Grapevine Phenology, Vegetative and Reproductive Characteristics of Vitis vinifera L. cv Chardonnay in the Cape South Coast Region in South Africa
Abstract
1. Introduction
2. Materials and Methods
2.1. Vineyard Characteristics and Experimental Layout
2.2. Climatic Evaluation
2.3. Soil Chemical Analysis
2.4. Phenological and Vegetative Measurements
2.5. Grape Carpological Parameters
2.6. Classical Berry Quality Parameters
2.7. Transpiration Rate
2.8. Reproductive Growth
2.9. Plant Balance Assessment
2.10. Statistical Analysis
3. Results
3.1. Climatic and Soil Characterization
3.2. Vegetative Measurements
3.3. Grape Carpological Parameters
Destructive and Non-Destructive Berry Measurements
3.4. Grape Berry Primary Metabolites
3.5. Transpiration Rate
3.6. Grapevine Balance
3.7. Principal Component Analysis (PCA)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | 2021–2022 Season | 2022–2023 Season | ||||
---|---|---|---|---|---|---|
Sampling Dates | Days After Anthesis | E-L Stage | Sampling Dates | Days After Anthesis | E-L Stage | |
Site A | 29 December 2021 | 51 | 32 | 11 January 2023 | 72 | 34 |
5 January 2022 | 58 | 33 | 18 January 2023 | 79 | 35 | |
26 January 2022 | 79 | 35 | 25 January 2023 | 86 | 36 | |
2 February 2022 | 86 | 1 February 2023 | 93 | |||
10 February 2022 | 94 | 36 | 8 February 2023 | 100 | 37 | |
17 February 2022 | 101 | 37 | ||||
24 February 2022 | 108 | |||||
2 March 2022 | 114 | 38 | ||||
Site B | 29 December 2021 | 75 | 32 | 11 January 2023 | 76 | 35 |
5 January 2022 | 82 | 33 | 18 January 2023 | 83 | ||
26 January 2022 | 103 | 35 | 25 January 2023 | 90 | 36 | |
2 February 2022 | 110 | 1 February 2023 | 97 | 37 | ||
10 February 2022 | 118 | 36 | 8 February 2023 | 104 | ||
17 February 2022 | 125 | 37 | ||||
Site C | 29 December 2021 | 48 | 32 | 11 January 2023 | 72 | 35 |
5 January 2022 | 55 | 33 | 18 January 2023 | 79 | ||
26 January 2022 | 76 | 35 | 25 January 2023 | 86 | 36 | |
2 February 2022 | 83 | 36 | 1 February 2023 | 93 | 37 | |
10 February 2022 | 91 | 8 February 2023 | 100 | |||
17 February 2022 | 98 | 37 | ||||
24 February 2022 | 105 | 38 |
References
- Organisation Internationale de la Vigne et du Vin (OIV). 2017. Available online: https://www.oiv.int/public/medias/5888/en (accessed on 16 June 2025).
- Anderson, K.; Nelgen, S. Which Winegrape Varieties Are Grown? A Global Empirical Picture; University of Adelaide Press: Adelaide, Australia, 2020; p. 800. [Google Scholar]
- South African Wine Information System (SAWIS). 2023, pp. 1–32. Available online: https://www.sawis.co.za/info/download/Book_2023_Final_19_Jul_24.pdf (accessed on 16 June 2025).
- Andreini, L.; Viti, R.; Scalabrelli, G. Study on the morphological evolution of bud break in Vitis vinifera L. Vitis 2019, 48, 153–158. [Google Scholar]
- Jones, G.V.; Webb, L.B. Climate change, viticulture and wine: Challenges and opportunities. J. Wine Res. 2010, 21, 103–106. [Google Scholar] [CrossRef]
- Jones, G.V. Climate, Grapes and Wine: Structure and Suitability in a Variable and Changing Climate; VIII International Terroir Congress: Mendoza, Argentina, 2006. [Google Scholar]
- Gladstones, J.S. Wine, Terroir and Climate Change; Wakefield Press: Kent Town, SA, Australia, 2011. [Google Scholar]
- Parker, A.K.; García de Cortázar-Atauri, I.; Gény, L.; Spring, J.-L.; Destrac, A.; Schultz, H.; Molitor, D.; Lacombe, T.; Graça, A.; Monamy, C.; et al. Temperature-based grapevine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agric. For. Meteorol. 2020, 285–286, 107902. [Google Scholar] [CrossRef]
- Suter, B.; Irvine, A.D.; Gowdy, M.; Dai, Z.; Van Leeuwen, C. Adapting wine grape ripening to global change requires a multi-trait approach. Front. Plant Sci. 2021, 12, 624867. [Google Scholar] [CrossRef]
- Venios, X.; Korkas, E.; Nisiotou, A.; Banilas, G. Grapevine Responses to Heat Stress and Global Warming. Plants 2020, 9, 1754. [Google Scholar] [CrossRef]
- Llanaj, C.; McGregor, G. Climate change, grape phenology, and frost risk in Southeast England. Aust. J. Grape Wine Res. 2022, 1, 9835317. [Google Scholar] [CrossRef]
- Mania, E.; Petrella, F.; Giovannozzi, M.; Piazzi, M.; Wilson, A.; Guidoni, S. Managing vineyard topography and seasonal variability to improve grape quality and vineyard sustainability. Agronomy 2021, 11, 1142. [Google Scholar] [CrossRef]
- Majewski, E.T. Ecophysiological Characterisation of Vitis vinifera L. cv’s. Chardonnay and Pinot Noir in South African Cool Climate Regions. Master’s Thesis, Stellenbosch University, Matieland, South Africa, 2024. [Google Scholar]
- Hunter, J.J. Implications of seasonal canopy management and growth compensation in grapevine. S. Afr. J. Enol. Vitic. 2000, 21, 81–91. [Google Scholar] [CrossRef][Green Version]
- Parker, A.K.; Raw, V.; Martin, D.; Haycock, S.; Sherman, E.; Trought, M.C.T. Reduced grapevine canopy size post-flowering via mechanical trimming alters ripening and yield of “Pinot Noir”. Vitis 2016, 55, 1–9. [Google Scholar][Green Version]
- Carey, V.A. Spatial Characterisation of Natural Terroir Units for Viticulture in the Bottelaryberg-Simonsberg-Helderber Winegrowing Area. Master’s Thesis, Stellenbosch University, Matieland, South Africa, 2001. [Google Scholar][Green Version]
- Carey, V.A. The Use of Viticultural Terroir Units for Demarcation of Geographical Indications for Wine Production in Stellenbosch and Surrounds. Ph.D. Dissertation, Stellenbosch University, Matieland, South Africa, 2005. [Google Scholar][Green Version]
- Conradie, W.J.; Carey, V.A.; Bonnardot, V.; Saayman, D.; van Schoor, L.H. Effect of different environmental factors on the performance of Sauvignon Blanc grapevines in the Stellenbosch/Durbanville districts of South Africa. I. Geology, soil, climate, phenology and grape composition. S. Afr. J. Enol. Vitic. 2002, 23, 78–91. [Google Scholar][Green Version]
- Deloire, A.; Vaudour, E.; Carey, V.; Bonnardot, V.; Van Leeuwen, C. Grapevine responses to terroir: A global approach. J. Int. Sci. Vigne Vin. 2005, 39, 149–162. [Google Scholar] [CrossRef]
- Witbooi, E.H. The Ecophysiological Charaterisation of Terroirs: The Contribution of Soil Surface Colour. Master’s Thesis, Stellenbosch University, Matieland, South Africa, 2008. [Google Scholar]
- Hunter, J.J.; Bonnardot, V. Suitability of some climatic parameters for grapevine cultivation in South Africa, with focus on key physiological processes. S. Afr. J. Enol. Vitic. 2011, 32, 137–154. [Google Scholar] [CrossRef]
- Southey, T. Integrating Climate and Satellite Remote Sensing to Assess the Reaction of Vitis vinifera L. cv. Cabernet Sauvignon to a Changing Environment. Ph.D. Dissertation, Stellenbosch University, Matieland, South Africa, 2017. [Google Scholar]
- Baskerville, G.L.; Emin, P. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 1969, 50, 514–517. [Google Scholar] [CrossRef]
- Kok, D.; Bal, E.; Celik, S. Influences of various canopy management techniques on wine grape quality of V. vinifera L. cv. Kalecik Karasi. Bulg. J. Agric. Sci. 2013, 19, 1247–1252. [Google Scholar]
- Coombe, B.G. Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995, 1, 104–110. [Google Scholar] [CrossRef]
- Deloire, A. A few thoughts on grapevine training systems. Wineland 2012, 82–86. [Google Scholar]
- Deloire, A. The concept of berry sugar loading. Wineland 2011, 81–83. [Google Scholar]
- Lescourret, F.; Génard, M.; Habib, R.; Fishman, S. Variation in surface conductance to water vapor diffusion in pach fruit and its effects on fruit growth assessed by a simulation model. Tree Physiol. 2001, 21, 735–741. [Google Scholar] [CrossRef]
- Ben-Yehoshua, S.; Burg, S.P.; Yong, R. Resistance of citrus fruit to mass transport of water vapor and other gases. Plant Physiol. 1985, 79, 1048–1053. [Google Scholar] [CrossRef] [PubMed]
- Fishman, S.; Génard, M. A biophysical model of fruit growth: Simulation of seasonal and diurnal dynamics of mass. Plant Cell Environ. 1998, 21, 739–752. [Google Scholar] [CrossRef]
- Ravaz, L. Sur la brunissure de la vigne. C. R. Acad. Sci. 1903, 136, 1276–1278. [Google Scholar]
- VinPro. South African Wine Harvest Report 2022. Available online: https://vinpro.co.za/wp-content/uploads/2022/06/SOUTH-AFRICAN-WINE-HARVEST-REPORT-2022-online.pdf (accessed on 16 June 2023).
- VinPro. South African Harvest Report 2023. Available online: https://vinpro.co.za/wp-content/uploads/2023/05/South-African-Wine-Harvest-Report-2023.pdf (accessed on 16 June 2023).
- Van Leeuwen, C.; Darriet, P. The Impact of Climate Change on Viticulture and Wine Quality. J. Wine Econ. 2016, 11, 150–167. [Google Scholar] [CrossRef]
- Orselli, L.A. Berry Tannin Structure and Phenolics Evolution in Vitis vinifera L. cv. Pinot Noir Effect of Light and Temperature. Master’s Thesis, Stellenbosch University, Matieland, South Africa, 2024. [Google Scholar]
- Blancquaert, E.H.; Oberholster, A.; Ricardo-da-Silva, J.M.; Deloire, A.J. Grape Flavonoid Evolution and Composition under Altered Light and Temperature Conditions in Cabernet Sauvignon (Vitis vinifera L.). Front. Plant Sci. 2019, 10, 1062. [Google Scholar] [CrossRef] [PubMed]
- Van Leeuwen, K.; Seguin, G. The Concept of Terroir in Viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Poni, S.; Gatti, M.; Palliotti, A.; Dai, Z.; Duchêne, E.; Truong, T.; Ferrara, G.; Matarrese, A.M.S.; Gallotta, A.; Bellincontro, A.; et al. Grapevine quality: A multiple-choice issue. Sci. Hortic. 2018, 234, 445–462. [Google Scholar] [CrossRef]
- Bruwer, F.A.; du Toit, W.J.; Buica, A. Nitrogen and Sulphur Foliar Fertilisation. S. Afr. J. Enol. Vitic. 2019, 40, 237–252. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. Temperature-dependent responses of the berry developmental processes of three grapevine (Vitis vinifera) cultivars. N. Z. J. Crop Hortic. Sci. 2014, 42, 233–246. [Google Scholar] [CrossRef]
- Anderson, M.M.; Smith, R.J.; Williams, M.A.; Wolpert, J.A. Viticultural Evaluation of French and California Chardonnay Clones Grown for Production of Sparkling Wine. Am. J Enol Vitic. 2008, 259, 73–77. [Google Scholar] [CrossRef]
- Tandonnet, J.P.; Cookson, S.J.; Vivin, P.; Ollat, N. Scion genotype controls biomass allocation and root development in grafted grapevine. Aust. J. Grape Wine Res. 2010, 16, 290–300. [Google Scholar] [CrossRef]
- Marguerit, E.; Blois, L.; Goutouly, J.P.; Lafargue, M.; Lagalle, L.; Morel, M.; Tandonnet, J.P.; Ollat, N. What’s new with rootstocks? IVES Technical Reviews. IVES Tech. Rev. Vine Wine 2023. [Google Scholar] [CrossRef]
- Woolridge, J.; Louw, P.J.E.; Conradie, W.J. Effects of Rootstock on Grapevine Performance, Petiole and Must Composition, and Overall Wine Score of Vitis vinifera cv. Chardonnay and Pinot noir. S. Afr. J. Enol. Vitic. 2010, 31, 2010. [Google Scholar]
- Sampaio, L.B. Using Rootstocks to Manipulate Vine Physiological Performance and Mediate Changes in Fruit and Wine Composition. Master’s Thesis, Oregon State University, Corvallis, OR, USA, 2007. [Google Scholar]
- Pienaar, J.W. The Effect of Wind on the Performance of the Grapevine. Master’s Thesis, Stellenbosch University, Matieland, South Africa, 2005. [Google Scholar]
- Archer, E.; Strauss, H.C. Effect of plant density on root distribution of three-year-old grafted 99 Richter grapevines. S. Afr. J. Enol. Vitic. 1985, 6, 25–30. [Google Scholar] [CrossRef]
- Jones, J.E.; Kerslake, F.L.; Close, D.C.; Dambergs, R.G. Viticulture for sparkling wine production: A review. Am. J. Enol. Vitic. 2014, 65, 407–416. [Google Scholar] [CrossRef]
- Cortell, J.M.; Halbleib, M.; Gallagher, A.V.; Righetti, T.L.; Kennedy, J.A. Influence of vine vigor on grape (Vitis vinifera L. cv Pinot noir) and wine proanthocyanidins. J. Agric. Food Chem. 2005, 53, 5798–5808. [Google Scholar] [CrossRef]
- Keller, M.; Mills, L.J. High planting density reduces productivity and quality of mechanized Concord juice grapes. Am. J. Enol. Vitic. 2021, 72, 358–370. [Google Scholar] [CrossRef]
- Zhang, Y.; Keller, M. Grape berry transpiration is determined by vapor pressure deficit, cuticular conductance, and berry size. Am. J. Enol. Vitic. 2015, 66, 454–462. [Google Scholar] [CrossRef]
- Rogiers, S.Y.; Hatfield, J.M.; Jaudzems, V.G.; White, R.G.; Keller, M. Grape berry cv. Shiraz epicuticular wax and transpiration during ripening and preharvest weight loss. Am. J. Enol. Vitic. 2004, 55, 121–127. [Google Scholar] [CrossRef]
- Percival, D.C.; Fisher, K.H.; Sullivan, J.A. Effect of cluster exposure, berry contact and cultivar on cuticular membrane formation and occurrence of bunch rot (Botrytis cinerea PERS.: FR.) with 3 Vitis vinifera L. cultivars. Vitis 1993, 32, 87–97. [Google Scholar]
- Arand, K.; Bieler, E.; Dürrenberger, M.; Kassemeyer, H.H. Developmental pattern of grapevine (Vitis vinifera L.) berry cuticular wax: Differentiation between epicuticular crystals and underlying wax. PLoS ONE 2021, 16, e0246693. [Google Scholar] [CrossRef]
- Steyn, J.; Aleixandre-Tudó, J.L.; Aleixandre, J.L. Grapevine vigour and within-vineyard variability: A review. Int. J. Sci. Eng. Res. 2016, 7, 1056–1065. [Google Scholar]
- Filho, J.L.M.; Allebrandt, R.; Würz, A.; Pereira de Bem, B.; Afonso de Macedo, T.; Kretzschmar, A.A.; Rufato, L. Cane pruning on Chardonnay grapevine in the high-altitude regions of Southern Brazil. In Proceedings of the 39th World Congress of Vine and Wine, Bento Goncalves, Brazil, 24–28 October 2016. [Google Scholar] [CrossRef]
- Rives, M. Vigour, pruning, and cropping in the grapevine (Vitis vinifera L.). II. Experiments on vigour, pruning and cropping. Agronomie 2000, 20, 205–213. [Google Scholar] [CrossRef]
Site | Scion Clone | Rootstock | Year Planted | Planting Density | Row Orientation |
---|---|---|---|---|---|
A | CY 95 I | Richter 110 | 2005 | 3333 | N–S |
B | CY 277 D | Richter 110 | 2009 | 6667 | NE–SW |
C | CY 548 | 101-14 Mgt | 2004 | 2667 | N–S |
Season | Site | Month | Mean Temperature per Site (°C) | Mean Temperature per Month (°C) | Maximum Temperature (°C) | Number of Hours | ||||
---|---|---|---|---|---|---|---|---|---|---|
≤20 °C | 20–25 °C | 25–30 °C | 30–35 °C | >35 °C | ||||||
2021–2022 | A | December | 20.7 | 19.0 | 19.32 | 15.76 | 4.95 | 2.33 | 0.71 | 0.24 |
January | 21.8 | 22.05 | 11.64 | 5.42 | 3.90 | 2.10 | 0.90 | |||
February | 21.5 | 21.77 | 12.61 | 3.86 | 4.96 | 2.14 | 0.43 | |||
March | 20.0 | 20.27 | 14.77 | 4.26 | 3.26 | 1.58 | 0.13 | |||
2021–2022 | B | December | 21.1 | 19.0 | 19.15 | 16.14 | 5.05 | 2.14 | 0.67 | 0.00 |
January | 21.9 | 22.13 | 10.81 | 6.55 | 4.26 | 1.65 | 0.74 | |||
February | 21.8 | 22.04 | 12.00 | 5.18 | 4.00 | 2.25 | 0.57 | |||
March | 21.0 | 21.32 | 13.5.2 | 4.52 | 3.39 | 2.00 | 0.58 | |||
2021–2022 | C | December | 20.9 | 18.8 | 19.03 | 15.48 | 5.10 | 2.71 | 0.71 | 0.00 |
January | 22.4 | 22.69 | 10.81 | 4.87 | 4.87 | 2.61 | 0.84 | |||
February | 21.8 | 22.06 | 12.39 | 3.68 | 4.04 | 3.39 | 0.5 | |||
March | 20.2 | 20.44 | 14.77 | 3.84 | 3.00 | 2.10 | 0.29 | |||
2022–2023 | A | December | 20.2 | 20.0 | 20.28 | 13.39 | 5.39 | 3.97 | 1.16 | 0.1 |
January | 21.3 | 21.61 | 12.27 | 4.6 | 5.13 | 1.47 | 0.53 | |||
February | 20.8 | 21.09 | 12.79 | 5.61 | 3.71 | 1.32 | 0.57 | |||
March | 18.7 | 18.92 | 16.16 | 4.94 | 2.23 | 0.52 | 0.16 | |||
2022–2023 | B | December | 20.8 | 20.5 | 20.75 | 12.35 | 6.45 | 4.00 | 1.16 | 0.03 |
January | 22.0 | 22.29 | 11.13 | 5.4 | 4.4 | 2.40 | 0.67 | |||
February | 21.2 | 21.44 | 12.43 | 6.11 | 3.64 | 1.32 | 0.5 | |||
March | 19.4 | 19.74 | 15.1 | 5.26 | 2.65 | 0.61 | 0.39 | |||
2022–2023 | C | December | 20.6 | 19.8 | 20.07 | 14.29 | 4.45 | 3.35 | 1.87 | 0.03 |
January | 21.5 | 21.75 | 12.83 | 3.63 | 3.43 | 3.63 | 0.47 | |||
February | 21.0 | 21.24 | 13.82 | 4.46 | 2.57 | 2.39 | 0.75 | |||
March | 18.9 | 19.19 | 13.82 | 4.46 | 2.57 | 2.39 | 0.75 |
pH | EC (mS/m) | Total Nitrogen (%) | Calcium (cmol/kg) | Magnesium (cmol/kg) | Sodium (mg/kg) | Potassium (mg/kg) | Copper (mg/kg) | Zinc (mg/kg) | Manganese (mg/kg) | Total Carbon (%) | Water % | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Site | ||||||||||||
Site A | 6.75 ± 1.12 | 9.26 ± 3.02 | 0.10 ± 0.04 | 4.79 ± 3.98 | 1.05 ± 0.75 | 64.33 ± 12.06 | 17.33 ± 6.66 | 1.25 ± 0.66 | 0.56 ± 0.36 | 2.53 ± 3.50 | 1.44 ± 1.04 | 2.85 ± 0.45 |
Site B | 6.05 ± 0.58 | 8.50 ± 1.91 | 0.09 ± 0.07 | 2.59 ± 2.57 | 1.52 ± 0.16 | 50.00 ± 3.00 | 60.67 ± 60.96 | 1.28 ± 1.05 | 0.87 ± 0.81 | 0.41 ± 0.35 | 2.05 ± 2.15 | 3.01 ± 0.76 |
Site C | 5.96 ± 0.75 | 13.68 ± 4.04 | 0.10 ± 0.04 | 3.63 ± 2.72 | 1.32 ± 0.35 | 70.67 ± 14.57 | 52.67 ± 52.37 | 1.79 ± 0.64 | 1.05 ± 0.63 | 2.33 ± 3.31 | 0.93 ± 0.86 | 3.05 ± 0.68 |
Depth | ||||||||||||
0–30 | 7.08 ± 0.65 a | 10.14 ± 1.92 | 0.15 ± 0.02 a | 6.89 ± 1.81 a | 1.61 ± 0.30 | 54.67 ± 8.02 | 89.67 ± 56.72 | 1.56 ± 1.01 | 0.97 ± 0.73 | 4.51 ± 3.21 | 2.88 ± 1.43 a | 2.82 ± 0.86 |
30–60 | 6.16 ± 0.64 ab | 9.99 ± 6.24 | 0.08 ± 0.04 ab | 3.00 ± 1.48 b | 1.07 ± 0.48 | 68.00 ± 15.59 | 22.67 ± 7.57 | 1.35 ± 0.40 | 0.68 ± 0.17 | 0.54 ± 0.24 | 1.21 ± 0.50 ab | 2.85 ± 0.19 |
>60 | 5.51 ± 0.08 b | 11.31 ± 2.89 | 0.06 ± 0.01 b | 0.85 ± 0.14 b | 1.22 ± 0.57 | 62.33 ± 16.17 | 18.33 ± 5.03 | 1.40 ± 1.00 | 0.83 ± 0.85 | 0.23 ± 0.07 | 0.32 ± 0.21 b | 3.24 ± 0.60 |
Significance | ||||||||||||
Site | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Depth | * | ns | * | ** | ns | ns | ns | ns | ns | ns | * | ns |
Canopy Length (cm) | Canopy Width (cm) | Total Leaf Surface Area (cm3) | ||
---|---|---|---|---|
Season | ||||
2021–2022 | 124 ± 22 | 71 ± 16 | 65.7 ± 20.4 | |
2022–2023 | 96 ± 11 | 30 ± 6 | 33.9 ± 7.0 | |
Site | ||||
Site A | 109 ± 17 | 49 ± 21 b | 51.6 ± 15.9 b | |
Site B | 110 ± 17 | 52 ± 21 b | 39.0 ± 12.9 c | |
Site C | 114 ± 30 | 56 ± 29 a | 62.9 ± 29.2 a | |
Season × Site | ||||
2021–2022 | Site A | 116 ± 20 | 64 ± 15 | 63.6 ± 11.5 b |
Site B | 121 ± 13 | 68 ± 13 | 48.8 ± 7.3 c | |
Site C | 138 ± 24 | 83 ± 17 | 88.5 ± 18.1 a | |
2022–2023 | Site A | 100 ± 9 | 30 ± 3 | 37.7 ± 3.3 d |
Site B | 97 ± 11 | 32 ± 2 | 27.2 ± 6.4 e | |
Site C | 90 ± 10 | 30 ± 3 | 37.3 ± 5.6 d | |
Significance | ||||
Season | ns | ns | ns | |
Site | ns | ** | ** | |
Season × Site | ns | ns | * |
Non-Destructive | Destructive | |||||
---|---|---|---|---|---|---|
Berry Length (mm) | Berry Width (mm) | Fresh Weight (g) | Berry Length (mm) | Berry Width (mm) | ||
Season | ||||||
2021–2022 | 12.3 ± 2.1 | 12.2 ± 2.2 | 1.20 ± 0.40 b | 12.1 ± 1.3 a | 11.7 ± 1.3 a | |
2022–2023 | 13.1 ± 1.2 | 12.6 ± 1.2 | 1.26 ± 0.38 a | 11.6 ± 2.0 b | 11.4 ± 1.9 b | |
Site | ||||||
Site A | 12.5 ± 1.5 | 11.8 ± 2.0 | 1.18 ± 0.33 b | 11.4 ± 1.9 c | 11.1 ± 1.9 c | |
Site B | 12.1 ± 2.0 | 12.0 ± 1.3 | 1.18 ± 0.39 b | 11.9 ± 1.3 b | 11.7 ± 1.3 b | |
Site C | 13.7 ± 1.6 | 13.4 ± 1.7 | 1.34 ± 0.42 a | 12.3 ± 1.6 a | 11.9 ± 1.6 a | |
Season × Site | ||||||
2021–2022 | Site A | 11.5 ± 2.1 c | 11.5 ± 2.3 | 1.21 ± 0.34 b | 12.1 ± 1.2 bc | 11.7 ± 1.2 b |
Site B | 11.9 ± 1.5 c | 11.7 ± 1.4 | 1.17 ± 0.43 bc | 12.0 ± 1.4 c | 11.7 ± 1.4 b | |
Site C | 14.0 ± 1.9 a | 13.5 ± 2.3 | 1.22 ± 0.42 b | 12.2 ± 1.3 ab | 11.8 ± 1.3 b | |
2022–2023 | Site A | 12.8 ± 1.4 b | 12.0 ± 1.4 | 1.14 ± 0.33 c | 10.6 ± 2.3 d | 10.4 ± 2.2 c |
Site B | 13.2 ± 1.1 ab | 12.4 ± 1.0 | 1.20 ± 0.34 b | 11.9 ± 1.2 c | 11.6 ± 1.2 b | |
Site C | 13.4 ± 1.1 ab | 13.2 ± 1.0 | 1.46 ± 0.38 a | 12.3 ± 1.8 a | 12.0 ± 1.8 a | |
Significance | ||||||
Season | ns | ns | ** | *** | *** | |
Site | ns | ns | *** | *** | *** | |
Season × Site | * | ns | *** | *** | *** |
Transpiration Rate (g/day) | Transpiration Rate per Unit Area (g/(Day cm2)) | Skin Water Conductivity (ROU) | ||
---|---|---|---|---|
Season | ||||
2021–2022 | 0.055 ± 0.023 | 0.010 ± 0.005 | 37.3 ± 19.6 | |
2022–2023 | 0.070 ± 0.048 | 0.014 ± 0.011 | 43.6 ± 31.7 | |
Site | ||||
Site A | 0.060 ± 0.046 | 0.012 ± 0.010 ab | 39.6 ± 31.1 b | |
Site B | 0.075 ± 0.040 | 0.016 ± 0.010 a | 52.1 ± 27.4 a | |
Site C | 0.049 ± 0.024 | 0.009 ± 0.004 b | 30.8 ± 13.5 c | |
Season × Site | ||||
2021–2022 | Site A | 0.049 ± 0.017 | 0.010 ± 0.004 | 34.7 ± 17.3 |
Site B | 0.058 ± 0.029 | 0.012 ± 0.007 | 44.2 ± 27.0 | |
Site C | 0.048 ± 0.022 | 0.009 ± 0.003 | 33.5 ± 9.1 | |
2022–2023 | Site A | 0.071 ± 0.062 | 0.015 ± 0.013 | 44.6 ± 40.0 |
Site B | 0.093 ± 0.041 | 0.019 ± 0.010 | 60.1 ± 25.7 | |
Site C | 0.049 ± 0.025 | 0.009 ± 0.005 | 28.5 ± 16.1 | |
Significance | ||||
Season | ns | ns | ns | |
Site | ns | * | * | |
Season × Site | ns | ns | ns |
Yield (kg) | Bunches per Vine | Shoot Length (cm) | Vine Cane Weight (kg) | Ravaz Index | ||
---|---|---|---|---|---|---|
Season | ||||||
2021–2022 | 1.86 ± 1.47 | 22.2 ± 16.6 a | 92 ± 21 a | 0.45 ± 0.35 | 5.13 ± 5.00 | |
2022–2023 | 1.88 ± 1.47 | 18.2 ± 9.7 b | 59 ± 21 b | 0.30 ± 0.24 | 6.04 ± 3.34 | |
Site | ||||||
Site A | 1.73 ± 0.88 b | 16.9 ± 7.2 b | 63 ± 22 c | 0.29 ± 0.13 b | 6.53 ± 3.48 a | |
Site B | 0.87 ± 0.59 c | 11.4 ± 6.1 c | 78 ± 24 b | 0.22 ± 0.10 c | 5.41 ± 7.00 ab | |
Site C | 2.88 ± 1.95 a | 33.1 ± 7.8 a | 88 ± 31 a | 0.75 ± 0.40 a | 4.00 ± 2.14 b | |
Season × Site | ||||||
2021–2022 | Site A | 1.86 ± 0.97 b | 19.0 ± 8.0 bc | 81 ± 14 | 0.37 ± 0.13 c | 5.70 ± 3.59 ab |
Site B | 0.87 ± 0.59 c | 11.4 ± 6.1 d | 92 ± 16 | 0.24 ± 0.11 d | 5.41 ± 7.00 ab | |
Site C | 3.48 ± 1.65 a | 44.3 ± 16.5 a | 107 ± 28 | 0.92 ± 0.40 a | 3.83 ± 1.56 b | |
2022–2023 | Site A | 1.60 ± 0.77 b | 14.7 ± 5.7 cd | 45 ± 10 | 0.22 ± 0.06 d | 7.35 ± 3.20 a |
Site B | N.A. | N.A. | 65 ± 23 | 0.21 ± 0.10 d | N.A. | |
Site C | 2.28 ± 2.07 b | 23.2 ± 11.9 b | 69 ± 20 | 0.58 ± 0.33 b | 4.17 ± 2.60 b | |
Significance | ||||||
Season | ns | * | *** | ns | ns | |
Site | *** | *** | *** | *** | *** | |
Season × Site | * | *** | ns | *** | ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blancquaert, E.H.; Majewski, E.T.; Crauwels, S.; Dai, Z.; Schorn-García, D. Grapevine Phenology, Vegetative and Reproductive Characteristics of Vitis vinifera L. cv Chardonnay in the Cape South Coast Region in South Africa. Agriculture 2025, 15, 1981. https://doi.org/10.3390/agriculture15181981
Blancquaert EH, Majewski ET, Crauwels S, Dai Z, Schorn-García D. Grapevine Phenology, Vegetative and Reproductive Characteristics of Vitis vinifera L. cv Chardonnay in the Cape South Coast Region in South Africa. Agriculture. 2025; 15(18):1981. https://doi.org/10.3390/agriculture15181981
Chicago/Turabian StyleBlancquaert, Erna Hailey, Emile Tomas Majewski, Sam Crauwels, Zhanwu Dai, and Daniel Schorn-García. 2025. "Grapevine Phenology, Vegetative and Reproductive Characteristics of Vitis vinifera L. cv Chardonnay in the Cape South Coast Region in South Africa" Agriculture 15, no. 18: 1981. https://doi.org/10.3390/agriculture15181981
APA StyleBlancquaert, E. H., Majewski, E. T., Crauwels, S., Dai, Z., & Schorn-García, D. (2025). Grapevine Phenology, Vegetative and Reproductive Characteristics of Vitis vinifera L. cv Chardonnay in the Cape South Coast Region in South Africa. Agriculture, 15(18), 1981. https://doi.org/10.3390/agriculture15181981