A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Research Methods
2.3.1. Improved VOR Model for Cropland System Health Assessment Framework
- Quantifying cropland system vigor
- Quantifying cropland system organization
- Quantifying cropland system resilience
- Quantifying cropland system pressure
- ➀
- Soil erosion intensity
- ➁
- Wind erosion intensity
- ➂
- Human activity intensity
2.3.2. Spatial Autocorrelation Analysis
2.3.3. Geographic Detector
2.3.4. Spatiotemporal Geographic Weighted Model
3. Results
3.1. Spatiotemporal Dynamics of Cropland System Health
3.2. Spatiotemporal Differentiation of Cropland System Pressures
3.3. Fishnet-Scale Patterns of Cropland System Health
3.4. Spatial Autocorrelation Analysis of Cropland System Health
3.5. Driving Factors of Cropland System Health Patterns
3.5.1. Factor-Health Correlations
3.5.2. Driving Factor Impacts
3.5.3. Spatiotemporal Heterogeneity of Driving Factors
4. Discussion
4.1. Spatiotemporal Evolution of Cropland System Health in Xinjiang
4.2. Mechanisms Driving Cropland System Health
4.3. Limitations and Prospects
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kong, X.B. China must protect high-quality arable land. Nature 2014, 50, 7. [Google Scholar] [CrossRef]
- Xiao, P.N.; Zhang, Y.; Qian, P.; Lu, M.Y.; Yu, Z.P. Spatiotemporal Characteristics, Decoupling Effect and Driving Factors of Carbon Emission from Cultivated Land Utilization in Hubei Province. Int. J. Environ. Res. Public Health 2022, 19, 9326. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Natural Resources of the People’s Republic of China. Main Data Bulletin of the Third National Land Survey [EB/OL]; Ministry of Natural Resources of the People’s Republic of China: Beijing, China, 2023.
- Roberts, L. 9 Billion? Science 2011, 333, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Alexandratos, N.; Bruinsma, J. World Agriculture Towards2030/2050: The 2012 Revision; Food and Agriculture Organization: Rome, Italy, 2012. [Google Scholar]
- Liu, H.J.; Chen, L.; Bai, X.H.; Wang, N.; Cui, Q.L.; Liu, J.; Roland, B.; Qiu, T.Y.; Mei, Y.X.; He, H.R.; et al. Exogenous silicon facilitates safe crop production in cadmium-contaminated soils: A comprehensive me-ta-analysis. J. Hazard. Mater. 2024, 480, 136368. [Google Scholar] [CrossRef]
- Du, J.J.; Liu, W.T.; Zhou, Q.X. Combating the Food Crisis and Farmland Contamination with Safe Farming Practices. J. Agric. Food Chem. 2024, 72, 15053–15054. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Ding, G.J.; Dai, Q.H.; Yan, Y.J. Assessing the degree of soil erosion in karst mountainous areas by extenics. Catena 2022, 209, 105800. [Google Scholar] [CrossRef]
- Zheng, C.Z.; Li, Y.Q.; Wang, X.Y.; Wang, L.L.; Duan, Y.L.; Chen, Y.; Lu, J.N. Desertification indirectly affects soil fauna by reducing complexity of soil habitats and diversity of energy sources. Sci. Total Environ. 2024, 954, 176509. [Google Scholar] [CrossRef]
- Blanca, T.R.; Christian, V.; Gabriela, J.; Jackie, C.; Genoveva, G.A.; Edison, B.; Laura, G.L. Aquatic biodiversity loss in Andean urban streams. Urban Ecosyst. 2022, 25, 1619–1629. [Google Scholar] [CrossRef]
- Li, X.G.; Wu, Q.; Liu, Y.J. Spatiotemporal Changes of Cultivated Land System Health Based on PSR-VOR Model—A Case Study of the Two Lake Plains, China. Int. J. Environ. Res. Public Health 2023, 20, 1629. [Google Scholar] [CrossRef]
- Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Main Data Bulletin of the Third National Land Survey of Xinjiang Uygur Autonomous Region; Ministry of Agriculture and Rural Affairs of the People’s Republic of China: Beijing, China, 2022.
- Jin, C.Y.; Du, H.R. Characteristics of spatial and temporal changes and zoning of cultivated land resilience in Xinjiang. Arid Land Geogr. 2024, 41, 1778–1788. [Google Scholar]
- Sun, X.B.; Cai, W.M.; Kong, X.B.; Li, Q.F.; Zhao, J. Quality regulation pattern and consolidation time zone of county-level cultivated land based on multi agent collaboration. Trans. Chin. Soc. Agric. Eng. 2023, 39, 232–245. [Google Scholar]
- Teng, J.L.; Hou, R.X.; Dungait, J.A.J.; Zhou, G.Y.; Kuzyakov, Y.; Zhang, J.B.; Tian, J.; Cui, Z.L.; Zhang, F.S.; Baquerizo, M.D. Conservation agriculture improves soil health and sustains crop yields after long-term warming. Nat. Commun. 2024, 15, 8785. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Z.T.; Bao, Y. Integrating ecosystem stress into the assessment of ecosystem health in karst areas and exploring its driving factors. Ecol. Indic. 2024, 167, 112662. [Google Scholar] [CrossRef]
- Su, H.; Li, X.Y.; Wu, C.F. Mechanism of Factors Influencing the Cultivated Land System Health in the Black Soil Region of Northeast China: A Case Study of Keshan County. Econ. Geogr. 2024, 44, 151–160. [Google Scholar]
- Zhou, X.P.; Liang, Y.; Li, X.T.; Chai, D. The spatiotemporal evolution and driving factors of farmland system health: Taking the middle and lower reaches of the Yangtze River as an example. Nat. Resour. Inf. 2024, 39, 1174–1192. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K.; Zhang, X.; Feng, Z. Evaluation on Farmland Health Productivity in Main Grain Production Areas: A Case Study in Wen County of Henan Province. China Land Sci. 2019, 33, 67–75. [Google Scholar]
- Moebius-Clune, B.; Moebius-Clune, D.; Gugino, B.; Idowu, O.; Schindelbeck, R.; Ristow, A. Comprehensive Assessment of Soil Health: The Cornell Framework Manual, 3.1 ed.; Cornell University: Ithaca, NY, USA, 2016. [Google Scholar]
- Zhao, Q.; Yu, S.; Xia, S.; Xu, H. Study on Health Evaluation of Cultivated Land Use System in the Area around Beijing and Tianjin. Chin. J. Soil Sci. 2017, 48, 285–291. [Google Scholar]
- Wu, F.; Mo, C.; Dai, X.; Li, H. Spatial Analysis of Cultivated Land Productivity, Site Condition and Cultivated Land Health at County Scale. Int. J. Environ. Res. Public Health 2022, 19, 12266. [Google Scholar] [CrossRef]
- Jafari, A.; Behjou, K.F.; Mostafazadeh, R. Ecosystem health assessment using multi-criteria approach in a forested eco-tone area in northwest Iran. J. Nat. Conserv. 2024, 79, 126589. [Google Scholar] [CrossRef]
- Li, S.J.; Liu, C.L.; Ge, C.Z.; Yang, J.; Liang, Z.L.; Li, X.; Cao, X.Y. Ecosystem health assessment using PSR model and obstacle factor diagnosis for Haizhou Bay, China. Ocean Coast. Manag. 2024, 250, 107024. [Google Scholar] [CrossRef]
- Lilburne, L.; Sparling, G.; Schipper, L. Soil quality monitoring in New Zealand: Development of an interpretative framework. Agric. Ecosyst. Environ. 2004, 1043, 535–544. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, K. Soil Health Evaluation of Farmland Based on Functional Soil Management—A Case Study of Yixing City, Jiangsu Province, China. Agriculture 2021, 117, 583. [Google Scholar] [CrossRef]
- Pan, Z.Z.; He, J.H.; Liu, D.F.; Wang, J.W.; Guo, X.N. Ecosystem health assessment based on ecological integrity and ecosystem services demand in the middle reaches of the yangtze river economic belt, China. Sci. Total Environ. 2021, 774, 144837. [Google Scholar] [CrossRef]
- Shen, W.; Zheng, Z.C.; Pan, L.; Qin, Y.C.; Li, Y. A integrated method for assessing the urban ecosystem health of rapid urbanized area in China based on SFPHD framework. Ecol. Indic. 2020, 121, 107071. [Google Scholar] [CrossRef]
- Loveland, T.R.; Merchant, J.M. Ecoregions and ecoregionalization: Geographical and ecological perspectives. Environ. Manag. 2004, 340 (Suppl. 1), S1–S13. [Google Scholar] [CrossRef]
- He, J.H.; Pan, Z.Z.; Liu, D.F.; Guo, X.N. Exploring the regional differences of ecosystem health and its driving factors in China. Sci. Total Environ. 2019, 673, 553–564. [Google Scholar] [CrossRef] [PubMed]
- Costanza, R. Ecosystem health and ecological engineering. Ecol. Eng. 2012, 45, 24–29. [Google Scholar] [CrossRef]
- Zeng, Q.M.; Wang, Y.R.; Wang, J.; Chen, L.G.; Huang, J.S. Spatial distribution and compensation strategy of land fallow based on quality-risk in arid areas. Trans. Chin. Soc. Agric. Eng. 2021, 37, 266–276. [Google Scholar]
- Liao, S.; Ji, Z.N.; Wang, P. Analysis of the spatial and temporal distribution characteristics and driving factors of cultivated land utilization ecological efficiency in Xinjiang. J. Agric. Resour. Environ. 2025, 1–14. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Li, D.J. Concept and classification of unstable farmland in arid area of Northwest China: A case study of Changji Prefecture, Xinjiang. Geogr. Res. 2021, 40, 597–612. [Google Scholar]
- Li, W.J.; Wang, Y.; Xie, S.Y.; Cheng, X. Coupling coordination analysis and spatiotemporal heterogeneity between ur-banization and ecosystem health in Chongqing municipality, China. Sci. Total Environ. 2021, 791, 148311. [Google Scholar] [CrossRef]
- Zhao, L.L.; Xia, Y.; Li, X.D.; Jiang, C.Q.; Lv, Y. Diagnosis of coupling, coordination and obstacles of ecologi-cal-production-living functions of the Xinjiang pastoral area in 2000 to 2021. J. Agric. Resour. Environ. 2025, 1–17. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.L.; Ma, J.N.; Xun, W.J.; Gao, L.L. Analysis on spatial-temporal changes of cultivated land produc-tivity in Jilin province from 2000 to 2019 based on EVI time series. Trans. CSAM 2022, 53, 158–166. [Google Scholar]
- Xu, X.L.; Li, J.H.; Shen, Z.C. Vulnerability of farmland ecosystems in countries along the “Belt and Road” and responses to climate change. J. Geo-Inf. Sci. 2020, 22, 877–886. [Google Scholar]
- Manob, D.; Arijit, D.; Paulo, P. Exploring the spatiotemporal dynamics of ecosystem health: A study on a rapidly ur-banizing metropolitan area of Lower Gangetic Plain, India. Ecol. Indic. 2021, 125, 107584. [Google Scholar] [CrossRef]
- Liu, X.C.; Li, S.Y.; Wang, S.; Bian, Z.X.; Zhou, W.; Wang, C.Q. Effects of farmland landscape pattern on spatial distri-bution of soil organic carbon in Lower Liaohe Plain of Northeastern China. Ecol. Indic. 2022, 145, 109652. [Google Scholar] [CrossRef]
- Thorsøe, M.; Noe, E.; Maye, D.; Vigani, M.; Kirwan, J.; Chiswell, H.; Grivins, M.; Adamsone-Fiskovica, A.; Tisenkopfs, T.; Tsakalou, E.; et al. Responding to change: Farming system resilience in a liberalized and volatile European dairy market. Land Use Policy 2020, 99, 105029. [Google Scholar] [CrossRef]
- Yang, S.J.; Song, S.; Li, F.D.; Yu, G.M.; He, G.Z.; Cui, H.T.; Wang, R.; Sun, B.; Du, D.; Chen, G.; et al. Evaluating farmland ecosystem resilience and its obstacle factors in Ethiopia. Ecol. Indic. 2023, 146, 109900. [Google Scholar] [CrossRef]
- Li, G.Y.; He, T.T.; Zhang, M.X.; Wu, C.F. Spatiotemporal variations in the eco-health condition of China’s long-term stable cultivated land using Google Earth Engine from 2001 to 2019. Appl. Geogr. 2022, 149, 102819. [Google Scholar] [CrossRef]
- Räsänen, A.T.; Tähtikarhu, M.; Hyväluoma, J. Exploring the RUSLE-based structural sediment connectivity approach for agricultural erosion management. Catena 2024, 246, 108420. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall-Erosion Losses from Cropland East of the Rocky Mountains: Guide for Selection of Practices for Soil and Water Conservation; Department of Agriculture: Washington, DC, USA, 1978.
- Li, H.C.; Chen, J.J.; Ling, M.; Chen, Z.Z.; Lan, Y.P. A framework for dynamic assessment of soil erosion and detection of driving factors in alpine grassland ecosystems using the RUSLE-InVEST (SDR) model and Geodetector: A case study of the source region of the Yellow River. Ecol. Inform. 2025, 85, 102928. [Google Scholar] [CrossRef]
- China Academy of Water Resources and Hydropower Research; Northwest A&F University; Changjiang Academy of Sciences of Yangtze River Water Resources Commission. Guidelines for Soil Loss Calculation in Production and Construction Projects: (SL773-2018); China Water Resources and Hydropower Press: Beijing, China, 2018. [Google Scholar]
- Lin, A.R.; Zhou, D.M.; Ma, J.; Zhu, X.Y.; Jiang, J.; Zhang, J. Evaluation of wind prevention and sand fixation function in Shule River Basin based on RWEQ model. Arid Land Geogr. 2024, 47, 58–67. [Google Scholar]
- Chen, Z.Q.; Yu, S.Y.; You, Y.J.; Yang, C.S.; Wang, C.X.; Lin, J.; Wu, W.T.; Yu, B.L. New nighttime light landscape metrics for analyzing urban-rural differentiation in economic development at township: A case study of Fujian Province, China. Appl. Geogr. 2023, 150, 102841. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Z.T. Landscape ecological risk assessment and its driving factors of multi-mountainous city. Ecol. Indic. 2023, 146, 109823. [Google Scholar] [CrossRef]
- An, W.K.; Wang, B.; Duan, L.; Cagnetta, G.; Yu, G. Emerging contaminants in the northwest area of the Tai Lake Basin, China: Spatial autocorrelation analysis for source apportionment and wastewater-based epidemiological analysis. Sci. Total Environ. 2022, 865, 161176. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, H.; Wang, F.Q.; Bing, Y.; Tang, L.; Du, Y.T.; Cui, L.B. Study on the multi-type drought propagation process and driving factors on the Tibetan Plateau. J. Hydrol. 2024, 645, 132162. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, L.Q.; Wang, J.Y.; Dong, G.C.; Wei, Y.L. Quantitative analysis of NDVI driving factors based on the geographical detector model in the Chengdu-Chongqing region, China. Ecol. Indic. 2023, 155, 110978. [Google Scholar] [CrossRef]
- Xia, H.; Yuan, S.F.; Prishchepov, A.V. Spatial-temporal heterogeneity of ecosystem service interactions and their so-cial-ecological drivers: Implications for spatial planning and management. Resour. Conserv. Recycl. 2023, 189, 106767. [Google Scholar] [CrossRef]
- Liu, Y.M.; Xu, N.Y.; Li, Z.J.; Wang, J.J.; Zeng, H. Differential impact of constructed land expansion on ecosystem health: A case study in the coastal region of the East China Sea. Ecol. Eng. 2022, 180, 106665. [Google Scholar] [CrossRef]
- Huang, B.; Wu, B.; Barry, M. Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. Int. J. Geogr. Inf. Sci. 2010, 24, 383–401. [Google Scholar] [CrossRef]
- Li, H.X.; Wan, H.W.; Sun, L.; Liu, Y.P.; Li, L.P. Remote sensing assessment and key driving factors of ecosystem health in Xinjiang. Arid Land Geogr. 2021, 44, 460–470. [Google Scholar]
- Ji, Z.N.; Wang, P.C. Measurement and dynamic evolution of resilience of cultivated land system level in arid areas: Taking Xinjiang as an example. J. Agric. Resour. Environ. 2025, 42, 592–601. [Google Scholar]
- Zhang, C.; Zhou, B.; Wang, Q.W. Effect of China’s western development strategy on carbon intensity. J. Clean. Prod. 2019, 215, 1170–1179. [Google Scholar] [CrossRef]
- Xiong, M.Q.; Li, J.L.; Sun, R.H. Unraveling the paradox of soil erosion and conservation: Insights from China. Sci. Total Environ. 2024, 955, 177134. [Google Scholar] [CrossRef]
- Fei, X.F.; Lou, Z.H.; Sheng, M.L.; Xiang, M.T.; Xiao, R.; Zhou, Q.R.; Lv, X.N. Estimating the spatial distribution and exploring the factors influencing cultivated land quality through a hybrid random forest and Bayesian maximum entropy model. Environ. Res. 2025, 285 Pt 2, 122386. [Google Scholar] [CrossRef]
- Shen, L.Q.; Li, Z.X.; Hao, J.X.; Wang, L.; Chen, H.H.; Wang, Y.J. Evaluating the Dynamic Response of Cultivated Land Expansion and Fallow Urgency in Arid Regions Using Remote Sensing and Multi-Source Data Fusion Methods. Agriculture 2025, 15, 839. [Google Scholar] [CrossRef]
Data Type | Time | Spatial Resolution | Purpose of the Data | Data Sources |
---|---|---|---|---|
Land use data | 2001–2023 | 30 m | Understand the distribution of cropland | Wuhan University’s CLCD data |
Administrative division data | / | / | Determination of the extent of the study area | National Bureau of Surveying, Mapping and Geoinformation Standard Map Service Website |
DEM | / | 90 m | Measuring the topographic relief of cropland | https://www.gscloud.cn (accessed on 13 October 2024) |
EVI | 2001–2023 | 500 m | Quantify the vitality of cropland | MODIS Product Dataset |
NPP | 2001–2023 | 500 m | Quantify the vitality of cropland | MODIS Product Dataset |
NDVI | 2001–2023 | 500 m | Quantify the stress on the cropland system | https://www.earthdata.nasa.gov (accessed on 5 November 2024) |
Precipitation data | 2001–2023 | 1000 m | Quantitative driving factors | National Earth System Science Data Center |
Temperature data | 2001–2023 | 1000 m | Quantitative driving factors | National Earth System Science Data Center |
Nighttime light data | 2001–2023 | 500 m | Quantitative driving factors | National Earth System Science Data Center |
Soil texture data | / | / | Quantify the stress on the cropland system | National Earth System Science Data Center |
Population density data | 2001–2023 | 1000 m | Quantitative driving factors | https://landscan.ornl.gov (accessed on 15 November 2024) |
Slope/(°) | 1–8 | 8–16 | 16–25 | 25–30 |
p-Value | 0.6 | 0.7 | 0.8 | 0.9 |
Type | Driving Factors | VIF |
---|---|---|
Human factors | Population density | 1.382 |
Nighttime light | 1.281 | |
Natural factors | DEM | 1.576 |
Slope | 1.531 | |
Annual precipitation | 2.116 | |
Annual mean temperature | 2.380 |
Year | DEM | Slope | Population Density | Nighttime Light | Precipitation | Temperature |
---|---|---|---|---|---|---|
2001 | 0.265 | 0.331 | 0.630 | 0.452 | 0.638 | 0.640 |
2012 | 0.260 | 0.295 | 0.582 | 0.408 | 0.603 | 0.606 |
2023 | 0.275 | 0.314 | 0.644 | 0.478 | 0.682 | 0.645 |
Average | 0.267 | 0.313 | 0.619 | 0.446 | 0.641 | 0.630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, J.; Shen, L.; Zhan, H.; Yang, G.; Chen, H.; Wang, Y. A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework. Agriculture 2025, 15, 1826. https://doi.org/10.3390/agriculture15171826
Hao J, Shen L, Zhan H, Yang G, Chen H, Wang Y. A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework. Agriculture. 2025; 15(17):1826. https://doi.org/10.3390/agriculture15171826
Chicago/Turabian StyleHao, Jiaxin, Liqiang Shen, Hui Zhan, Guang Yang, Huanhuan Chen, and Yuejian Wang. 2025. "A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework" Agriculture 15, no. 17: 1826. https://doi.org/10.3390/agriculture15171826
APA StyleHao, J., Shen, L., Zhan, H., Yang, G., Chen, H., & Wang, Y. (2025). A Spatiotemporal Assessment of Cropland System Health in Xinjiang with an Improved VOR Framework. Agriculture, 15(17), 1826. https://doi.org/10.3390/agriculture15171826