Genome-Wide Identification and Cold Stress Response Analysis of the Rboh Gene Family in Pomegranate (Punica granatum L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of Identification and Physicochemical Properties in Pomegranate Rboh Gene Family
2.2. Phylogenetic Analysis of PgRbohs
2.3. Analysis of Motifs, Gene Structures, and Conserved Domains
2.4. Prediction of PgRboh Protein Structures
2.5. Identification of Cis-Acting Elements
2.6. Tissue-Specific Expression Analysis
2.7. Plant Materials and Low-Temperature Treatment
2.8. RNA Extraction and RT-qPCR Analysis
2.9. Subcellular Localization
3. Results
3.1. Identification and Basic Information of PgRboh Genes Members
3.2. Phylogenetic Analysis of Pomegranate Rboh Family Members
3.3. The Structural Domains of PgRboh Exhibit Similarity to Those of Other Plant Rboh Proteins
3.4. Analysis of Motifs, Gene Structures, and Conserved Domains of PgRbohs
3.5. Prediction of Protein Secondary/Tertiary Structures and Phosphorylation Sites of PgRbohs
3.6. Analysis of Cis-Acting Elements of the Pomegranate Rboh Genes
3.7. Tissue-Specific Expression of PgRboh Genes
3.8. Subcellular Localization of PgRbohs
3.9. Expression Patterns of Pomegranate Rboh Family Genes in Response to Low-Temperature Stress
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shiade, S.R.G.; Zand-Silakhoor, A.; Fathi, A.; Rahimi, R.; Minkina, T.; Rajput, V.D.; Zulfiqar, U.; Chaudary, T. Plant metabolites and signaling pathways in response to biotic and abiotic stresses: Exploring bio stimulant applications. Plant Stress 2024, 12, 100454. [Google Scholar] [CrossRef]
- Ahanmmed, G.J.; Li, Z.; Chen, J.Y.; Dong, Y.F.; Qu, K.H.; Guo, T.M.; Wang, F.H.; Liu, A.R.; Chen, S.C.; Li, X. Reactive oxygen species signaling in melatonin-mediated plant stress response. Plant Physiol. Biochem. 2024, 207, 108398. [Google Scholar] [CrossRef]
- Choudhury, F.K.; Rivero, R.M.; Blumwald, E.; Mittler, R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2016, 90, 856–867. [Google Scholar] [CrossRef]
- Noctor, G.; Foyer, C.H. Intracellular Redox Compartmentation and ROS-Related Communication in Regulation and Signaling. Plant Physiol. 2016, 171, 1581–1592. [Google Scholar] [CrossRef] [PubMed]
- Turkan, I. ROS and RNS: Key signalling molecules in plants. J. Exp. Bot. 2018, 69, 3313–3315. [Google Scholar] [CrossRef] [PubMed]
- Sierla, M.; Waszczak, C.; Vahisalu, T.; Kangasjärvi, J. Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant Physiol. 2016, 171, 1569–1580. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef]
- Sagi, M.; Fluhr, R. Production of Reactive Oxygen Species by Plant NADPH Oxidases. Plant Physiol. 2006, 141, 336–340. [Google Scholar] [CrossRef]
- Kadota, Y.; Sklenar, J.; Derbyshire, P.; Stransfeld, L.; Asai, S.; Ntoukakis, V.; Jones, J.D.G.; Shirasu, K.; Menke, F.; Jones, A.; et al. Direct Regulation of the NADPH Oxidase RBOHD by the PRR-Associated Kinase BIK1 during Plant Immunity. Mol. Cell 2014, 54, 43–55. [Google Scholar] [CrossRef]
- Bedard, K.; Krause, K.H. The NOX family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology. Physiol. Rev. 2007, 87, 245–313. [Google Scholar] [CrossRef]
- Li, Q.Y.; Li, P.; Htwe, N.M.P.S.; Shangguan, K.K.; Liang, Y. Antepenultimate residue at the C-terminus of NADPH oxidase RBOHD is critical for its function in the production of reactive oxygen species in Arabidopsis. J. Zhejiang Univ. Sci. B 2019, 20, 713–727. [Google Scholar] [CrossRef]
- Oda, T.; Hashimoto, H.; Kuwabara, N.; Akashi, S.; Hayashi, K.; Kojima, C.; Wong, H.L.; Kawasaki, T.; Shimamoto, K.; Sato, M.; et al. Structure of the N-terminal Regulatory Domain of a Plant NADPH Oxidase and Its Functional Implications. J. Biol. Chem. 2010, 285, 1435–1445. [Google Scholar] [CrossRef]
- Mittler, R.; Vanderauwera, S.; Gollery, M.; Breusegem, F.V. Reactive oxygen gene network of plants. Trends Plant Sci. 2004, 9, 490–498. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, X.Y.; Tang, C.; Lv, S.Z.; Zhang, S.L.; Wu, J.Y.; Wang, P. PbRbohH/J mediates ROS generation to regulate the growth of pollen tube in pear. Plant Physiol. Biochem. 2024, 207, 108342. [Google Scholar] [CrossRef]
- Torres, M.A.; Dangl, J.L.; Jones, J.D.G. Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc. Natl. Acad. Sci. USA 2002, 99, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Arnaud, D.; Deeks, M.J.; Smirnoff, N. RBOHF activates stomatal immunity by modulating both reactive oxygen species and apoplastic pH dynamics in Arabidopsis. Plant J. 2023, 116, 404–415. [Google Scholar] [CrossRef] [PubMed]
- Sagi, M.; Davydov, O.; Orazova, S.; Yesbergenova, Z.; Ophir, R.; Stratmann, J.W.; Fluhr, R. Plant respiratory burst oxidase homologs impinge on wound responsiveness and development in Lycopersicon esculentum. Plant Cell 2004, 16, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Lin, I.S.; Wu, Y.S.; Chen, C.T.; Chen, G.H.; Hwang, S.G.; Jauh, G.Y.; Tzen, J.T.C.; Yang, C.Y. AtRBOH I confers submergence tolerance and is involved in auxin-mediated signaling pathways under hypoxic stress. Plant Growth Regul. 2017, 83, 277–285. [Google Scholar] [CrossRef]
- Wang, Q.W.; Ni, L.; Cui, Z.Z.; Jiang, J.J.; Chen, C.; Jiang, M.Y. The NADPH oxidase OsRbohA increases salt tolerance by modulating K+ homeostasis in rice. Crop J. 2019, 10, 1611–1622. [Google Scholar] [CrossRef]
- Kaur, G.; Pati, P.K. Analysis of Cis-acting regulatory elements of Respiratory burst oxidase homolog (Rboh) gene families in Arabidopsis and rice provides clues for their diverse functions. Comput. Biol. Chem. 2016, 62, 104–118. [Google Scholar] [CrossRef]
- Yoshie, Y.; Goto, K.; Takai, R.; Iwano, M.; Takayama, S.; Isogai, A.; Che, F.S. Function of the rice gp91phox homologs OsrbohA and OsrbohE genes in ROS-dependent plant immune responses. Plant Biotechnol. 2005, 22, 127–135. [Google Scholar] [CrossRef]
- Chen, Y.T.; Zhang, R.; Wang, R.J.; Li, J.D.; Wu, B.; Zhang, H.W.; Xiao, G.Q. Overexpression of OsRbohH Enhances Heat and Drought Tolerance through ROS Homeostasis and ABA Mediated Pathways in Rice (Oryza sativa L.). Plants 2024, 13, 2494. [Google Scholar] [CrossRef]
- Di, Q.H.; Li, Y.S.; Li, S.Z.; Shi, A.K.; Zhou, M.D.; Ren, H.Z.; Yan, Y.; He, C.X.; Wang, J.; Sun, M.T.; et al. Photosynthesis Mediated by RBOH-Dependent Signaling Is Essential for Cold Stress Memory. Antioxidants 2022, 11, 969. [Google Scholar] [CrossRef]
- Liu, D.; Li, Y.Y.; Zhou, Z.C.; Xiang, X.H.; Liu, X.; Wang, J.; Hu, Z.R.; Xiang, S.P.; Li, W.; Xiao, Q.Z.; et al. Tobacco transcription factor bHLH123 improves salt tolerance by activating NADPH oxidase NtRbohE expression. Plant Physiol. 2021, 186, 1706–1720. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.Z.; Kakar, K.U.; Yang, Z.X.; Nawaz, Z.; Lin, S.F.; Guo, Y.S.; Ren, X.L.; Baloch, A.A.; Han, D.J. Systematic study of the stress-responsive Rboh gene family in Nicotiana tabacum: Genome-wide identification, evolution and role in disease resistance. Genomics 2020, 112, 1404–1418. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.J.; Guo, Y.L.; Li, J.Y.; Su, Z.Z.; Wang, C.X.; Zhang, R.M.; Wei, C.H.; Ma, J.X.; Zhang, X.; Li, H. Positive Interaction between H2O2 and Ca2+ Mediates Melatonin-Induced CBF Pathway and Cold Tolerance in Watermelon (Citrullus lanatus L.). Antioxidants 2021, 10, 1457. [Google Scholar] [CrossRef]
- Zheng, X.L.; Yang, H.F.; Zou, J.P.; Jin, J.P.; Qi, Z.Y.; Yang, P.; Yu, J.Q.; Zhou, J. SnRK1α1-mediated RBOH1 phosphorylation regulates reactive oxygen species to enhance tolerance to low nitrogen in tomato. Plant Cell 2025, 37, koae321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Wang, X.; Yan, A.; Deng, J.; Xie, Y.Q.; Liu, S.Y.; Liu, D.B.; He, L.; Weng, J.F.; Xu, J.Y. Evolutionary analysis of Respiratory Burst Oxidase Homolog (RBOH) genes in plants and characterization of ZmRBOHs. Int. J. Mol. Sci. 2023, 24, 3858. [Google Scholar] [CrossRef]
- Chu, J.S.; Monte, I.; DeFalco, T.A.; Köster, P.; Derbyshire, P.; Menke, F.L.H.; Zipfel, F. Conservation of the PBL-RBOH immune module in land plants. Curr. Biol. 2023, 33, 1030–1037. [Google Scholar] [CrossRef]
- Sharma, Y.; Ishu; Shumayla; Dixit, S.; Singh, K.; Upadhyay, S.K. Decoding the features and potential roles of respiratory burst oxidase homologs in bread wheat. Curr. Plant Biol. 2024, 37, 100315. [Google Scholar] [CrossRef]
- Wu, Y.T.; Bai, L.J.; Dai, X.Z.; Ba, L.J.; Wan, J.H.; Liang, W.Q.; Lin, H.T.; Fan, Z.Q. Comparative transcriptomic analysis reveals the reactive oxygen species metabolism involving in melatonin-alleviated chilling injury in postharvest banana fruit. Plant Physiol. Biochem. 2025, 222, 10993. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhang, Y.W.; Luo, L.; Lu, C.Y.; Kong, W.W.; Cheng, L.B.; Xu, X.Y.; Liu, J.H. Genome Wide Identification of Respiratory Burst Oxidase Homolog (Rboh) Genes in Citrus sinensis and Functional Analysis of CsRbohD in Cold Tolerance. Int. J. Mol. Sci. 2022, 23, 648. [Google Scholar] [CrossRef]
- Chen, H.; Lin, Q.J.; Li, Z.; Chu, J.; Dong, H.; Mei, Q.; Xuan, Y.H. Calcineurin B-like interacting protein kinase 31 confers resistance to sheath blight via modulation of ROS homeostasis in rice. Mol. Plant Pathol. 2023, 24, 221–231. [Google Scholar] [CrossRef]
- Zhu, Y.; Su, H.; Liu, X.X.; Sun, J.F.; Xiang, L.; Liu, Y.J.; Hu, Z.W.; Xiong, X.Y.; Yang, X.M.; Bhutto, S.H.; et al. Identification of NADPH Oxidase Genes Crucial for Rice Multiple Disease Resistance and Yield Traits. Rice 2024, 17, 1. [Google Scholar] [CrossRef]
- Zhao, Z.F.; Sun, A.Q.; Shan, W.F.; Zheng, X.H.; Wang, Y.; Bai, L.; Xu, Y.C.; An, Z.; Wang, X.Y.; Wang, Y.M.; et al. OsRbohI is the indispensable NADPH oxidase for molecular-patterns-induced reactive oxygen species production in rice. Plant Commun. 2024, 5, 101129. [Google Scholar] [CrossRef]
- Xie, H.T.; Wan, Z.Y.; Li, S.; Zhang, Y. Spatiotemporal production of reactive oxygen species by NADPH oxidase is critical for Tapetal programmed cell death and Pollen Development in Arabidopsis. Plant Cell 2014, 26, 2007–2023. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; McClees, S.F.; Afaq, F. Pomegranate for Prevention and Treatment of Cancer: An Update. Molecules 2017, 22, 177. [Google Scholar] [CrossRef] [PubMed]
- Shaygannia, E.; Bahmani, M.; Zamanzad, B.; Rafieian-Kopaei, M. A Review Study on Punica granatum L. J. Evid.-Based Complement. Altern. Med. 2016, 21, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Guan, S.H.; Chai, Y.Q.; Hao, Q.; Ma, Y.D.; Wang, W.L.; Liu, H.Y.; Diao, M. Transcriptomic and physiological analysis reveals crucial biological pathways associated with low-temperature stress in Tunisian soft-seed pomegranate (Punica granatum L.). J. Plant Interact. 2023, 18, 2152887. [Google Scholar] [CrossRef]
- Chinnusamy, V.; Zhu, J.H.; Zhu, J.K. Cold stress regulation of gene expression in plants. Trends Plant Sci. 2007, 12, 444–451. [Google Scholar] [CrossRef]
- Zhao, S.S.; Lu, R.; Feng, L.J.; Zheng, M.Y.; Zhang, H.; Yin, Y.L.; Zheng, L. Functional Characterization of Pomegranate CAMTA3 in Cold Stress Responses. Plants 2025, 14, 813. [Google Scholar] [CrossRef]
- Liu, L.B.; Xu, S.W.; Zhang, L.H.; Zheng, J. A Genome-Wide Analysis of the BAM Gene Family and Identification of the Cold-Responsive Genes in Pomegranate (Punica granatum L.). Plants 2024, 13, 1321. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Shua, Z.Y.; Zhao, D.G.; Liu, B.B.; Luo, H.; Chen, Y.; Meng, D.; Song, Z.H.; Yang, Q.; Wang, Z.C.; et al. Genome assembly of pomegranate highlights structural variations driving population differentiation and key loci underpinning cold adaption. Hortic. Res. 2025, 12, uhaf022. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−∆∆CT Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Kshirsagar, K.R.; Pathak, S.S.; Patil, S.M. Pomegranate (Punica granatum L): A fruitful fountain of remedial potential. Cureus 2023, 15, e45677. [Google Scholar] [CrossRef]
- Alqahtani, R.A.; Almutairi, B.; Al-Zharani, M.; Alkahtane, A.A.; AL-Johani, N.S.; Alkeraishan, N.; Yaseen, K.N.; Aljarba, N.H.; Almasoud, H.; Aljuhani, B.; et al. The Potential Therapeutic Efficacy of Pomegranate (Punica granatum) Seeds on MCF-7 Breast Cancer Cell Line. Nat. Prod. Commun. 2024, 19, 1934578X241302555. [Google Scholar] [CrossRef]
- Chapman, J.M.; Muhlemann, J.K.; Gayomba, S.R.; Muday, G.K. RBOH-Dependent ROS synthesis and ROS scavenging by Plant Specialized metabolites to modulate Plant Development and stress responses. Chem. Res. Toxicol. 2019, 32, 370–396. [Google Scholar] [CrossRef]
- Ma, J.B.; Ren, W.C.; Jiang, S.; Kong, L.Y.; Ma, L.L.; He, J.J.; Wang, D.L.; Liu, W.L.; Ma, W.; Liu, X.B. Identification and expression analysis of the RBOH gene family of Isatis indigotica Fort. and the potential regulation mechanism of RBOH gene on H2O2 under salt stress. Plant Cell Rep. 2025, 44, 52. [Google Scholar] [CrossRef]
- Morales, J.; Kadota, Y.; Zipfel, C.; Molina, A.; Torres, M.A. The Arabidopsis NADPH oxidases RbohD and RbohF display differential expression patterns and contributions during plant immunity. J. Exp. Bot. 2016, 67, 1663–1676. [Google Scholar] [CrossRef]
- Marino, D.; Andrio, E.; Danchin, E.G.J.; Oger, E.; Gucciardo, S.; Lambert, A.; Puppo, A.; Pauly, N. A Medicago truncatula NADPH oxidase is involved in symbiotic nodule functioning. New Phytol. 2011, 189, 580–592. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, B.; Gupta, A.K.; Kaur, S.; Kaur, J. Nodule metabolism in cold stress tolerant and susceptible chickpea cultivars. Symbiosis 2014, 64, 33–42. [Google Scholar] [CrossRef]
- Wang, Y.H.; Liu, Z.S.; Li, L.; Pan, X.J.; Yao, K.D.; Wei, W.Y.; Liao, W.B.; Wang, C.L. The Characteristics and Expression Analysis of the Tomato SlRBOH Gene Family under Exogenous Phytohormone Treatments and Abiotic Stresses. Int. J. Mol. Sci. 2024, 25, 5780. [Google Scholar] [CrossRef]
- Camejo, D.; Guzmán-Cedeño, Á.; Moreno, A. Reactive oxygen species, essential molecules, during plant-pathogen interactions. Antioxidants 2020, 9, 481. [Google Scholar] [CrossRef]
- Cao, M.Y.; Zhang, Y.; Zou, X.X.; Yin, H.P.; Yin, Y.; Li, Z.Q.; Xiao, W.J.; Liu, S.C.; Li, Y.L.; Guo, X.H. Genome-Wide Identification, Classification, Expression Analysis, and Screening of Drought and Heat Resistance-Related Candidates of the Rboh Gene Family in Wheat. Plants 2024, 13, 3377. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.M.; Zhang, Y.; Pan, T.; Li, Y.Y.; Hong, Y.H.; Chen, W.J.; Yang, Y.; Zhao, G.J.; Shabala, S.; Yu, M. Genome-wide analysis of respiratory burst oxidase homolog gene family in pea (Pisum sativum L.). Front. Plant Sci. 2023, 14, 1321952. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.W.; Xie, Y.D.; Ali, B.; Ahmed, W.; Tang, Y.; Li, H.X. Genome-wide Identification, Classification, Evolutionary Expansion and Expression of Rboh Family Genes in Pepper (Capsicum annuum L.). Trop. Plant Biol. 2021, 14, 251–266. [Google Scholar] [CrossRef]
- Mahalingam, R.; Graham, D.; Walling, J.G. The Barley (Hordeum vulgare ssp. vulgare) Respiratory Burst Oxidase Homolog (HvRBOH) Gene Family and Their Plausible Role on Malting Quality. Front. Plant Sci. 2021, 12, 608541. [Google Scholar] [CrossRef]
- Liu, Y.K.; He, C.Z. Regulation of plant reactive oxygen species (ROS) in stress responses: Learning from AtRBOHD. Plant Cell Rep. 2016, 35, 995–1007. [Google Scholar] [CrossRef]
- Begum, K.; Das, A.; Ahmed, R.; Akhtar, S.; Kulkarni, R.; Banu, S. Genome-wide analysis of respiratory burst oxidase homolog (Rboh) genes in Aquilaria species and insight into ROS-mediated metabolites biosynthesis and resin deposition. Front. Plant Sci. 2024, 14, 1326080. [Google Scholar] [CrossRef]
- Yang, X.Q.; Zhang, F.; Yang, M.; He, Y.Y.; Li, Z.Y.; Yang, J.L.; Wang, X.F. The NADPH-oxidase LsRbohC1 plays a role in lettuce (Lactuca sativa) seed germination. Plant Physiol. Biochem. 2024, 154, 751–757. [Google Scholar] [CrossRef]
Gene ID | Accession No. | Amino Acids Length (aa) | Molecular Weight (kDa) | PI | Instability Index | GRAVY | Subcellular Localization Predicted |
---|---|---|---|---|---|---|---|
PgRbohA | XP_031377521.1 | 899 | 101.93 | 9.17 | 41.81 | −0.231 | Cell membrane |
PgRbohB | XP_031379285.1 | 929 | 105.76 | 9.25 | 50.22 | −0.253 | Cell membrane |
PgRbohC | XP_031388300.1 | 834 | 95.88 | 9.05 | 39.72 | −0.236 | Cell membrane |
PgRbohD | XP_031391961.1 | 969 | 109.36 | 9.40 | 47.71 | −0.231 | Cell membrane |
PgRbohE | XP_031401965.1 | 932 | 104.49 | 9.25 | 40.36 | −0.238 | Cell membrane |
PgRbohF | XP_031400535.1 | 860 | 98.95 | 9.03 | 46.56 | −0.244 | Cell membrane |
PgRbohG | XP_031400876.1 | 881 | 101.62 | 8.99 | 44.56 | −0.273 | Cell membrane |
PgRbohH | XP_031404618.1 | 811 | 92.33 | 8.92 | 45.58 | −0.083 | Cell membrane |
Protein Name | Secondary Structure | Phosphorylation Site Number/Phosphorylation Amino Acid Number | |||||
---|---|---|---|---|---|---|---|
Alpha Helix | Extended Strand | Beta Turn | Random Coil | Serine | Threonine | Tyrosine | |
PgRbohA | 41.38% | 13.35% | 0.00% | 45.27% | 45 | 34 | 10 |
PgRbohB | 44.99% | 10.44% | 0.00% | 44.56% | 68 | 31 | 13 |
PgRbohC | 44.00% | 12.35% | 0.00% | 43.65% | 38 | 23 | 7 |
PgRbohD | 43.14% | 12.18% | 0.00% | 44.69% | 64 | 34 | 13 |
PgRbohE | 42.49% | 10.73% | 0.00% | 46.78% | 56 | 28 | 14 |
PgRbohF | 43.84% | 13.02% | 0.00% | 43.14% | 46 | 27 | 6 |
PgRbohG | 43.36% | 13.39% | 0.00% | 43.25% | 49 | 26 | 8 |
PgRbohH | 44.76% | 11.96% | 0.00% | 43.28% | 62 | 28 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheng, Y.; Wang, X.; Wang, C.; Xu, X.; Jiang, L. Genome-Wide Identification and Cold Stress Response Analysis of the Rboh Gene Family in Pomegranate (Punica granatum L.). Agriculture 2025, 15, 1883. https://doi.org/10.3390/agriculture15171883
Sheng Y, Wang X, Wang C, Xu X, Jiang L. Genome-Wide Identification and Cold Stress Response Analysis of the Rboh Gene Family in Pomegranate (Punica granatum L.). Agriculture. 2025; 15(17):1883. https://doi.org/10.3390/agriculture15171883
Chicago/Turabian StyleSheng, Yu, Xiaoyu Wang, Chenyu Wang, Xiaoyong Xu, and Lijuan Jiang. 2025. "Genome-Wide Identification and Cold Stress Response Analysis of the Rboh Gene Family in Pomegranate (Punica granatum L.)" Agriculture 15, no. 17: 1883. https://doi.org/10.3390/agriculture15171883
APA StyleSheng, Y., Wang, X., Wang, C., Xu, X., & Jiang, L. (2025). Genome-Wide Identification and Cold Stress Response Analysis of the Rboh Gene Family in Pomegranate (Punica granatum L.). Agriculture, 15(17), 1883. https://doi.org/10.3390/agriculture15171883