 123658. [Google Scholar] [CrossRef]
- Venczel, M.Z.; Powers, S.E. Anaerobic Digestion and Related Best Management Practices: Utilizing Life Cycle Assessment; American Society of Agricultural and Biological Engineers: Pittsburgh, PA, USA, 2010. [Google Scholar] [CrossRef]
- Woolery, S.; Osei, E.; Yu, M.; Güney, S.; Lovell, A.C.; Jafri, H. The Carbon Footprint of a 5000-Milking-Head Dairy Operation in Central Texas. Agriculture 2023, 13, 2109. [Google Scholar] [CrossRef]
- Nasiru, A.; Ibrahim, M.H.; Ismail, N. Nitrogen losses in ruminant manure management and use of cattle manure vermicast to improve forage quality. Int. J. Recycl. Org. Waste Agric. 2014, 3, 57. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Yang, T.; Liu, Y.; Zheng, T.; Zheng, C. Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar 2023, 5, 3. [Google Scholar] [CrossRef]
- Nielsen, O.-K.; Plejdrup, M.S.; Hjelgaard, K.; Nielsen, M.; Winther, M.; Mikkelsen, M.H.; Albrektsen, R.; Fauser, P.; Hoffmann, L.; Gyldenkærne, S. Projection of SO2, NOx, NMVOC, NH3 and particle emissions—2012–2035. Aarhus University, DCE-Danish Centre for Environment and Energy. Sci. Rep. DCE-Dan. Cent. Environ. Energy 2013, No. 81. Available online: http://dce2.au.dk/pub/SR81.pdf (accessed on 26 September 2025).
- Nielsen, O.-K.; Plejdrup, M.S.; Winther, M.; Hjelgaard, K.H.; Nielsen, M.; Mikkelsen, M.H.; Albrektsen, R.; Andersen, T.A.; Gyldenkærne, S. Projection of Greenhouse Gases 2022–2040. Aarhus University, DCE—Danish Centre for Environment and Energy. Sci. Rep. DCE Dan. Cent. Environ. Energy. 2023, No. 572. Available online: https://dce.au.dk/fileadmin/dce.au.dk/Udgivelser/Videnskabelige_rapporter_500-599/SR572.pdf (accessed on 27 September 2025).
- Olesen, J.E.; Christensen, S.; Jensen, P.R.; Schultz, E. AgriFoodTure: Roadmap for Sustainable Transformation of the Danish Agri-Food System. SEGES P/S, 2021. Rasmussen, C., Kjer, K.H., Kristensen, T.N., Gade, J., Haslund, S., Henriksen, C.B., Persson, M., Kryger, K., Henricksen, L., Eds.; Available online: https://vbn.aau.dk/ws/portalfiles/portal/429768279/AgriFoodTure_roadmap_for_sustainable_transformation_of_the_danish_agrifood_system.pdf (accessed on 26 September 2025).
- Romera, A.J.; Cichota, R.; Beukes, P.C.; Gregorini, P.; Snow, V.; Vogeler, I. Combining Restricted Grazing and Nitrification Inhibitors to Reduce Nitrogen Leaching on New Zealand Dairy Farms. J. Environ. Qual. 2016, 46, 72. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Wang, H.; Hu, S.; Jiao, J. Effects of Afforestation Restoration on Soil Potential N2O Emission and Denitrifying Bacteria After Farmland Abandonment in the Chinese Loess Plateau. Front. Microbiol. 2019, 10, 262. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.-A.; Lee, C.; Meinen, R.J.; Montes, F.; Ott, T.; Firkins, J.L.; Rotz, A.; Dell, C.J.; Adesogan, C.; et al. Mitigation of Greenhouse Gas Emissions in Livestock Production—A Review of Technical Options for Non-CO2 Emissions. 2013, 177. Available online: https://www.fao.org/4/i3288e/i3288e00.htm (accessed on 14 August 2025).
- Hernandez-Ramirez, G.; Ruser, R.; Kim, D. How does soil compaction alter nitrous oxide fluxes? A meta-analysis. Soil Tillage Res. 2021, 211, 105036. [Google Scholar] [CrossRef]
- Conant, R.T.; Paustian, K. Potential soil carbon sequestration in overgrazed grassland ecosystems. Glob. Biogeochem. Cycles 2002, 16, 1143. [Google Scholar] [CrossRef]
- Bhat, R.; Infascelli, F. The Path to Sustainable Dairy Industry: Addressing Challenges and Embracing Opportunities. Sustainability 2025, 17, 3766. [Google Scholar] [CrossRef]
- Ivanovich, C.; Sun, T.; Gordon, D.R.; Ocko, I. Future warming from global food consumption. Nat. Clim. Chang. 2023, 13, 297. [Google Scholar] [CrossRef]
- Hasukawa, H.; Inoda, Y.; Toritsuka, S.; Sudo, S.; Oura, N.; Sano, T.; Shirato, Y.; Yanai, J. Effect of Paddy-Upland Rotation System on the Net Greenhouse Gas Balance as the Sum of Methane and Nitrous Oxide Emissions and Soil Carbon Storage: A Case in Western Japan. Agriculture 2021, 11, 52. [Google Scholar] [CrossRef]
- Jalal, H.; Sucu, E.; Cavallini, D.; Giammarco, M.; Akram, M.Z.; Karkar, B.; Gao, M.; Pompei, L.; Eduardo, J.; Prasinou, P.; et al. Rumen fermentation profile and methane mitigation potential of mango and avocado byproducts as feed ingredients and supplements. Sci. Rep. 2025, 15, 16164. [Google Scholar] [CrossRef]
- Scialabba, N.E.-H.; Müller-Lindenlauf, M. Organic agriculture and climate change. Renew. Agric. Food Syst. 2010, 25, 158–169. [Google Scholar] [CrossRef]
- Yona, L.; Cashore, B.; Jackson, R.B.; Ometto, J.; Bradford, M.A. Refining national greenhouse gas inventories. Ambio 2020, 49, 1581–1586. [Google Scholar] [CrossRef] [PubMed]
- Lymperatou, A. Aqueous Ammonia Soaking as a Pretreatment of Lignocellulosic Biomasses for Improving Manure-based Anaerobic Digestion; Technical University of Denmark: Kongens Lyngby, Denmark, 2017; Available online: https://orbit.dtu.dk/en/publications/aqueous-ammonia-soaking-as-a-pretreatment-of-lignocellulosic-biom (accessed on 27 September 2025).
- Biagini, D.; Lazzaroni, C. Eutrophication risk arising from intensive dairy cattle rearing systems and assessment of the potential effect of mitigation strategies. Agric. Ecosyst. Environ. 2018, 266, 76. [Google Scholar] [CrossRef]
- Hietala-Koivu, R.; Virkkunen, H.; Salminen, J.; Ekholm, P.; Riihimäki, J.; Laine, P.; Kirkkala, T. Assessment of agricultural water protection strategies at a catchment scale: Case of Finland. Reg. Environ. Chang. 2023, 24, 2. [Google Scholar] [CrossRef]
- Vermersch, D.; Bonnieux, F.; Fouet, J.-P.; Rainelli, P. Economy Against Ecology: Modelling Manure Utilization in France. HAL (Le Centre Pour La Communication Scientifique Directe), 1990. Available online: https://hal.archives-ouvertes.fr/hal-02296152 (accessed on 28 September 2025).
- Martín-Marroquín, J.M.; Hidalgo, D. Livestock Waste: Fears and Opportunities. In The Handbook of Environmental Chemistry; Springer Nature: London, UK, 2014. [Google Scholar] [CrossRef]
- Staniszewski, J.; Muder, A. Structural and weather-related factors of the sustainable intensification process in agriculture of the European Union regions. Agric. Econ. (Zemědělská Ekon.) 2023, 69, 385. [Google Scholar] [CrossRef]
- Sidhoum, A.A.; Vrachioli, M.; Guesmi, B.; Roig, J.M.G. The role of rational decisions in technical inefficiency analysis of Spanish pig farms: The influence of water use management. Resour. Conserv. Recycl. 2023, 199, 107278. [Google Scholar] [CrossRef]
- Hernandez, V.M.; Møller, H.B.; Brask, M.; Weisbjerg, M.R.; Lund, P. The Influence of Fat Supplement and Roughage Type on Feces Composition and Methane Yield from Dairy Cows. In Proceedings of the Livestock, Climate Change and Food Security Conference, Madrid, Spain, 19–20 May 2014; Available online: http://animalchange.files.wordpress.com/2014/06/book_of_abstracts_updated.pdf (accessed on 28 September 2025).
- Bian, Z.; Tian, H.; Yang, Q.; Xu, R.; Pan, S.; Zhang, B. Production and application of manure nitrogen and phosphorus in the United States since 1860. Earth Syst. Sci. Data 2021, 13, 515. [Google Scholar] [CrossRef]
- Kozicka, M.; Jones, S.K.; Gotor, E.; Enahoro, D. Cross-scale trade-off analysis for sustainable development: Linking future demand for animal source foods and ecosystem services provision to the SDGs. Sustain. Sci. 2021, 17, 209. [Google Scholar] [CrossRef]
- Garcia Bouyssou, C.; Jensbye, L.G.; Jensen, J.D.; Yu, W. The Global Animal Food Market: Drivers and Challenges. Department of Food and Resource Economics, University of Copenhagen. IFRO Report Nr. 298, 2021. Available online: https://researchprofiles.ku.dk/da/publications/the-global-animal-food-market-drivers-and-challenges (accessed on 28 September 2025).
- Zhang, N.; Bai, Z.; Winiwarter, W.; Ledgard, S.F.; Luo, J.; Liu, J.; Guo, Y.; Ma, L. Reducing Ammonia Emissions from Dairy Cattle Production via Cost-Effective Manure Management Techniques in China. Environ. Sci. Technol. 2019, 53, 11840. [Google Scholar] [CrossRef] [PubMed]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Zhang, B.; Tian, H.; Lü, C.; Dangal, S.R.S.; Yang, J.; Pan, S. Global manure nitrogen production and application in cropland during 1860–2014: A 5 arcmin gridded global dataset for Earth system modeling. Earth Syst. Sci. Data 2017, 9, 667. [Google Scholar] [CrossRef]
Category of Farm Animals | Pasture | Solid Manure | Liquid-Manure | Manure Without Litter | Fresh Manure (Pasture) | Solid Manure | Liquid Manure | Manure Without Litter |
---|---|---|---|---|---|---|---|---|
Dairy cows * | x | x | x | - | 9.0 | 15.0 | 19.0 | - |
Dairy cow calves (up to 1 year old) | x | x | - | - | 4.2 | 7.0 | - | - |
Dairy cow young cattle (1–2 years old) | x | x | - | - | 6.6 | 11.0 | - | - |
Beef cattle calves (up to 1 year old) | x | x | - | - | 3.6 | 6.0 | - | - |
Beef young cattle (1–2 years old) | x | x | - | - | 6.0 | 10.0 | - | - |
Other bovine animals (over 2 years old) | x | x | - | - | 5.4 | 9.0 | - | - |
Sows and boars | - | x | x | - | - | 1.5 | 2.5 | - |
Piglets (up to 4 months old) | - | x | x | - | - | 0.4 | 0.65 | - |
Pigs for fattening (from 4 months old) | - | x | x | - | - | 1.2 | 2.2 | - |
Sheep | x | x | - | - | 1.5 | 2.4 | - | - |
Goats | x | x | - | - | 1.5 | 2.4 | - | - |
Horses | x | x | - | - | 5 | 10.0 | - | - |
Laying hens | x | x | - | x | 0.04 | 0.05 | - | 0.03 |
Broilers | - | x | - | - | - | 0.01 | - | - |
Geese | x | x | - | - | 0.03 | 0.04 | - | - |
Ducks | x | x | - | - | 0.05 | 0.06 | - | - |
Turkeys | x | x | - | - | 0.12 | 0.14 | - | - |
Deer | x | - | - | - | 1.2 | - | - | - |
Category of Farm Animals | CH4 Emission Factor from Manure Management, kg per Year per Animal (EF) | Average N Excretion, kg per Year per Animal (Nex) |
---|---|---|
Dairy cows * | 20.81 | 120.4 |
Cattle under 2 years old * | 1.13 | 19.9 |
Cattle over 2 years old * | 2.02 | 63.3 |
Pigs * | 2.15 | 10.3 |
Sheep | 0.19 | 15.30 |
Goats | 0.13 | 15.80 |
Horses | 1.56 | 44.00 |
Laying hens | 0.03 | 0.55 |
Broilers and others | 0.02 | 0.35 |
Turkeys | 0.09 | 1.64 |
Ducks | 0.02 | 0.58 |
Geese | 0.02 | 1.12 |
Deer | 0.22 | 12.00 |
Category of Farm Animals | Pasture | Solid Manure | Liquid Manure | Anaerobic Digester |
---|---|---|---|---|
Dairy cows | 0.05 | 0.35 | 0.43 | 0.18 |
Dairy cow calves up to 1 year old | 0.06 | 0.80 | - | 0.14 |
Dairy cow, young cattle 1–2 years old | 0.06 | 0.80 | - | 0.14 |
Beef cattle calves up to 1 year old | 0.79 | 0.21 | - | - |
Beef young cattle 1–2 years old | 0.79 | 0.21 | - | - |
Other cattle | 0.79 | 0.21 | - | - |
Sows and boars | - | 0.04 | 0.46 | 0.50 |
Piglets up to 4 months old | - | 0.04 | 0.46 | 0.50 |
Fattening and young breeding pigs over 4 months old | - | 0.04 | 0.46 | 0.50 |
Sheep | 0.38 | 0.62 | - | - |
Goats | 0.10 | 0.90 | - | - |
Horses | 0.35 | 0.65 | - | - |
Laying hens | 0.04 | 0.45 | - | 0.51 |
Broilers | - | 1 | - | - |
Geese | 0.29 | 0.71 | - | - |
Ducks | 0.32 | 0.69 | - | - |
Turkeys | 0.30 | 0.70 | - | - |
Deer | 1 | - | - | - |
Indicators | 2021 | 2022 | 2023 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2050/2023, % |
---|---|---|---|---|---|---|---|---|---|---|
Solid manure | 2370.4 | 2331.9 | 2119.4 | 2031.4 | 1982.3 | 1888.3 | 1774.4 | 1672.3 | 1601.0 | 76 |
Liquid manure | 1735.0 | 1742.8 | 1710.2 | 1790.9 | 2051.5 | 2242.4 | 2356.2 | 2425.0 | 2481.9 | 145 |
Fresh manure (pasture) | 821.2 | 808.5 | 779.7 | 744.0 | 723.3 | 699.5 | 675.3 | 654.1 | 637.4 | 82 |
Manure without litter | 91.7 | 90.3 | 91.4 | 92.1 | 93.3 | 94.5 | 95.6 | 96.7 | 97.9 | 107 |
Total | 5018.3 | 4973.5 | 4700.7 | 4658.4 | 4850.4 | 4924.7 | 4901.5 | 4848.1 | 4818.2 | 102 |
Structure of manure groups, in % | 2050–2023, % | |||||||||
Solid | 47 | 47 | 45 | 44 | 41 | 38 | 36 | 34 | 33 | −14 |
Liquid | 35 | 35 | 36 | 38 | 42 | 46 | 48 | 50 | 52 | 17 |
Fresh | 16 | 16 | 17 | 16 | 15 | 14 | 14 | 13 | 13 | −3 |
Without litter | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 |
Kinds of Emissions | 2021 | 2022 | 2025 | 2030 | 2035 | 2040 | 2045 | 2050 | 2050/2022, % |
---|---|---|---|---|---|---|---|---|---|
CH4 emissions from manure management | 105.2 | 108.6 | 105.6 | 112.0 | 115.7 | 116.1 | 114.9 | 113.6 | 105 |
Direct N2O emissions from manure management | 42.7 | 43.1 | 39.6 | 40.6 | 41.1 | 40.8 | 40.2 | 39.9 | 92 |
Indirect N2O emissions from manure management | 43.8 | 42.8 | 38.8 | 40.4 | 41.1 | 41.0 | 40.6 | 40.3 | 94 |
Direct N2O emissions from animal grazing | 52.4 | 52.9 | 49.2 | 48.4 | 47.3 | 46.1 | 45.1 | 44.3 | 84 |
Indirect N2O emissions from animal grazing | 10.4 | 10.5 | 9.7 | 9.5 | 9.3 | 9.1 | 8.9 | 8.7 | 83 |
Direct N2O emissions from manure applied to soil | 56.8 | 56.2 | 51.4 | 52.4 | 52.9 | 52.5 | 51.7 | 51.2 | 91 |
Indirect N2O emissions from manure applied to soil | 21.2 | 20.9 | 19.1 | 19.5 | 19.7 | 19.6 | 19.3 | 19.1 | 91 |
Total GHG emissions related to animal manure management | 332.6 | 335.1 | 313.5 | 322.9 | 327.2 | 325.1 | 320.6 | 317.1 | 95 |
Total GHG emissions from agriculture | 2245.3 | 2242.5 | 2160.0 | 2234.0 | 2269.3 | 2277.9 | 2277.2 | 2281.0 | 102 |
Total GHG emissions related to animal manure management, % of the total | 14.8 | 14.9 | 14.5 | 14.5 | 14.4 | 14.3 | 14.1 | 13.9 | −1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilvere, I.; Krievina, A.; Upite, I.; Nipers, A. Manure Production Projections for Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions. Agriculture 2025, 15, 2080. https://doi.org/10.3390/agriculture15192080
Pilvere I, Krievina A, Upite I, Nipers A. Manure Production Projections for Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions. Agriculture. 2025; 15(19):2080. https://doi.org/10.3390/agriculture15192080
Chicago/Turabian StylePilvere, Irina, Agnese Krievina, Ilze Upite, and Aleksejs Nipers. 2025. "Manure Production Projections for Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions" Agriculture 15, no. 19: 2080. https://doi.org/10.3390/agriculture15192080
APA StylePilvere, I., Krievina, A., Upite, I., & Nipers, A. (2025). Manure Production Projections for Latvia: Challenges and Potential for Reducing Greenhouse Gas Emissions. Agriculture, 15(19), 2080. https://doi.org/10.3390/agriculture15192080