Agronomic Performance of Cowpea Cultivars During the Second Cropping Season in Southwest Minas Gerais, Brazil
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gerrano, A.S.; Rensburg, W.S.J.V.; Mathew, I.; Shayanowako, A.I.T.; Bairu, M.W.; Venter, S.L.; Swart, W.; Mofokeng, A.; Mellem, J.; Labuschagne, M. Genotype and genotype x environment interaction effects on the grain yield performance of cowpea genotypes in dry land farming system in South Africa. Euphytica 2020, 216, 80. [Google Scholar] [CrossRef]
- Jayathilake, C.; Visvanathan, R.; Deen, A.; Bangamuwage, R.; Jayawardana, B.C.; Nammi, S.; Liyanage, R. Cowpea: An overview on its nutritional facts and health benefits. J. Sci. Food Agric. 2018, 98, 4793–4806. [Google Scholar] [CrossRef]
- Kulkarni, K.P.; Tayade, R.; Asekova, S.; Song, J.T.; Shannon, J.G.; Lee, J.D. Harnessing the potential of forage legumes, alfalfa, soybean, and cowpea for sustainable agriculture and global food security. Front. Plant Sci. 2018, 9, 1314. [Google Scholar] [CrossRef]
- Omomowo, O.I.; Babalola, O.O. Constraints and prospects of improving cowpea productivity to ensure food, nutritional security and environmental sustainability. Front. Plant Sci. 2021, 12, 751731. [Google Scholar] [CrossRef]
- Weng, Y.; Qin, J.; Eaton, S.; Yang, Y.; Ravelombola, W.S.; Shi, A. Evaluation of seed protein content in USDA cowpea germplasm. HortScience 2019, 54, 814–817. [Google Scholar] [CrossRef]
- Araújo, L.B.R.; Barroso Neto, A.M.; Bertini, C.H.C.M.; Lopes, L.S.; Gallao, M.I. Influence of the environment and production componentes on the protein contente of green cowpea grain. Rev. Cienc. Agron. 2021, 52, e20207251. [Google Scholar] [CrossRef]
- Tomaz, F.L.S.; Araújo, L.B.R.; Magalhães, C.H.C.; Vale, J.C.; Mano, A.R.O.; Rocha, M.M. Indication of cowpea cultivars for the production of dry grain in the state of Ceará. Rev. Cienc. Agron. 2022, 53, e20207802. [Google Scholar] [CrossRef]
- Silva, A.C.; Vasconcelos, P.L.R.; Melo, L.D.F.A.; Silva, V.S.G.; Melo Júnior, J.L.A.; Santana, M.B. Diagnóstico da produção de feijão-caupi no nordeste brasileiro. Rev. Univ. Vale Rio Verde 2018, 16, 1–5. [Google Scholar] [CrossRef]
- Melo, L.F.; Pinheiro, M.S.; Matos, R.F.; Dovale, J.C.; Bertini, C.H.C.M. GGE biplot analysis to recommend cowpea cultivars for green grain production. Rev. Caatinga 2020, 33, 321–331. [Google Scholar] [CrossRef]
- Valeriano, T.T.B.; Borges, R.M.; Almeida, F.S.; Silva Neto, O.F.; Santana, M.J.; Silva, K.A. Desempenho agronômico de cultivares de feijão-caupi em função da densidade de plantas. Rev. Inova Ciênc. Tecnol. 2019, 5, 12–17. [Google Scholar]
- Alves, S.M.; Menezes Júnior, J.A.N.; Rocha, M.M.; Silva, K.J.D.; Olibone, D. Adaptability, stability, and agronomic performance of cowpea lines in Mato Grosso, Brazil. Rev. Bras. Ciênc. Agrár. 2020, 15, 1–7. [Google Scholar] [CrossRef]
- Soratto, R.P.; Matoso, A.O.; Gilabel, A.P.; Fernandes, F.M.; Schwalbert, R.A.; Ciampitti, I.A. Agronomic optimal plant density for semiupright cowpea as a second crop in southeastern Brazil. Crop Sci. 2020, 60, 2695–2708. [Google Scholar] [CrossRef]
- CONAB (Companhia Nacional de Abastecimento). Acompanhamento da Safra Brasileira de Grãos: 8º Levantamento, Safra 2024/2025. Available online: https://www.conab.gov.br/info-agro/safras (accessed on 27 May 2025).
- Silva, M.B.O.; Carvalho, A.J.; Rocha, M.M.; Batista, P.S.C.; Santos Júnior, P.V.; Oliveira, S.M. Desempenho agronómico de genótipos de feijão-caupi. Rev. Ciênc. Agrár. 2018, 41, 1059–1066. [Google Scholar] [CrossRef]
- Franco, A.A.N.; Okumura, R.S.; Carvalho, A.J.; Rocha, M.M.; Ormond, A.T.S.; Cogo, F.D.; Queiroz, M.G.; Oliveira, S.M.; Mariano, D.C. Agronomic performance of cowpea cultivars in first crop in Southwest of Minas Gerais, Brazil. Cad. Pedagóg. 2024, 21, e5819. [Google Scholar] [CrossRef]
- Cruz, D.P.; Gravina, G.A.; Vivas, M.; Entringer, G.C.; Souza, Y.P.; Rocha, R.S.; Jaeggi, M.E.P.C.; Albuquerque, D.P.; Amaral Junior, A.T.; Gravina, L.M.; et al. Combined selection for adaptability, genotypic stability and cowpea yield from mixed models. Ciênc. Rural 2021, 51, e20200540. [Google Scholar] [CrossRef]
- Tatis, H.A.; Ayala, C.C.; Camach, M.E. Stability and phenotypic adaptability by AMMI analysis in cowpea beans (Vigna unguiculata (L.) Walp.). Rev. Ciênc. Agron. 2021, 52, e20207304. [Google Scholar] [CrossRef]
- Abiriga, F.; Ongom, P.O.; Rubaihayo, P.R.; Edema, R.; Gibson, P.T.; Dramadri, I.; Orawu, M. Harnessing genotype-by-environment interaction to determine adaptability of advanced cowpea lines to multiple environments in Uganda. J. Plant Breed. Crop Sci. 2020, 12, 131–145. [Google Scholar] [CrossRef]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- EMBRAPA (Empresa Brasileira de Pesquisa Agropecuária). Sistema Brasileiro de Classificação de Solos; Embrapa: Brasília, Brazil, 2018. [Google Scholar]
- CFSEMG (Comissão de Fertilidade do Solo do Estado de Minas Gerais). 5ª Aproximação: Recomendações Para o Uso de Corretivos e Fertilizantes em Minas Gerais; SBCS: Viçosa, Brazil, 1999. [Google Scholar]
- Vale, J.C.; Bertini, C.; Borém, A. Feijão-Caupi: Do Plantio à Colheita; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Shapiro, S.S.; Wilk, M.B. An analysys of variance test for normality (complete samples). Biometrika 1965, 52, 591–611. [Google Scholar] [CrossRef]
- Box, G.E.P. Non-normality and tests on variances. Biometrika 1953, 40, 318–335. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill Book Company: New York, NY, USA, 1960. [Google Scholar] [CrossRef]
- Banzatto, D.A.; Kronka, S.N. Experimentação Agrícola; FUNEP: Jaboticabal, Brazil, 2006. [Google Scholar]
- Scott, A.J.; Knott, M.A. A cluster analysis method for grouping means in the analysis of variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer analysis system to fixed effects split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Passos, A.R.; Silva, S.A.; Cruz, P.J.; Jacinto, P.; Rocha, M.M.; Cruz, E.M.O.; Rocha, M.A.C.; Bahia, H.F.; Saldanha, R.B. Divergência genética em feijão-caupi. Bragantia 2007, 66, 579–586. [Google Scholar] [CrossRef]
- Borém, A.; Miranda, G.V.; Fritsche Neto, R. Melhoramento de Plantas; UFV: Viçosa, Brazil, 2017. [Google Scholar]
- Sousa, M.B.; Silva, K.J.D.; Rocha, M.M.; Menezes Júnior, J.A.N.; Lima, L.R.L. Genotype by environment interaction in cowpea lines using GGE Biplot method. Rev. Caatinga 2018, 31, 64–71. [Google Scholar] [CrossRef]
- Pessoa, A.M.S.; Bertini, C.H.C.M.; Castro, E.B.L.; Freitas, L.M.; Araújo, L.B.R. Genetic parameters and selection indices of cowpea genotypes for green grain production. Rev. Caatinga 2023, 36, 310–319. [Google Scholar] [CrossRef]
Chemical Characteristics of Soil | 2021 | 2022 | 2023 | |||
---|---|---|---|---|---|---|
0–20 | 20–40 | 0–20 | 20–40 | 0–20 | 20–40 | |
pH (CaCl2) | 6.3 | 6.4 | 5.5 | 6.1 | 5.3 | 5.4 |
Organic matter (g dm−3) | 18 | 15 | 16 | 14 | 20 | 16 |
P (mg dm−3), resin | 25 | 13 | 70 | 35 | 78 | 49 |
K (mmolc dm−3), resin | 3.8 | 2.2 | 6.5 | 5.1 | 6.6 | 6.4 |
Ca (mmolc dm−3), resin | 48 | 39 | 19 | 15 | 22 | 21 |
Mg (mmolc dm−3), resin | 26 | 16 | 9 | 7 | 9 | 9 |
S (mg dm−3), calcium phosphate | 4 | 8 | 7 | 11 | 5 | 5 |
B (mg dm−3), hot water | 0.12 | 0.10 | 0.31 | 0.30 | 0.16 | 0.12 |
Cu (mg dm−3), DPTA | 0.54 | 0.58 | 0.88 | 0.64 | 1.38 | 1.32 |
Fe (mg dm−3), DPTA | 10 | 7 | 55 | 32 | 75 | 48 |
Mn (mg dm−3), DPTA | 1.50 | 0.88 | 4.88 | 2.66 | 5.40 | 3.84 |
Zn (mg dm−3), DPTA | 0.90 | 0.62 | 1.66 | 0.82 | 2.76 | 2.30 |
Al+3 (mmolc dm−3), KCl 1 mol L−1 | 1 | 1 | 1 | 1 | 1 | 1 |
H + Al (mmolc dm−3), SMP | 10 | 10 | 16 | 12 | 21 | 19 |
Sum of bases (mmolc dm−3) | 78 | 57 | 34 | 27 | 37 | 36 |
Base saturation (%) | 89 | 85 | 68 | 69 | 64 | 65 |
Cation exchange capacity (mmolc dm−3) | 88 | 67 | 50 | 39 | 58 | 55 |
Scale for Classifying the Size of Cowpea Plants | |
1 Erect | Short primary and secondary branches, with the insertion of secondary branches forming a right angle with the main branch |
2 Semi-erect | Short primary and secondary branches, with the insertion of secondary branches approximately perpendicular to the main branch. They generally do not touch the ground |
3 Semi prostrate | Medium-sized primary and secondary branches, with lower secondary branches touching the ground and tending to lean on vertical supports |
4 Prostate | Long primary and secondary branches, with lower secondary branches touching the ground and tending to lean on vertical supports |
Scale for classifying the degree of lodging of cowpea plants | |
1 | No lodging or broken main branch |
2 | From 1 to 5% lodging or with a broken main branch |
3 | From 6 to 10% lodging or with a broken main branch |
4 | From 11 to 20% lodging or with a broken main branch |
5 | Above 20% lodging or with a broken main branch |
Scale for classifying the cultivation value of cowpea plants | |
1 | Lines/cultivar without suitable characteristics for commercial cultivation |
2 | Plants with few suitable characteristics for commercial cultivation |
3 | Plants with most of the characteristics suitable for commercial cultivation |
4 | Plants with all the characteristics suitable for commercial cultivation |
5 | Plants with excellent characteristics for commercial cultivation |
Source of Variation | DF | Mean Squares | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
YIELD | TSM | PL | GP | GI | LOD | SIZE | DISEASES | CULT | ||
Cultivars (C) | 9 | 2,062,625.8 * | 2196.04 * | 3.671 * | 3.321 * | 778.283 * | 2.303 * | 3.807 * | 1.603 * | 6.071 * |
Years (Y) | 2 | 7,053,536.0 * | 1444.96 * | 37.491 * | 75.633 * | 99.624 * | 8.887 * | 3.440 * | 13.580 * | 3.660 * |
C × Y | 18 | 190,235.8 * | 327.64 * | 1.983 * | 2.783 * | 11.848 ns | 0.916 * | 0.581 * | 0.499 ns | 0.482 * |
Block | 4 | 171,388.4 ns | 252.90 ns | 0.705 ns | 2.065 ns | 22.094 ns | 0.290 ns | 1.517 * | 1.023 ns | 0.227 ns |
Residue | 116 | 73,835.5 | 158.58 | 1.213 | 1.001 | 8.716 | 0.376 | 0.279 | 0.520 | 0.247 |
Mean | 1280.7 | 163.8 | 16.8 | 10.3 | 70.3 | 2.4 | 3.0 | 6.6 | 2.7 | |
CV (%) | 21.2 | 7.7 | 6.5 | 9.7 | 4.2 | 25.6 | 17.6 | 11.0 | 18.3 |
Cultivars | LOD | SIZE | CULT | Disease | GI | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |||
Xique-Xique | 1.8 Aa * | 2.4 Aa | 2.0 Aa | 2.1 A | 2.6 Aa | 2.8 Aa | 2.5 Aa | 2.6 A | 3.6 Aa | 3.6 Aa | 3.6 Aa | 3.6 A | 6.0 A | 70.6 B |
Nova Era | 2.2 Ba | 2.2 Aa | 1.8 Aa | 2.1 A | 2.4 Aa | 2.6 Aa | 2.6 Aa | 2.5 A | 3.2 Aa | 3.4 Aa | 3.4 Aa | 3.3 A | 6.5 A | 70.5 A |
Tumucumaque | 3.0 Bb | 2.4 Ab | 1.6 Aa | 2.3 A | 3.4 Bb | 1.8 Aa | 2.8 Ab | 2.7 A | 3.0 Aa | 3.6 Aa | 3.2 Aa | 3.3 A | 6.3 A | 70.0 A |
Pajeú | 2.0 Aa | 3.2 Bb | 2.4 Ba | 2.5 B | 4.0 Cb | 2.7 Aa | 3.3 Ba | 3.3 B | 2.0 Bb | 3.4 Aa | 3.2 Aa | 2.9 B | 6.5 A | 68.3 C |
Imponente | 2.4 Ba | 2.6 Aa | 2.4 Ba | 2.5 B | 3.0 Aa | 2.3 Aa | 3.0 Ba | 2.8 A | 2.8 Aa | 2.4 Ba | 2.8 Ba | 2.7 C | 7.0 B | 72.4 A |
Guariba | 2.6 Ba | 3.4 Bb | 2.6 Ba | 2.9 B | 3.2 Bb | 2.4 Aa | 3.2 Bb | 2.9 A | 2.0 Bb | 2.8 Ba | 2.6 Ba | 2.5 C | 6.5 A | 72.6 A |
Cauamé | 1.8 Aa | 2.6 Ab | 1.8 Aa | 2.1 A | 3.4 Ba | 2.8 Aa | 3.4 Ba | 3.2 B | 2.8 Ab | 3.6 Aa | 2.8 Bb | 3.1 B | 6.2 A | 70.8 B |
Rouxinol | 1.8 Aa | 4.0 Bc | 3.0 Bb | 2.9 B | 4.0 Ca | 3.8 Ba | 3.6 Ba | 3.8 C | 1.8 Ba | 2.2 Ba | 2.2 Ca | 2.1 D | 6.8 B | 64.3 D |
Itaim | 1.4 Aa | 2.6 Ab | 1.4 Aa | 1.8 A | 2.4 Aa | 2.4 Aa | 2.4 Aa | 2.4 A | 2.2 Ba | 2.6 Ba | 2.2 Ca | 2.3 D | 6.9 B | 72.9 A |
Marataoã | 2.4 Ba | 3.4 Bb | 2.6 Ba | 2.8 B | 4.0 Ca | 3.6 Ba | 3.8 Ba | 3.8 C | 1.0 Cb | 2.2 Ba | 1.4 Db | 1.5 E | 6.9 B | 64.6 D |
Mean | 2.1 a | 2.9 b | 2.2 a | 3.2 b | 2.7 a | 3.0 b | 2.4 c | 2.9 a | 2.7 b | Years | ||||
2021 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 6.9 B | 68.7 B |
2022 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 6.0 A | 71.4 A |
2023 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | 6.8 A | 70.8 B |
Cultivars | YIELD | TSM | PL | GP | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | 2021 | 2022 | 2023 | Mean | |
kg ha−1 | g | cm | unit | |||||||||||||
Xique-Xiq | 1666 Ab * | 2036 Aa | 2267 Aa | 1990 A | 147 Bb | 177 Aa | 160 Bb | 161 B | 16.1 Aa | 17.5 Aa | 17.3 Ba | 17.0 A | 9.1 Aa | 10.3 Ba | 10.1 Ba | 9.8 B |
Nova Era | 1167 Bb | 1889 Aa | 1778 Ba | 1611 B | 174 Aa | 174 Aa | 180 Aa | 176 A | 15.1 Bb | 16.7 Aa | 16.4 Ba | 16.1 B | 9.3 Ab | 10.1 Bb | 11.1 Ba | 10.2 B |
Tumucu. | 1286 Ba | 1538 Ba | 1667 Ba | 1497 B | 177 Aa | 161 Ba | 177 Aa | 172 A | 16.8 Aa | 16.7 Aa | 17.4 Ba | 17.0 A | 9.2 Ab | 10.9 Ba | 10.1 Ba | 10.1 B |
Pajeú | 570 Cb | 1658 Aa | 1889 Ba | 1372 B | 131 Bb | 158 Ba | 154 Ba | 148 C | 15.8 Bb | 16.5 Ab | 18.5 Aa | 17.0 A | 8.9 Ac | 10.3 Bb | 12.4 Aa | 10.5 A |
Imponente | 1061 Ba | 1424 Ba | 1298 Ca | 1261 C | 171 Ab | 191 Aa | 175 Ab | 179 A | 16.6 Ab | 17.7 Aa | 18.5 Aa | 17.6 A | 9.4 Aa | 10.4 Ba | 10.5 Ba | 10.1 B |
Guariba | 735 Cb | 1497 Ba | 1461 Ca | 1231 C | 172 Aa | 176 Aa | 172 Aa | 173 A | 15.5 Ba | 16.3 Aa | 16.5 Ba | 16.1 B | 8.2 Ab | 10.1 Ba | 10.7 Ba | 9.7 B |
Cauamé | 781 Cb | 1512 Ba | 1388 Ca | 1227 C | 142 Ba | 159 Ba | 155 Ba | 149 C | 16.8 Aa | 17.2 Aa | 17.2 Ba | 17.1 A | 9.4 Aa | 10.3 Ba | 11.0 Ba | 10.2 B |
Rouxinol | 397 Db | 1346 Ba | 1234 Ca | 992 D | 139 Ba | 157 Ba | 152 Ba | 152 C | 15.9 Ab | 18.2 Aa | 17.9 Aa | 17.4 A | 9.3 Ab | 12.1 Aa | 12.4 Aa | 11.3 A |
Itaim | 622 Cb | 1148 Ba | 1108 Ca | 959 D | 166 Aa | 167 Ba | 179 Aa | 171 A | 15.1 Bb | 17.3 Aa | 17.8 Aa | 16.7 A | 8.4 Ab | 12.1 Aa | 11.6 Aa | 10.7 A |
Marataoã | 196 Dc | 1190 Ba | 612 Db | 666 E | 153 Ba | 149 Ba | 155 Ba | 152 C | 15.0 Bb | 16.2 Ab | 18.3 Aa | 16.5 B | 8.1 Ab | 11.3 Aa | 12.6 Aa | 10.7 A |
Mean | 848 b | 1524 a | 1470 a | 157 b | 167 a | 166 a | 15.9 c | 17.0 b | 17.6 a | 8.9 c | 10.8 b | 11.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franco, A.A.N.; Okumura, R.S.; Arantes, L.P.; Cogo, F.D.; Pimenta, S.; Mariano, D.d.C.; Carvalho, A.J.d.; Gonçalves, A.C.P.; Siqueira, M.V.B.M. Agronomic Performance of Cowpea Cultivars During the Second Cropping Season in Southwest Minas Gerais, Brazil. Agriculture 2025, 15, 2055. https://doi.org/10.3390/agriculture15192055
Franco AAN, Okumura RS, Arantes LP, Cogo FD, Pimenta S, Mariano DdC, Carvalho AJd, Gonçalves ACP, Siqueira MVBM. Agronomic Performance of Cowpea Cultivars During the Second Cropping Season in Southwest Minas Gerais, Brazil. Agriculture. 2025; 15(19):2055. https://doi.org/10.3390/agriculture15192055
Chicago/Turabian StyleFranco, Antônio Augusto Nogueira, Ricardo Shigueru Okumura, Letícia Priscilla Arantes, Franciane Diniz Cogo, Samy Pimenta, Daiane de Cinque Mariano, Abner José de Carvalho, Ana Carolina Petri Gonçalves, and Marcos Vinicius Bohrer Monteiro Siqueira. 2025. "Agronomic Performance of Cowpea Cultivars During the Second Cropping Season in Southwest Minas Gerais, Brazil" Agriculture 15, no. 19: 2055. https://doi.org/10.3390/agriculture15192055
APA StyleFranco, A. A. N., Okumura, R. S., Arantes, L. P., Cogo, F. D., Pimenta, S., Mariano, D. d. C., Carvalho, A. J. d., Gonçalves, A. C. P., & Siqueira, M. V. B. M. (2025). Agronomic Performance of Cowpea Cultivars During the Second Cropping Season in Southwest Minas Gerais, Brazil. Agriculture, 15(19), 2055. https://doi.org/10.3390/agriculture15192055