Enhancing Agroecological Resilience in Arid Regions: A Review of Shelterbelt Structure and Function
Abstract
1. Background
2. Review Methodology
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Synthesis
- Relevant data were extracted from each included study using a standardized form capturing:
- Study characteristics: author(s), year, location, study type (field, model, experiment)
- Study characteristics: author(s), year, location, study type (field, model, experiment)
- Shelterbelt structural parameters: porosity, height, width, orientation, species composition
- Functional outcomes: wind speed reduction, soil erosion control, microclimatic changes, crop yield improvements
- Methodologies used: field measurements, wind tunnel experiments, CFD modeling, remote sensing
- Key findings and conclusions
- The extracted data were synthesized thematically to address the review’s objectives. Themes included:
- Wind flow dynamics and porosity effects
- Microclimatic modifications and water conservation
- Soil erosion mechanisms and control
- Crop yield and quality improvements
- Additional ecosystem services (biodiversity, carbon sequestration)
- Optimization frameworks and trade-offs
2.4. Quality Assessment and Critical Analysis
3. Protective Functions of Shelterbelts: Linking Structure to Agroecosystem Processes
3.1. Wind Speed Reduction and Flow Field Alteration
3.2. Suppression of Soil Aeolian Erosion
3.3. Modification of Microclimatic Factors
3.4. Enhancement of Crop Yield and Quality
3.5. Additional Ecosystem Co-Benefits
4. Structural Determinants of Shelterbelt Performance in Arid Regions
4.1. Porosity and Optical Porosity
4.2. Height (H): Scaling the Protected Zone
4.3. Width and Internal Complexity
4.4. Orientation to Prevailing Winds
4.5. Cross-Sectional Shape and Vertical Stratification
4.6. Species Composition and Functional Trade-Offs
5. Methodologies for Studying and Optimizing Structure
5.1. Field Investigation Methods for Shelterbelts
5.2. Controlled Investigation of Structural Parameters
5.3. Computational Fluid Dynamics (CFD) Simulations
5.4. Remote Sensing and GIS for Large-Scale Structural Assessment and Planning
6. Optimization Framework for Shelterbelt Design
6.1. Maximizing Wind Reduction Efficiency
6.2. Minimizing Water Consumption
6.3. Integrating Biodiversity and Soil Health Co-Benefits
6.4. Balancing Economic Costs and Returns
6.5. Navigating Trade-Offs and Synergies
6.6. Ensuring Long-Term Maintenance and Adaptive Management
6.7. Practical Framework for Windbreak Design
7. Technical Recommendations for Windbreak Construction
- (1)
- Match windbreak purpose to design strategy.
- (2)
- Optimize belt width and spacing.
- (3)
- Select species based on time horizon and water constraints.
- (4)
- Incorporate adaptive management measures.
8. Limitations and Risks of Shelterbelt Systems
- (1)
- High establishment and maintenance costs.
- (2)
- Competition with crops for water and land resources.
- (3)
- Ecological and pest-related risks.
- (4)
- Vulnerability to climatic extremes and natural disturbances.
- (5)
- Knowledge gaps and lack of region-specific design guidelines.
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reimer, A.; Thompson, A.; Prokopy, L.S.; Arbuckle, J.G.; Genskow, K.; Jackson-Smith, D.; Lynne, G.; McCann, L.; Morton, L.W.; Nowak, P. People, place, behavior, and context: A research agenda for expanding our understanding of what motivates farmers’ conservation behaviors. J. Soil Water Conserv. 2014, 69, 57A–61A. [Google Scholar] [CrossRef]
- Gaur, M.K.; Squires, V.R. Geographic extent and characteristics of the world’s arid zones and their peoples. In Climate Variability Impacts on Land Use and Livelihoods in Drylands; Springer: Berlin/Heidelberg, Germany, 2017; pp. 3–20. [Google Scholar]
- Rhodes, C.J. Soil erosion, climate change and global food security: Challenges and strategies. Sci. Prog. 2014, 97, 97–153. [Google Scholar] [CrossRef]
- Hagen, L.J. Evaluation of the Wind Erosion Prediction System (WEPS) erosion submodel on cropland fields. Environ. Model. Softw. 2004, 19, 171–176. [Google Scholar] [CrossRef]
- Saleem, A.; Anwar, S.; Nawaz, T.; Fahad, S.; Saud, S.; Ur Rahman, T.; Khan, M.N.R.; Nawaz, T. Securing a sustainable future: The climate change threat to agriculture, food security, and sustainable development goals. J. Umm Al-Qura Univ. Appl. Sci. 2024, 11, 595–611. [Google Scholar] [CrossRef]
- Warner, T.; Gad-el-Hak, M. Weather-Related Disasters in Arid Lands; Cambridge University Press: Cambridge, UK, 2008; pp. 377–426. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Ahmadzai, H.; Tutundjian, S.; Elouafi, I. Policies for sustainable agriculture and livelihood in marginal lands: A review. Sustainability 2021, 13, 8692. [Google Scholar] [CrossRef]
- Rashid, M.; Gani, G. Reimagining the Future of Sustainable Agriculture in South Asia: Integrating Ecological Resilience, Technological Innovation, and Inclusive Policy Reform for Transformative Agri-Systems. In Precision Agriculture and Climate-Resilient Farming: Artificial Intelligence, IoT, and Blockchain for Sustainable Agriculture; Deep Science Publishing: San Francisco, CA, USA, 2025; Volume 118. [Google Scholar]
- Brandle, J.R.; Hodges, L.; Zhou, X.H. Windbreaks in North American agricultural systems. Agrofor. Syst. 2004, 61, 65–78. [Google Scholar] [CrossRef]
- Nair, P.R.; Kumar, B.M.; Nair, V.D. Agroforestry systems in the temperate zone. In An Introduction to Agroforestry: Four Decades of Scientific Developments; Springer: Berlin/Heidelberg, Germany, 2022; pp. 195–232. [Google Scholar]
- Cleugh, H. Effects of windbreaks on airflow, microclimates and crop yields. Agrofor. Syst. 1998, 41, 55–84. [Google Scholar] [CrossRef]
- Enescu, C.M.; Mircea, M.; Ilie, L.; Lucian, D.; Cristinel, C.; Gabriel, M. Agricultural benefits of shelterbelts and windbreaks: A bibliometric analysis. Agriculture 2025, 15, 1204. [Google Scholar] [CrossRef]
- Zobeck, T.M.; Van Pelt, R.S. Wind erosion. In Soil Management: Building a Stable Base for Agriculture; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011; pp. 209–227. [Google Scholar]
- Nuberg, I.; Bennell, M.; George, B. Trees protecting dryland crops and soil. In Agroforestry for Natural Resource Management; CSIRO Publishing: Collingwood, Australia, 2009; pp. 69–85. [Google Scholar]
- Cai, X.; Henderson, M.; Wang, L.; Su, Y.; Liu, B. Shelterbelt structure and crop protection from increased typhoon activity in Northeast China. Agriculture 2021, 11, 995. [Google Scholar] [CrossRef]
- Kort, J. 9. Benefits of windbreaks to field and forage crops. Agric. Ecosyst. Environ. 1988, 22, 165–190. [Google Scholar] [CrossRef]
- Giller, K.E. Nitrogen Fixation in Tropical Cropping Systems; Cabi: Wallingford, UK, 2001. [Google Scholar]
- Wang, J.; Patruno, L.; Chen, Z.; Yang, Q.; Tamura, Y. Windbreak effectiveness of single and double-arranged shelterbelts: A parametric study using large eddy simulation. Forests 2024, 15, 1760. [Google Scholar] [CrossRef]
- Zhou, X.; Brandle, J.R.; Mize, C.; Takle, E. The relationship of three-dimensional structure to shelterbelt function: A theoretical hypothesis. In Ecological Basis of Agroforestry; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Kovalenko, I.; Kyrylchuk, K.; Klymenko, H.; Yaroshchuk, S.; Yaroshchuk, R.; Kovalenko, N.; Skyba, O. Influence of tree-crown density on dominant plant species of the herb-shrub stratum in the zone of mixed forests. Biosyst. Divers. 2023, 31, 382–387. [Google Scholar] [CrossRef]
- Szigeti, N.; Frank, N.; Vityi, A. The multifunctional role of shelterbelts in intensively managed agricultural land–Silvoarable agroforestry in Hungary. Acta Silv. Lignaria Hung. Int. J. For. Wood Environ. Sci. 2020, 16, 19–38. [Google Scholar] [CrossRef]
- Rempel, J. Costs, Benefits, and Barriers to the Adoption and Retention of Shelterbelts in Prairie Agriculture as Identified by Saskatchewan Producers. Ph.D. Thesis, University of Saskatchewan, Saskatoon, SK, Canada, 2014. [Google Scholar]
- Chandewar, N. Agroforestry and Sustainable Land Management; Addition Publishing House: Bhopal, India, 2025. [Google Scholar]
- Lin, C.-L.; Tawhai, M.H.; Mclennan, G.; Hoffman, E.A. Computational fluid dynamics. IEEE Eng. Med. Biol. Mag. 2009, 28, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ding, F.; Kareem, A.; Wan, J. Aerodynamic tailoring of structures using computational fluid dynamics. Struct. Eng. Int. 2019, 29, 26–39. [Google Scholar] [CrossRef]
- Tu, J.; Yeoh, G.H.; Liu, C.; Tao, Y. Computational Fluid Dynamics: A Practical Approach; Elsevier: Amsterdam, The Netherlands, 2023. [Google Scholar]
- Mize, C.; Brandle, J.R.; Schoeneberger, M.; Bentrup, G. Ecological development and function of shelterbelts in temperate North America. In Toward Agroforestry Design: An Ecological Approach; Springer: Berlin/Heidelberg, Germany, 2008; pp. 27–54. [Google Scholar]
- Wang, H.; Takle, E.S.; Shen, J. Shelterbelts and windbreaks: Mathematical modeling and computer simulations of turbulent flows. Annu. Rev. Fluid Mech. 2001, 33, 549–586. [Google Scholar] [CrossRef]
- Aili, A.; Xu, H.; Waheed, A.; Bakayisire, F.; Xie, Y. Synergistic windbreak efficiency of desert vegetation and oasis shelter forests. PLoS ONE 2024, 19, e0312876. [Google Scholar] [CrossRef] [PubMed]
- Brandle, J.R.; Takle, E.; Zhou, X. Windbreak practices. North American agroforestry. In Integrated Science and Practice; American Society of Agronomy: Madison, WI, USA, 2021; pp. 89–126. [Google Scholar]
- Sun, Q.; Zheng, B.; Liu, T.; Zhu, L.; Hao, X.; Han, Z. The optimal spacing interval between principal shelterbelts of the farm-shelter forest network. Environ. Sci. Pollut. Res. 2022, 29, 12680–12693. [Google Scholar] [CrossRef]
- Ma, R.; Wang, J.; Qu, J.; Liu, H. Effectiveness of shelterbelt with a non-uniform density distribution. J. Wind. Eng. Ind. Aerodyn. 2010, 98, 767–771. [Google Scholar] [CrossRef]
- Terziev, A.; Bode, F.; Zlateva, P.; Pichurov, G.; Ivanov, M.; Denev, J.; Stankov, B. Numerical Study on Tree Belt Impact on Wind Shear on Agricultural Land. Appl. Sci. 2025, 15, 7450. [Google Scholar] [CrossRef]
- Heisler, G.M.; Dewalle, D.R. 2. Effects of windbreak structure on wind flow. Agric. Ecosyst. Environ. 1988, 22, 41–69. [Google Scholar] [CrossRef]
- Eichmanns, C.; Schüttrumpf, H. A Nature-Based Solution for Coastal Protection: Wind Tunnel Investigations on the Influence of Sand-Trapping Fences on Sediment Accretion. Front. Built Environ. 2022, 8, 878197. [Google Scholar] [CrossRef]
- Potashkina, Y.N.; Koshelev, A.V. Impact of field-protective forest belts on the microclimate of agroforest landscape in the zone of chestnut soils of the Volgograd region. Forests 2022, 13, 1892. [Google Scholar] [CrossRef]
- Morgan, R. Wind erosion control. In Slope Stabilization and Erosion Control: A Bioengineering Approach; Taylor & Francis: Abingdon, UK, 2003; pp. 203–232. [Google Scholar]
- Plate, E.J. The aerodynamics of shelter belts. Agric. Meteorol. 1971, 8, 203–222. [Google Scholar] [CrossRef]
- Giebel, G.; Paulsen, U.S.; Bange, J.; la Cour-Harbo, A.; Reuder, J.; Mayer, S.; van der Kroonenberg, A.; Mølgaard, J. Autonomous Aerial Sensors for Wind Power Meteorology-a Pre-Project; Danmarks Tekniske Universitet, Risø Nationallaboratoriet for Bæredygtig Energi: Roskilde, Denmark, 2012. [Google Scholar]
- Zou, X.; Li, H.; Kang, L.; Zhang, C.; Jia, W.; Gao, Y.; Zhang, J.; Yang, Z.; Zhang, M.; Xu, J. Soil wind erosion rate on rough surfaces: A dynamical model derived from an invariant pattern of the shear-stress probability density function of the soil surface. Catena 2022, 219, 106633. [Google Scholar] [CrossRef]
- Field, J.P.; Breshears, D.D.; Whicker, J.J. Toward a more holistic perspective of soil erosion: Why aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Res. 2009, 1, 9–17. [Google Scholar] [CrossRef]
- Hong, C.; Liu, C.; Zou, X.; Li, H.; Kang, L.; Liu, B.; Li, J. Wind erosion rate for vegetated soil cover: A prediction model based on surface shear strength. Catena 2020, 187, 104398. [Google Scholar] [CrossRef]
- Wegner, G.I. Payments for ecosystem services (PES): A flexible, participatory, and integrated approach for improved conservation and equity outcomes. Environ. Dev. Sustain. 2016, 18, 617–644. [Google Scholar] [CrossRef]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Yuan, W.; Zhu, N.; Zhang, L.; Tong, R.; Miao, Y.; Zhou, F.; Wang, G.G.; Wu, T. Three-dimensional aerodynamic structure estimation and wind field simulation for wide tree shelterbelts. For. Ecol. Manag. 2024, 559, 121813. [Google Scholar] [CrossRef]
- He, C.; Shao, W. Numerical simulation of shelter effect assessment for single-row windbreaks on the periphery of oasis farmland. J. Arid. Environ. 2024, 222, 105165. [Google Scholar] [CrossRef]
- Baumgertel, A.; Lukić, S.; Caković, M.; Savić, R.; Bezdan, A.; Blagojević, B. Wind erosion, climate change, and shelterbelts. In Prevention and Management of Soil Erosion and Torrential Floods; IGI Global Scientific Publishing: Palmdale, PA, USA, 2022; pp. 154–175. [Google Scholar]
- Singh, R. Wind erosion. In Soil and Water Conservation Structures Design; Springer: Berlin/Heidelberg, Germany, 2023; pp. 297–322. [Google Scholar]
- Naorem, A.; Jayaraman, S.; Dang, Y.P.; Dalal, R.C.; Sinha, N.K.; Rao, C.S.; Patra, A.K. Soil constraints in an arid environment—Challenges, prospects, and implications. Agronomy 2023, 13, 220. [Google Scholar] [CrossRef]
- Barrocu, G.; Eslamian, S. Geomorphology and flooding. In Flood handbook; CRC Press: Boca Raton, FL, USA, 2022; pp. 23–54. [Google Scholar]
- Abbasi, H. Sand Dune Systems in Iran-Distribution and Activity; Philipps-Universität Marburg: Marburg, Germany, 2020. [Google Scholar]
- Lee, K.-S.; Seo, I.-H.; Yang, J.-E.; Lee, S.-P.; Jung, H.-G.; Chung, D.Y. Simple assessment of wind erosion depending on the soil texture and threshold wind velocity in reclaimed tidal flat land. Korean J. Agric. Sci. 2021, 48, 843–853. [Google Scholar] [CrossRef]
- Leguédois, S.; Ellis, T.W.; Hairsine, P.B.; Tongway, D.J. Sediment trapping by a tree belt: Processes and consequences for sediment delivery. Hydrol. Process. Int. J. 2008, 22, 3523–3534. [Google Scholar] [CrossRef]
- Wilkes, M.A.; Gittins, J.R.; Mathers, K.L.; Mason, R.; Casas-Mulet, R.; Vanzo, D.; Mckenzie, M.; Murray-Bligh, J.; England, J.; Gurnell, A. Physical and biological controls on fine sediment transport and storage in rivers. Wiley Interdiscip. Rev. Water 2019, 6, e1331. [Google Scholar] [CrossRef]
- Dunkerley, D. A review of the effects of throughfall and stemflow on soil properties and soil erosion. In Precipitation Partitioning by Vegetation: A Global Synthesis; Springer: Berlin/Heidelberg, Germany, 2020; pp. 183–214. [Google Scholar]
- Walker, I.J.; Nickling, W.G. Dynamics of secondary airflow and sediment transport over and in the lee of transverse dunes. Prog. Phys. Geogr. 2002, 26, 47–75. [Google Scholar] [CrossRef]
- Katul, G.G.; Oren, R.; Manzoni, S.; Higgins, C.; Parlange, M.B. Evapotranspiration: A process driving mass transport and energy exchange in the soil-plant-atmosphere-climate system. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Wang, F. Modelling sheltering effects of trees on reducing space heating in office buildings in a windy city. Energy Build. 2006, 38, 1443–1454. [Google Scholar] [CrossRef]
- Sharma, P.K.; Kumar, S. Soil temperature and plant growth. In Soil Physical Environment and Plant Growth: Evaluation and Management; Springer: Berlin/Heidelberg, Germany, 2023; pp. 175–204. [Google Scholar]
- Davarzani, H.; Smits, K.; Tolene, R.M.; Illangasekare, T. Study of the effect of wind speed on evaporation from soil through integrated modeling of the atmospheric boundary layer and shallow subsurface. Water Resour. Res. 2014, 50, 661–680. [Google Scholar] [CrossRef] [PubMed]
- Easterling, W.E.; Hays, C.J.; Easterling, M.M.; Brandle, J.R. Modelling the effect of shelterbelts on maize productivity under climate change: An application of the EPIC model. Agric. Ecosyst. Environ. 1997, 61, 163–176. [Google Scholar] [CrossRef]
- Medrano, H.; Tomás, M.; Martorell, S.; Escalona, J.-M.; Pou, A.; Fuentes, S.; Flexas, J.; Bota, J. Improving water use efficiency of vineyards in semi-arid regions. A review. Agron. Sustain. Dev. 2015, 35, 499–517. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Kilemo, D.B. The review of water use efficiency and water productivity metrics and their role in sustainable water resources management. Open Access Libr. J. 2022, 9, 1–21. [Google Scholar] [CrossRef]
- Ogwu, M.C.; Kosoe, E.A. Integrating Green Infrastructure into Sustainable Agriculture to Enhance Soil Health, Biodiversity, and Microclimate Resilience. Sustainability 2025, 17, 3838. [Google Scholar] [CrossRef]
- Biswas, P.; Mondal, S.; Maji, S.; Mondal, A.; Bandopadhyay, P. Microclimate modification in field crops: A way toward climate-resilience. In Climate-Resilient Agriculture, Vol 1: Crop Responses and Agroecological Perspectives; Springer: Berlin/Heidelberg, Germany, 2023; pp. 647–666. [Google Scholar]
- Kingra, P.K.; Kaur, H. Microclimatic modifications to manage extreme weather vulnerability and climatic risks in crop production. J. Agric. Phys. 2017, 17, 1–15. [Google Scholar]
- Armbrust, D.; Retta, A. Wind and sandblast damage to growing vegetation. Ann. Arid. Zone 2000, 39, 273–284. [Google Scholar]
- Gao, Q.; Zhao, P.; Zeng, X.; Cai, X.; Shen, W. A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress. Plant Cell Environ. 2002, 25, 1373–1381. [Google Scholar] [CrossRef]
- Lawson, T.; Vialet-Chabrand, S. Speedy stomata, photosynthesis and plant water use efficiency. New Phytol. 2019, 221, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Lawson, T.; von Caemmerer, S.; Baroli, I. Photosynthesis and stomatal behaviour. In Progress in Botany 72; Springer: Berlin/Heidelberg, Germany, 2010; pp. 265–304. [Google Scholar]
- Sudmeyer, R.; Crawford, M.; Meinke, H.; Poulton, P.; Robertson, M. Effect of artificial wind shelters on the growth and yield of rainfed crops. Aust. J. Exp. Agric. 2002, 42, 841–858. [Google Scholar] [CrossRef]
- Blum, A. Plant water relations, plant stress and plant production. In Plant Breeding for Water-Limited Environments; Springer: Berlin/Heidelberg, Germany, 2010; pp. 11–52. [Google Scholar]
- Fageria, N. Role of soil organic matter in maintaining sustainability of cropping systems. Commun. Soil Sci. Plant Anal. 2012, 43, 2063–2113. [Google Scholar] [CrossRef]
- Zhu, X.; Liu, W.; Chen, J.; Bruijnzeel, L.A.; Mao, Z.; Yang, X.; Cardinael, R.; Meng, F.-R.; Sidle, R.C.; Seitz, S. Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: A review of evidence and processes. Plant Soil 2020, 453, 45–86. [Google Scholar] [CrossRef]
- Sileshi, G.W.; Dagar, J.C.; Nath, A.J.; Kuntashula, E. Agroforestry as a climate-smart agriculture: Strategic interventions, current practices and policies. In Agroforestry for Sustainable Intensification of Agriculture in Asia and Africa; Springer: Berlin/Heidelberg, Germany, 2023; pp. 589–640. [Google Scholar]
- Bashir, D. Thatched Mat Windbreaks Influences on the Harmattan: Wind and Millet Production in the Sahel; The University of Wisconsin-Madison: Madison, WI, USA, 1990. [Google Scholar]
- Baldwin, C.S. 10. The influence of field windbreaks on vegetable and specialty crops. Agric. Ecosyst. Environ. 1988, 22–23, 191–203. [Google Scholar] [CrossRef]
- Mayrinck, R.C.; Laroque, C.P.; Amichev, B.Y.; Van Rees, K. Above-and below-ground carbon sequestration in shelterbelt trees in Canada: A review. Forests 2019, 10, 922. [Google Scholar] [CrossRef]
- Fonseka, D.; Jha, N.; Jeyakumar, P. Soil nutrient enrichment in pastoral systems through shelterbelts. J. Environ. Manag. 2025, 393, 126938. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; McCarl, B.; Ogle, S.; O’Mara, F.; Rice, C. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 789–813. [Google Scholar] [CrossRef]
- Lavrov, V.; Miroshnyk, N.; Grabovska, T.; Shupova, T. Forest shelter belts in organic agricultural landscape: Structure of biodiversity and their ecological role. Folia For. Pol. Ser. A For. 2021, 63, 48–64. [Google Scholar] [CrossRef]
- Ultsch, G.R. The ecology of overwintering among turtles: Where turtles overwinter and its consequences. Biol. Rev. 2006, 81, 339–367. [Google Scholar] [CrossRef]
- McCravy, K.W. A review of sampling and monitoring methods for beneficial arthropods in agroecosystems. Insects 2018, 9, 170. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, C.I.; Altieri, M.A. Plant biodiversity enhances bees and other insect pollinators in agroecosystems. A review. Agron. Sustain. Dev. 2013, 33, 257–274. [Google Scholar] [CrossRef]
- Aparin, B.; Sukhacheva, E.Y.; Zakharova, M.; Mingareeva, E.; Koshelev, A. Effect of Massive Forest Shelterbelts on Humus Content and Stock in Chernozems. Eurasian Soil Sci. 2024, 57, 2068–2080. [Google Scholar] [CrossRef]
- Hilty, J.A.; Keeley, A.T.; Lidicker, W.Z., Jr.; Merenlender, A.M. Corridor Ecology: Linking Landscapes for Biodiversity Conservation and Climate Adaptation; Island Press: Washington, DC, USA, 2019. [Google Scholar]
- Babu, A. Review of the role of the landscape approach in biodiversity conservation. Sustain. Biodivers. Conserv. 2023, 2, 61–86. [Google Scholar]
- Lawrence, M.; Jiang, Y. Porosity, pore size distribution, micro-structure. In Bio-Aggregates Based Building Materials: State-of-the-Art Report of the RILEM Technical Committee 236-BBM; Springer: Berlin/Heidelberg, Germany, 2017; pp. 39–71. [Google Scholar]
- Zhou, X.; Brandle, J.; Mize, C.; Takle, E. Three-dimensional aerodynamic structure of a tree shelterbelt: Definition, characterization and working models. Agrofor. Syst. 2005, 63, 133–147. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Li, S.; Askar, A.; Wang, H. Shelter efficiency of various shelterbelt configurations: A wind tunnel study. Atmosphere 2022, 13, 1022. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, P.; Zhang, L.; Wang, J.; Yu, M.; Zhou, X.; Wang, G.G. Relationships between shelter effects and optical porosity: A meta-analysis for tree windbreaks. Agric. For. Meteorol. 2018, 259, 75–81. [Google Scholar] [CrossRef]
- Tyndall, J.; Colletti, J. Mitigating swine odor with strategically designed shelterbelt systems: A review. Agrofor. Syst. 2007, 69, 45–65. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, Z.; Li, Q.; He, L.; Zhao, X.; Wang, L.; Han, D. Determine the Optimal Vegetation Type for Soil Wind Erosion Prevention and Control in the Alpine Sandy Land of the Gonghe Basin on the Qinghai Tibet Plateau. Forests 2023, 14, 2342. [Google Scholar] [CrossRef]
- Yu, Y.-P.; Zhang, K.-C.; An, Z.-S.; Wang, T.; Hu, F. The blocking effect of the sand fences quantified using wind tunnel simulations. J. Mt. Sci. 2020, 17, 2485–2496. [Google Scholar] [CrossRef]
- Antoine, M.; Alain, C.; David, R. Drivers of tree establishment in planted windbreaks and riparian buffers: A case study of farms in southern Quebec, Canada. Geoderma Regional. 2024, 37, e00788. [Google Scholar] [CrossRef]
- Dong, Z.; Luo, W.; Qian, G.; Wang, H. A wind tunnel simulation of the mean velocity fields behind upright porous fences. Agric. For. Meteorol. 2007, 146, 82–93. [Google Scholar] [CrossRef]
- McHenry, M. How farming and forestry converge: Enhancing the interface between agricultural production, and tree biomass/bioenergy systems to improve farm-scale productivity in Western Australia. In Bioenergy Systems, Biological Sources and Environmental Impact; Nova Science Publishers: Hauppauge, NY, USA, 2013; pp. 95–110. [Google Scholar]
- Lampartová, I.; Schneider, J.; Vyskot, I.; Rajnoch, M.; Litschmann, T. Impact of protective shelterbelt on microclimate characteristics. Ekológia 2015, 34, 101. [Google Scholar] [CrossRef]
- Packwood, A. Flow through porous fences in thick boundary layers: Comparisons between laboratory and numerical experiments. J. Wind. Eng. Ind. Aerodyn. 2000, 88, 75–90. [Google Scholar] [CrossRef]
- Suratman, M.N.; Brandle, J.R. Tree shelterbelts for sustainable agroforestry. In Agroforestry for Carbon and Ecosystem Management; Academic Press: Cambridge, MA, USA, 2024; pp. 97–107. [Google Scholar]
- Pandey, V.C.; Singh, K.; Singh, J.S.; Kumar, A.; Singh, B.; Singh, R.P. Jatropha curcas: A potential biofuel plant for sustainable environmental development. Renew. Sustain. Energy Rev. 2012, 16, 2870–2883. [Google Scholar] [CrossRef]
- Wilkinson, K.M.; Elevitch, C.R. Multipurpose windbreaks: Design and species for Pacific Islands. In Agroforestry Guides for Pacific Islands; Permanent Agriculture Resources: Holualoa, HI, USA, 2000; Volume 8. [Google Scholar]
- Rosell, J.; Sanz, R. A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Comput. Electron. Agric. 2012, 81, 124–141. [Google Scholar] [CrossRef]
- Sundeep, S. Understanding and Reduction of the Aerodynamic Noise Emitted from Surface-Mounted Obstacles and Airfoil Trailing Edge. Ph.D. Thesis, Hong Kong University of Science and Technology (Hong Kong), Hong Kong, 2023. [Google Scholar]
- Whelan, C.J.; Wenny, D.G.; Marquis, R.J. Ecosystem services provided by birds. Ann. N. Y. Acad. Sci. 2008, 1134, 25–60. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Malvido, J.; Arroyo-Rodríguez, V. Habitat Fragmentation, Edge Effects and Biological Corridors in Tropical Ecosystems; Eolss Publishers: Oxford, UK, 2008. [Google Scholar]
- Firoozi, A.A.; Hejazi, F.; Firoozi, A.A. Advancing wind energy efficiency: A systematic review of aerodynamic optimization in wind turbine blade design. Energies 2024, 17, 2919. [Google Scholar] [CrossRef]
- Yang, D.; Liu, W.; Wang, J.; Liu, B.; Fang, Y.; Li, H.; Zou, X. Wind erosion forces and wind direction distribution for assessing the efficiency of shelterbelts in northern China. Aeolian Res. 2018, 33, 44–52. [Google Scholar] [CrossRef]
- Jackson, D.W.; Beyers, M.; Delgado-Fernandez, I.; Baas, A.C.; Cooper, A.J.; Lynch, K. Airflow reversal and alternating corkscrew vortices in foredune wake zones during perpendicular and oblique offshore winds. Geomorphology 2013, 187, 86–93. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, X.; Liu, L. Wind erosion in arid and semiarid China: An overview. J. Soil Water Conserv. 2000, 55, 439–444. [Google Scholar] [CrossRef]
- García Chevesich, P.; Neary, D.G.; Scott, D.F.; Benyon, R.G.; Reyna, T. Forest Management and the Impact on Water Resources: A Review of 13 Countries; UNESCO: Paris, France, 2017. [Google Scholar]
- Stanley, A.P.; King, J. Optimizing the physical design and layout of a resilient wind, solar, and storage hybrid power plant. Appl. Energy 2022, 317, 119139. [Google Scholar] [CrossRef]
- Chen, C.; Wang, J.; Ton, D. Modernizing distribution system restoration to achieve grid resiliency against extreme weather events: An integrated solution. Proc. IEEE 2017, 105, 1267–1288. [Google Scholar] [CrossRef]
- Hashmi, S.A. The Aerodynamics of a High-Speed Train Running Adjacent to Windbreak Walls. Ph.D. Thesis, University of Birmingham, Birmingham, UK, 2021. [Google Scholar]
- Gonzales, H.B. Aerodynamics of Wind Erosion and Particle Collection Through Vegetative Controls; Kansas State University: Manhattan, KS, USA, 2015. [Google Scholar]
- Scholes, R.J. The future of semi-arid regions: A weak fabric unravels. Climate 2020, 8, 43. [Google Scholar] [CrossRef]
- Ryan, J.G.; McAlpine, C.A.; Ludwig, J.A. Integrated vegetation designs for enhancing water retention and recycling in agroecosystems. Landsc. Ecol. 2010, 25, 1277–1288. [Google Scholar] [CrossRef]
- Xie, H.; Wang, G.G.; Yu, M. Ecosystem multifunctionality is highly related to the shelterbelt structure and plant species diversity in mixed shelterbelts of eastern China. Glob. Ecol. Conserv. 2018, 16, e00470. [Google Scholar] [CrossRef]
- Van Loggerenberg, N. Machina Ex Silva: Where the Forest Meets the Blade; University of the Witwatersrand: Johannesburg, South Africa, 2015. [Google Scholar]
- Hartmann, M.; Schwieger, W. Hierarchically-structured porous materials: From basic understanding to applications. Chem. Soc. Rev. 2016, 45, 3311–3312. [Google Scholar] [CrossRef]
- Zuazo, V.C.H.D.; Pleguezuelo, C.R.O.R. Soil-erosion and runoff prevention by plant covers: A review. In Sustainable Agriculture; Springer: Dordrecht, The Netherlands, 2009; pp. 785–811. [Google Scholar]
- Duniway, M.C.; Pfennigwerth, A.A.; Fick, S.E.; Nauman, T.W.; Belnap, J.; Barger, N.N. Wind erosion and dust from US drylands: A review of causes, consequences, and solutions in a changing world. Ecosphere 2019, 10, e02650. [Google Scholar] [CrossRef]
- O’Sullivan, O.S.; Holt, A.R.; Warren, P.H.; Evans, K.L. Optimising UK urban road verge contributions to biodiversity and ecosystem services with cost-effective management. J. Environ. Manag. 2017, 191, 162–171. [Google Scholar] [CrossRef]
- Muluneh, M.G. Impact of climate change on biodiversity and food security: A global perspective—A review article. Agric. Food Secur. 2021, 10, 36. [Google Scholar] [CrossRef]
- Li, Y.; Pan, F.; Yao, H. Response of symbiotic and asymbiotic nitrogen-fixing microorganisms to nitrogen fertilizer application. J. Soils Sediments 2019, 19, 1948–1958. [Google Scholar] [CrossRef]
- Aasfar, A.; Bargaz, A.; Yaakoubi, K.; Hilali, A.; Bennis, I.; Zeroual, Y.; Meftah Kadmiri, I. Nitrogen fixing Azotobacter species as potential soil biological enhancers for crop nutrition and yield stability. Front. Microbiol. 2021, 12, 628379. [Google Scholar] [CrossRef]
- Salih, K.; Báthoryné Nagy, I.R. Review of the role of urban green infrastructure on climate resiliency: A focus on heat mitigation modelling scenario on the microclimate and building scale. Urban Sci. 2024, 8, 220. [Google Scholar] [CrossRef]
- Chauhan, S.; Kengoo, N.; Kishore, K.; Haksinhbhai, M.R.; Rana, P. Carbon Dynamics in Agroforestry Systems: Implications for Climate Change Mitigation and Adaptation. Int. J. Environ. Clim. Change 2025, 15, 109–133. [Google Scholar] [CrossRef]
- Ehbrecht, M.; Schall, P.; Ammer, C.; Seidel, D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric. For. Meteorol. 2017, 242, 1–9. [Google Scholar] [CrossRef]
- An, L.; Wang, J.; Xiong, N.; Wang, Y.; You, J.; Li, H. Assessment of permeability windbreak forests with different porosities based on laser scanning and computational fluid dynamics. Remote Sens. 2022, 14, 3331. [Google Scholar] [CrossRef]
- Misra, B.B.; Langefeld, C.; Olivier, M.; Cox, L.A. Integrated omics: Tools, advances and future approaches. J. Mol. Endocrinol. 2019, 62, R21–R45. [Google Scholar] [CrossRef]
- Cleugh, H.; Hughes, D. Impact of shelter on crop microclimates: A synthesis of results from wind tunnel and field experiments. Aust. J. Exp. Agric. 2002, 42, 679–701. [Google Scholar] [CrossRef]
- Papesch, A. Wind tunnel test to optimize barrier spacing and porosity to reduce wind damage in horticultural shelter systems. J. Wind. Eng. Ind. Aerodyn. 1992, 44, 2631–2642. [Google Scholar] [CrossRef]
- Englund, G.; Cooper, S.D. Scale effects and extrapolation in ecological experiments. Adv. Ecol. Res. 2003, 11, 161–213. [Google Scholar]
- Verrelst, J.; Malenovský, Z.; Van der Tol, C.; Camps-Valls, G.; Gastellu-Etchegorry, J.-P.; Lewis, P.; North, P.; Moreno, J. Quantifying vegetation biophysical variables from imaging spectroscopy data: A review on retrieval methods. Surv. Geophys. 2019, 40, 589–629. [Google Scholar] [CrossRef]
- Wang, J.; Patruno, L.; Zhao, G.; Tamura, Y. Windbreak effectiveness of shelterbelts with different characteristic parameters and arrangements by means of CFD simulation. Agric. For. Meteorol. 2024, 344, 109813. [Google Scholar] [CrossRef]
- Bush, R.H.; Chyczewski, T.S.; Duraisamy, K.; Eisfeld, B.; Rumsey, C.L.; Smith, B.R. Recommendations for future efforts in RANS modeling and simulation. In Proceedings of the AIAA Scitech 2019 Forum, San Diego, CA, USA, 7–11 January 2019; p. 0317. [Google Scholar]
- Alfonsi, G. Reynolds-averaged Navier–Stokes equations for turbulence modeling. Appl. Mech. Rev. 2009, 62, 040802. [Google Scholar] [CrossRef]
- Chowdhury, I.A. State-of-the-Art CFD Simulation: A Review of Techniques, Validation Methods, and Application Scenarios. J. Recent Trends Mech. 2024, 9, 45–53. [Google Scholar] [CrossRef]
- Mirzaei, P.A. CFD modeling of micro and urban climates: Problems to be solved in the new decade. Sustain. Cities Soc. 2021, 69, 102839. [Google Scholar] [CrossRef]
- Park, M.A.; Loseille, A.; Krakos, J.; Michal, T.R.; Alonso, J.J. Unstructured grid adaptation: Status, potential impacts, and recommended investments towards CFD 2030. In Proceedings of the 46th AIAA Fluid Dynamics Conference, Washington, DC, USA, 13–17 June 2016; p. 3323. [Google Scholar]
- Deng, R.; Guo, Q.; Jia, M.; Wu, Y.; Zhou, Q.; Xu, Z. Extraction of farmland shelterbelts from remote sensing imagery based on a belt-oriented method. Front. For. Glob. Change 2023, 6, 1247032. [Google Scholar] [CrossRef]
- Chu, D. Remote Sensing of Land Use and Land Cover in Mountain Region; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Guimarães, N.; Pádua, L.; Marques, P.; Silva, N.; Peres, E.; Sousa, J.J. Forestry remote sensing from unmanned aerial vehicles: A review focusing on the data, processing and potentialities. Remote Sens. 2020, 12, 1046. [Google Scholar] [CrossRef]
- Zheng, C.W.; Amr, A.D.; Vance, M.W.; Wang, X.; Dalid, C.; Shen, K. Strawberry canopy structural parameters estimation and growth analysis from UAV multispectral imagery using a geospatial tool. Comput. Electron. Agric. 2025, 235, 121710. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, L.; Yang, F. Assessing ecosystem service dynamics in China’s coastal shelterbelt: Implications for ecosystem restoration. Environ. Impact Assess. Rev. 2024, 106, 107515. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, J.; He, C.; Ding, G. Linking wind erosion to ecosystem services in drylands: A landscape ecological approach. Landsc. Ecol. 2017, 32, 2399–2417. [Google Scholar] [CrossRef]
- Ding, M.; Yin, X.; Pan, S.; Liu, P. Multi-Objective Spatial Optimization of Protective Forests Based on the Non-Dominated Sorting Genetic Algorithm-II Algorithm and Future Land Use Simulation Model: A Case Study of Alaer City, China. Forests 2025, 16, 452. [Google Scholar] [CrossRef]
- Cardinia Shire Council. Shelterbelt Design Guidelines for Climate Change; Eco Logical Australia: Adelaide, Australia, 2022. [Google Scholar]
- Simiu, E.; Yeo, D. Wind Effects on Structures: Modern Structural Design for Wind; John Wiley & Sons: Hoboken, NJ, USA, 2019. [Google Scholar]
- Vacek, Z.; Řeháček, D.; Cukor, J.; Vacek, S.; Khel, T.; Sharma, R.P.; Kučera, J.; Král, J.; Papaj, V. Windbreak efficiency in agricultural landscape of the Central Europe: Multiple approaches to wind erosion control. Environ. Manag. 2018, 62, 942–954. [Google Scholar] [CrossRef] [PubMed]
- Abdulsattar, E.; Abdelnaby, M.; Elnaggar, M. Comparison of the empirical formula and the “CFD”-based semi-empirical method in the prediction of the critical speed of flutter. Can. J. Civ. Eng. 2023, 50, 584–593. [Google Scholar] [CrossRef]
- Finnigan, J. Turbulence in plant canopies. Annu. Rev. Fluid Mech. 2000, 32, 519–571. [Google Scholar] [CrossRef]
- El Kenawy, A.M. Hydroclimatic extremes in arid and semi-arid regions: Status, challenges, and future outlook. In Hydroclimatic Extremes in the Middle East and North Africa; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–22. [Google Scholar]
- Tang, L.; Zhao, H.K.; Zhou, Z.F.; Qian, Z.X.; Hou, S.S.; Liu, B. Spatiotemporal distribution and driving factors of water use efficiency in the Yangtze River Delta urban agglomeration under the background of sustainability. Ecol. Ind. 2025, 175, 114159. [Google Scholar] [CrossRef]
- Ringgaard, R.; Herbst, M.; Friborg, T. Partitioning of forest evapotranspiration: The impact of edge effects and canopy structure. Agric. For. Meteorol. 2012, 166, 86–97. [Google Scholar] [CrossRef]
- Legesse, T.; Alemayehu, Y.; Haile, A. Effects of Deficit Irrigation Levels and Potato (Solanum tuberosum L.) Varieties on Yield, Yield Components, and Water Productivity at Haramaya, Ethiopia. Ph.D. Thesis, Haramaya University, Dire Dawa, Ethiopia, 2024. [Google Scholar]
- Yi, J.; Li, H.; Zhao, Y.; Shao, M.A.; Zhang, H.; Liu, M. Assessing soil water balance to optimize irrigation schedules of flood-irrigated maize fields with different cultivation histories in the arid region. Agric. Water Manag. 2022, 265, 107543. [Google Scholar] [CrossRef]
- Ma, C.; Tang, L.; Chang, W.; Jaffar, M.T.; Zhang, J.; Li, X.; Chang, Q.; Fan, J. Effect of shelterbelt construction on soil water characteristic curves in an extreme arid shifting desert. Water 2022, 14, 1803. [Google Scholar] [CrossRef]
- VijayKumar, R.; Das, J.; Upadhyay, L.; Kishore, P.; Saikanth, D. Principles and Practices of Agroforestry; N D Global Publication House: Mathura, India, 2024. [Google Scholar]
- Yunusa, I.A.; Brown, G.W.; Kwong, R.M.; Ronnfeldt, G.R.; Slater, T.; Crouch, A.; Unkovich, M. Integrating biodiversity and productivity on intensive farms: A potential role for shelterbelts in the Victorian Riverina. In Proceedings of the 2002 Australian Academy of Science Fenner Conference on the Environment, Canberra, Australia, 30 July 1–August 2002; Agriculture for the Australian Environment. The Johnstone Centre, Charles Sturt University: Albury, NSW, Australia, 2003; pp. 255–277. [Google Scholar]
- Asmare, M.T. The role of shelterbelt for soil management in Ethiopia. Field Veg. Crops Res. Ratar. Povrt. 2023, 60, 40–48. [Google Scholar] [CrossRef]
- Dhillon, G.S.; Van Rees, K.C. Soil organic carbon sequestration by shelterbelt agroforestry systems in Saskatchewan. Can. J. Soil Sci. 2017, 97, 394–409. [Google Scholar] [CrossRef]
- Wang, F.; Li, Z.; Xia, H.; Zou, B.; Li, N.; Liu, J.; Zhu, W. Effects of nitrogen-fixing and non-nitrogen-fixing tree species on soil properties and nitrogen transformation during forest restoration in southern China. Soil Sci. Plant Nutr. 2010, 56, 297–306. [Google Scholar] [CrossRef]
- Even, R.J.; Cotrufo, M.F. The ability of soils to aggregate, more than the state of aggregation, promotes protected soil organic matter formation. Geoderma 2024, 442, 116760. [Google Scholar] [CrossRef]
- Jolliet, O.; Antón, A.; Boulay, A.-M.; Cherubini, F.; Fantke, P.; Levasseur, A.; McKone, T.E.; Michelsen, O.; Milà i Canals, L.; Motoshita, M. Global guidance on environmental life cycle impact assessment indicators: Impacts of climate change, fine particulate matter formation, water consumption and land use. Int. J. Life Cycle Assess. 2018, 23, 2189–2207. [Google Scholar] [CrossRef]
- Sardeshpande, M.; Shackleton, C. Wild edible fruits: A systematic review of an under-researched multifunctional NTFP (non-timber forest product). Forests 2019, 10, 467. [Google Scholar] [CrossRef]
- Sheppard, J.P.; Chamberlain, J.; Agúndez, D.; Bhattacharya, P.; Chirwa, P.W.; Gontcharov, A.; Sagona, W.C.J.; Shen, H.-L.; Tadesse, W.; Mutke, S. Sustainable forest management beyond the timber-oriented status quo: Transitioning to co-production of timber and non-wood forest products—A global perspective. Curr. For. Rep. 2020, 6, 26–40. [Google Scholar] [CrossRef]
- Vogt, J.; Hauer, R.J.; Fischer, B.C. The costs of maintaining and not maintaining the urban forest: A review of the urban forestry and arboriculture literature. Arboric. Urban For. 2015, 41, 293–323. [Google Scholar] [CrossRef]
- Schroth, G.; Sinclair, F.L. Trees, Crops, and Soil Fertility: Concepts and Research Methods; Cabi: Wallingford, UK, 2003. [Google Scholar]
- Thornton, T.F.; Comberti, C. Synergies and trade-offs between adaptation, mitigation and development. Clim. Change 2017, 140, 5–18. [Google Scholar] [CrossRef]
- Gurr, G.M.; Wratten, S.D.; Snyder, W.E. Biodiversity and insect pests. In Biodiversity and Insect Pests: Key Issues for Sustainable Management; John Wiley & Sons: Hoboken, NJ, USA, 2012; pp. 1–20. [Google Scholar]
- Verma, S.; Pant, M.; Snasel, V. A comprehensive review on NSGA-II for multi-objective combinatorial optimization problems. IEEE Access 2021, 9, 57757–57791. [Google Scholar] [CrossRef]
- The Intergovernmental Panel on Climate Change. Climate change 2007: The physical science basis. Agenda 2007, 6, 333. [Google Scholar]
- Keprate, A.; Bhardwaj, D.; Sharma, P.; Verma, K.; Abbas, G.; Sharma, V.; Sharma, K.; Janju, S. Climate resilient agroforestry systems for sustainable land use and livelihood. In Transforming Agricultural Management for a Sustainable Future: Climate Change and Machine Learning Perspectives; Springer: Berlin/Heidelberg, Germany, 2024; pp. 141–161. [Google Scholar]
- Yadav, M.; Vashisht, B.; Jalota, S.; Kumar, A.; Kumar, D. Sustainable water management practices for intensified agriculture. In Soil-Water, Agriculture, and Climate Change: Exploring Linkages; Springer: Berlin/Heidelberg, Germany, 2022; pp. 131–161. [Google Scholar]
- Nõges, T.; Nõges, P.; Cardoso, A.C. Review of Published Climate Change Adaptation and Mitigation Measures Related with Water; Scientific and Technical Research Series EUR; Joint Research Centre, European Commission: Ispra, Italy, 2010; Volume 24682. [Google Scholar]
- Adhikari, B.; Agrawal, A. Understanding the social and ecological outcomes of PES projects: A review and an analysis. Conserv. Soc. 2013, 11, 359–374. [Google Scholar] [CrossRef]
- Papafotiou, M.; Pergialioti, N.; Tassoula, L.; Massas, I.; Kargas, G. Growth of native aromatic xerophytes in an extensive Mediterranean green roof as affected by substrate type and depth and irrigation frequency. HortScience 2013, 48, 1327–1333. [Google Scholar] [CrossRef]
- Sadok, W.; Lopez, J.R.; Smith, K.P. Transpiration increases under high-temperature stress: Potential mechanisms, trade-offs and prospects for crop resilience in a warming world. Plant Cell Environ. 2021, 44, 2102–2116. [Google Scholar] [CrossRef]
- Wagner, S.; Nocentini, S.; Huth, F.; Hoogstra-Klein, M. Forest management approaches for coping with the uncertainty of climate change: Trade-offs in service provisioning and adaptability. Ecol. Soc. 2014, 19, 32. [Google Scholar] [CrossRef]
- Rastogi, M.; Kolur, S.M.; Burud, A.; Sadineni, T.; Sekhar, M.; Kumar, R.; Rajput, A. Advancing water conservation techniques in agriculture for sustainable resource management: A review. J. Geogr. Environ. Earth Sci. Int. 2024, 28, 41–53. [Google Scholar] [CrossRef]
Structural Characteristic | Impact on Erosion Control | Mechanism and Notes |
---|---|---|
Optical Porosity | Moderate porosity (30–50%) is most effective. | High porosity offers insufficient wind reduction; low porosity creates excessive turbulence and short protection distance. |
Height (H) | Directly determines the scale of the protected area. | Protection distance is a multiple of H (e.g., 15–25 H). Taller belts protect a larger field area. |
Number of Rows | Multi-row belts are generally more robust and effective. | Provides a deeper zone of wind deceleration and better particle trapping. Enhances durability if one row fails. |
Species Composition | A mix of trees, shrubs, and ground cover is ideal. | Shrubs fill the vertical gap near the soil surface, preventing wind tunneling and trapping saltating particles. |
Orientation | Should be perpendicular to the prevailing erosive winds. | Maximizes the windbreak effect. Belts aligned with winds offer minimal protection. |
Width | Sufficient width is needed for structural integrity. | Very narrow belts may be easily penetrated; very wide belts occupy excessive farmland. A |
Measurement Technique | Parameters Assessed | Advantages | Limitations |
---|---|---|---|
Anemometry | Wind speed reduction, turbulence intensity | Direct in situ data | Limited spatial coverage |
Soil Moisture Sensors | Soil water content distribution | High temporal resolution | Point-scale measurement |
Dendrometric Surveys | Tree height, DBH, crown width | Accurate structural data | Destructive/time-consuming |
Photographic Porosity Estimation | Optical porosity, leaf area index (LAI) | Non-destructive, scalable | Weather and light-dependent |
Experimental Setup | Variables Tested | Data Collected | Applications |
---|---|---|---|
Scaled Physical Models | Porosity, density, multi-row configurations | Velocity decay, turbulence kinetics | Design refinement |
Particle Image Velocimetry (PIV) | Flow separation, wake characteristics | High-resolution flow fields | Mechanism analysis |
Pressure Tap Arrays | Wind pressure distribution on leeward side | Surface pressure maps | Structural load assessment |
CFD Model Type | Key Features | Use Cases | Limitations |
---|---|---|---|
RANS Models | Steady-state simulation, low computational cost | Preliminary design screening | Limited accuracy in turbulent flows |
LES Models | Transient turbulence resolution | Detailed wake analysis | High computational demand |
Porous Media Models | Simplifies vegetation as porous zones | Large-scale landscape planning | Requires empirical porosity inputs |
Technology | Data Outputs | Applications | Challenges |
---|---|---|---|
Multispectral Imagery | NDVI, LAI, vegetation health | Monitoring canopy density and stress | Coarse resolution for fine structures |
LiDAR Scanning | 3D structure, height, porosity | Precision structural mapping | High cost and processing complexity |
GIS Spatial Analysis | Suitability maps, connectivity corridors | Regional planning and gap analysis | Data integration inconsistencies |
Objective | Recommended Practice | Notes |
---|---|---|
Maximize wind reduction | 30–50% porosity; 15–30 H height; perpendicular orientation | Avoid too dense belts to prevent turbulence |
Conserve water | Use native xerophytes; space rows 5–10 m apart | Minimize irrigation after establishment |
Enhance biodiversity | Multi-species, multi-strata design | Include shrubs and ground cover |
Reduce costs | Use locally available species; staggered planting | Combine timber/NTFP species for income |
Improve durability | Plan for pruning, thinning, and species renewal | Monitor mortality and replace |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aili, A.; Bakayisire, F.; Xu, H.; Waheed, A. Enhancing Agroecological Resilience in Arid Regions: A Review of Shelterbelt Structure and Function. Agriculture 2025, 15, 2004. https://doi.org/10.3390/agriculture15192004
Aili A, Bakayisire F, Xu H, Waheed A. Enhancing Agroecological Resilience in Arid Regions: A Review of Shelterbelt Structure and Function. Agriculture. 2025; 15(19):2004. https://doi.org/10.3390/agriculture15192004
Chicago/Turabian StyleAili, Aishajiang, Fabiola Bakayisire, Hailiang Xu, and Abdul Waheed. 2025. "Enhancing Agroecological Resilience in Arid Regions: A Review of Shelterbelt Structure and Function" Agriculture 15, no. 19: 2004. https://doi.org/10.3390/agriculture15192004
APA StyleAili, A., Bakayisire, F., Xu, H., & Waheed, A. (2025). Enhancing Agroecological Resilience in Arid Regions: A Review of Shelterbelt Structure and Function. Agriculture, 15(19), 2004. https://doi.org/10.3390/agriculture15192004