Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Materials
2.3. Experimental Design and Field Management
2.4. Plant Height, Biomass, and Ratoon Rice Yield
2.5. Plant Nitrogen Determination
2.6. Data Analysis
3. Results
3.1. Effects of Different Treatments on Ratoon Rice Grain Yield
3.2. Effects of Different Treatments on Ratoon Rice Plant Height
3.3. Effects of Different Treatments on Ratoon Rice Dry Matter Accumulation
3.4. Effects of Different Treatments on Ratoon Rice Nitrogen Content
3.5. Effects of Different Treatments on Nitrogen Translocation in Ratoon Rice
3.6. Effects of Different Treatments on Nitrogen Utilization Characteristics in Ratoon Rice
4. Discussion
4.1. Effects of Winter Green Manure and Rice Varieties on Grain Yield and Dry Matter
4.2. Effects of Winter Green Manure and Rice Varieties on Nitrogen Uptake and Utilization
4.3. Effects of Year and Multi-Factor Interactions
4.4. Research Significance, Limitations, and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
YLY911 | Yliangyou 911 |
LY6326 | Liangyou 6326 |
FA | fallow–ratoon rice |
RA | rapeseed–ratoon rice |
MV | milk vetch–ratoon rice |
NHI | Nitrogen harvest index |
NDMPE | Nitrogen dry matter production efficiency |
NGPE | Nitrogen grain production efficiency |
PFPNF | Partial factor productivity of nitrogen fertilizer |
References
- National Bureau of Statistics of China. Available online: https://data.stats.gov.cn/english/easyquery.htm?cn=C01 (accessed on 23 May 2025).
- Deng, N.; Grassini, P.; Yang, H.; Huang, J.; Cassman, K.G.; Peng, S. Closing yield gaps for rice self-sufficiency in China. Nat. Commun. 2019, 10, 1725. [Google Scholar] [CrossRef]
- Xiang, J.; Zhong, L.; Yuan, Z.; Liang, L.; Yang, Z.; Xiao, Y.; Fu, Z.; Long, P.; Huang, C.; Xu, Y. Effects of ratoon rice cropping patterns on greenhouse gas emissions and yield in double-season rice regions. Plants 2024, 13, 1527. [Google Scholar] [CrossRef]
- Sun, M.; Zhan, M.; Zhao, M.; Tang, L.L.; Qin, M.G.; Cao, C.G.; Cai, M.L.; Jiang, Y.; Liu, Z.H. Maize and rice double cropping benefits carbon footprint and soil carbon budget in paddy field. Field Crop. Res. 2019, 243, 107620. [Google Scholar] [CrossRef]
- Yuan, S.; Cassman, K.G.; Huang, J.; Peng, S.; Grassini, P. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China? Field Crop. Res. 2019, 234, 66–72. [Google Scholar] [CrossRef]
- Dou, F.; Tarpley, L.; Chen, K.; Wright, A.L.; Mohammed, A.R. Planting date and variety effects on rice main and ratoon crop production in South Texas. Commun. Soil Sci. Plan. 2016, 47, 2414–2420. [Google Scholar] [CrossRef]
- Yu, X.; Tao, X.; Liao, J.; Liu, S.; Xu, L.; Yuan, S.; Zhang, Z.; Wang, F.; Deng, N.; Huang, J. Predicting potential cultivation region and paddy area for ratoon rice production in China using Maxent model. Field Crop. Res. 2022, 275, 108372. [Google Scholar] [CrossRef]
- Shen, X.; Zhang, L.; Zhang, J. Ratoon rice production in central China: Environmental sustainability and food production. Sci. Total Environ. 2021, 764, 142850. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liang, L.; Wang, B.; Xiang, J.; Gao, M.; Fu, Z.; Long, P.; Luo, H.; Huang, C. Conversion from double-season rice to ratoon rice paddy fields reduces carbon footprint and enhances net ecosystem economic benefit. Sci. Total Environ. 2022, 813, 152550. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gao, P.; Lei, W.; Gao, J.; Luo, Y.; Peng, F.; Mou, T.; Zhao, Z.; Zhang, K.; Guggenberger, G. Covering green manure increases rice yields via improving nitrogen cycling between soil and crops in paddy fields. Agric. Ecosyst. Environ. 2025, 383, 109517. [Google Scholar] [CrossRef]
- Zhu, B.; Yi, L.; Guo, L.; Chen, G.; Hu, Y.; Tang, H.; Xiao, C.; Xiao, X.; Yang, G.; Acharya, S.N. Performance of two winter cover crops and their impacts on soil properties and two subsequent rice crops in Dongting Lake Plain, Hunan, China. Soil Tillage Res. 2012, 124, 95–101. [Google Scholar] [CrossRef]
- Ansari, M.A.; Choudhury, B.U.; Layek, J.; Das, A.; Lal, R.; Mishra, V.K. Green manuring and crop residue management: Effect on soil organic carbon stock, aggregation, and system productivity in the foothills of Eastern Himalaya (India). Soil Tillage Res. 2022, 218, 105318. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, R.; Gao, J.; Wang, X.; Fan, F.; Ma, X.; Yin, H.; Zhang, C.; Feng, K.; Deng, Y. Thirty-one years of rice-rice-green manure rotations shape the rhizosphere microbial community and enrich beneficial bacteria. Soil Biol. Biochem. 2017, 104, 208–217. [Google Scholar] [CrossRef]
- Cai, S.; Pittelkow, C.M.; Zhao, X.; Wang, S. Winter legume-rice rotations can reduce nitrogen pollution and carbon footprint while maintaining net ecosystem economic benefits. J. Clean. Prod. 2018, 195, 289–300. [Google Scholar] [CrossRef]
- Luo, M.; Wang, Z.; Yang, B.; Zheng, L.; Yao, Z.; Ahmet Seyrek, U.; Chung, H.; Wei, H. Effects of winter cover crops on rice pests, natural enemies, and grain yield in a rice rotation system. J. Insect Sci. 2019, 19, 1–8. [Google Scholar] [CrossRef]
- Wu, W.; Li, Z.; Xi, M.; Tu, D.; Xu, Y.; Zhou, Y.; Zhang, Z. Ratoon rice system of production: A rapid growth pattern of multiple cropping in China: A Review. Plants 2023, 12, 3446. [Google Scholar] [CrossRef]
- He, A.; Wang, W.; Jiang, G.; Sun, H.; Jiang, M.; Man, J.; Cui, K.; Huang, J.; Peng, S.; Nie, L. Source-sink regulation and its effects on the regeneration ability of ratoon rice. Field Crop. Res. 2019, 236, 155–164. [Google Scholar] [CrossRef]
- Ogawa, T.; Oikawa, S.; Hirose, T. Nitrogen-utilization efficiency in rice: An analysis at leaf, shoot, and whole-plant level. Plant Soil 2016, 404, 321–344. [Google Scholar] [CrossRef]
- Ma, L.; Zhang, X.; Lei, Q.; Liu, F. Effects of drip irrigation nitrogen coupling on dry matter accumulation and yield of summer maize in arid areas of China. Field Crop. Res. 2021, 274, 108321. [Google Scholar] [CrossRef]
- Chaves, B.; Redin, M.; Giacomini, S.J.; Schmatz, R.; Léonard, J.; Ferchaud, F.; Recous, S. The combination of residue quality, residue placement and soil mineral N content drives C and N dynamics by modifying N availability to microbial decomposers. Soil Biol. Biochem. 2021, 163, 108434. [Google Scholar] [CrossRef]
- Dong, H.; Chen, Q.; Wang, W.; Peng, S.; Huang, J.; Cui, K.; Nie, L. The growth and yield of a wet-seeded rice-ratoon rice system in central China. Field Crop. Res. 2017, 208, 55–59. [Google Scholar] [CrossRef]
- He, Y.; Yan, T.; Tang, Y.; Lin, D.; Li, Y.; Yu, H.; Yang, Z.; Sun, Y.; Ma, J. Effects of transplanting and straw returning on nitrogen uptake, utilization and yield of rice. J. Plant Nutr. Fertil. (In Chinese) 2020, 26, 86–95. [Google Scholar]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, A.; Shang, Y.; Wang, P.; Wang, F.; Yin, B.; Liu, Y.; Zhang, D.; Chai, Q. Research progress on the improvement of farmland soil quality by green manure. Agriculture 2025, 15, 768. [Google Scholar] [CrossRef]
- Nie, L.; Guo, X.; Wang, W.; Qi, Y.; Ai, Z.; He, A. Regulation of regeneration rate to enhance ratoon rice production. Rice Sci. 2025, 32, 177–192. [Google Scholar]
- Wang, F.; Cui, H.; He, F.; Liu, Q.; Zhu, Q.; Wang, W.; Liao, H.; Yao, D.; Cao, W.; Lu, P. The green manure (Astragalus sinicus L.) improved rice yield and quality and changed soil microbial communities of rice in the karst mountains area. Agronomy 2022, 12, 1851. [Google Scholar] [CrossRef]
- Ding, Z.; Hu, R.; Styles, D.; Wang, X.; Tian, Y.; Cao, Y.; Hou, J. Optimized ratoon rice system to sustain cleaner food production in Jianghan Plain, China: A comprehensive emergy assessment. Environ. Sci. Pollut. Res. 2022, 29, 24639–24650. [Google Scholar] [CrossRef] [PubMed]
- Flood, P.J.; Harbinson, J.; Aarts, M.G. Natural genetic variation in plant photosynthesis. Trends Plant Sci. 2011, 16, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Weih, M.; Hamnér, K.; Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, L.; Zhou, X.; Guo, X.; Zhu, Y.; Liu, M.; Xiong, H.; Jiang, P. The ratoon rice system with high yield and high efficiency in China: Progress, trend of theory and technology. Field Crop. Res. 2021, 272, 108282. [Google Scholar] [CrossRef]
- Yang, C.; Yang, D.; Xiang, H.; Zhu, J.; Yuan, S.; Cui, K.; Huang, J.; Peng, S. Varietal improvement is a feasible approach for achieving high yield and superior quality simultaneously in ratoon rice. Field Crop. Res. 2025, 322, 109772. [Google Scholar] [CrossRef]
- Li, D.; Zhu, Q.; Chen, X.; Leng, Q.; Aljerib, Y.M.; Geng, M. Co-incorporation of rice straw and green manure with reduced nitrogen fertilizer application maintained rice yield and lowered ammonia volatilization. Plant Soil 2025, 507, 335–350. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Xu, J.; Cao, K.; Wang, J.; Xu, C.; Cao, W. Green manure incorporation with reductions in chemical fertilizer inputs improves rice yield and soil organic matter accumulation. J. Soils Sediments 2020, 20, 2784–2793. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Zhang, Y.; Yao, H. Green manure application improves rice growth and urea nitrogen use efficiency assessed using 15N labeling. Soil Sci. Plant Nutr. 2019, 65, 511–518. [Google Scholar] [CrossRef]
- Li, T.; Ullah, S.; He, L.; Ali, I.; Zhao, Q.; Iqbal, A.; Wei, S.; Shah, T.; Luo, Y.; Jiang, L. The enhancement of soil fertility, dry matter transport and accumulation, nitrogen uptake and yield in rice via green manuring. Phyton-Int. J. Exp. Bot. 2021, 90, 223–243. [Google Scholar] [CrossRef]
- Petroudi, E.R.; Noormohammadi, G.; Mirhadi, M.J.; Madani, H.; Mobasser, H.R. Effects of nitrogen fertilization and rice harvest height on agronomic yield indices of ratoon rice-berseem clover intercropping system. Aus. J. Crop Sci. 2011, 5, 566–574. [Google Scholar]
- Qi, D.; Chen, Y.; Harrison, M.T.; Liu, K.; He, H.; Ji, C.; Du, K.; Wang, J.; Sun, Y.; Yu, G. Mowing and nitrogen management guidelines for superior rice ratoon yields. Field Crop. Res. 2024, 308, 109302. [Google Scholar] [CrossRef]
- Xin, W.; Zhang, L.; Zhang, W.; Gao, J.; Yi, J.; Zhen, X.; Du, M.; Zhao, Y.; Chen, L. Morphological and physiological characteristics of rice cultivars with higher yield and nitrogen use efficiency at various nitrogen rates. Agronomy 2022, 12, 358. [Google Scholar] [CrossRef]
- Huang, X.; Yang, J.; Zhou, W.; Zhang, G.; Liao, B.; Wahab, A.; Yi, Z.; Tu, N. Comparison of the source–sink characteristics between main season and ratooning in rice (Oryza sativa L.). Agronomy 2023, 13, 1731. [Google Scholar] [CrossRef]
- Zheng, C.; Wang, Y.; Yang, D.; Xiao, S.; Sun, Y.; Huang, J.; Peng, S.; Wang, F. Biomass, radiation use efficiency, and nitrogen utilization of ratoon rice respond to nitrogen management in central China. Front. Plant Sci. 2022, 13, 889542. [Google Scholar] [CrossRef]
- Wang, D.; Xu, C.; Yan, J.; Zhang, X.; Chen, S.; Chauhan, B.S.; Wang, L.; Zhang, X. 15N tracer-based analysis of genotypic differences in the uptake and partitioning of N applied at different growth stages in transplanted rice. Field Crop. Res. 2017, 211, 27–36. [Google Scholar] [CrossRef]
- Liu, Z.; Xu, D.; Wang, R.; Guo, X.; Song, Y.; Wang, M.; Cai, Y. Effects of temperature fluctuations on the growth cycle of rice. Agriculture 2025, 15, 99. [Google Scholar] [CrossRef]
- Qaswar, M.; Huang, J.; Ahmed, W.; Liu, S.; Li, D.; Zhang, L.; Liu, L.; Xu, Y.; Han, T.; Du, J. Substitution of inorganic nitrogen fertilizer with green manure (GM) increased yield stability by improving C input and nitrogen recovery efficiency in rice based cropping system. Agronomy 2019, 9, 609. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, G.; Gao, S.; Nie, J.; Xu, C.; Wu, J.; Liu, C.; Lv, Y.; Huang, Y.; Geng, M. Exploring site-specific N application rate to reduce N footprint and increase crop production for green manure-rice rotation system in southern China. J. Environ. Manag. 2023, 347, 119033. [Google Scholar] [CrossRef]
- Huang, X.; Jang, S.; Kim, B.; Piao, Z.; Redona, E.; Koh, H.J. Evaluating genotype × environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical and tropical environments. Agriculture 2021, 11, 558. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Yuan, D.; Liu, Y.; Che, R.; Hu, Y.; Ou, S.; Liu, Y.; Zhang, Z.; Wang, H. Expression of the nitrate transporter gene OsNRT1.1A/OsNPF6.3 confers high yield and early maturation in rice. Plant Cell 2018, 30, 638–651. [Google Scholar] [CrossRef]
- Wu, D.; Li, Y.; Cao, Y.; Hu, R.; Wu, X.; Zhang, W.; Tao, W.; Xu, G.; Wang, X.; Zhang, Y. Increased glutamine synthetase by overexpression of TaGS1 improves grain yield and nitrogen use efficiency in rice. Plant Physiol. Biochem. 2021, 169, 259–268. [Google Scholar] [CrossRef]
- Hu, Z.; Yang, D.; Feng, Y.; Zhang, S.; Wang, A.; Wang, Q.; Yang, Y.; Chen, C.; Zhang, Y.; Wang, X. Green manure combined with reduced nitrogen reduce NH3 emissions, improves yield and nitrogen use efficiencies of rice. PeerJ 2024, 12, e17761. [Google Scholar] [CrossRef] [PubMed]
Year | Crop Season | Varieties | Sowing Date | Transplanting Date | Tillering Stage | Full Heading Stage | Maturity Stage | Growing Period | Chemical Input (kg ha−1) | ||
---|---|---|---|---|---|---|---|---|---|---|---|
(Day/Month) | (Days) | N | P2O5 | K2O | |||||||
2020 | Main crop | YLY911 1 | 20-March | 27-April | 26-May | 14-July | 9-Auguest | 142 | 200 | 90 | 120 |
LY6326 2 | 20-March | 27-April | 26-May | 5-July | 9-Auguest | 142 | 200 | 90 | 120 | ||
Ratoon crop | YLY911 | / | / | / | 12-Sepember | 9-October | 61 | 150 | 0 | 0 | |
LY6326 | / | / | / | 14-Sepember | 9-October | 61 | 150 | 0 | 0 | ||
2021 | Main crop | YLY911 | 23-March | 30-April | 26-May | 18-July | 9-Auguest | 139 | 200 | 90 | 120 |
LY6326 | 23-March | 30-April | 26-May | 6-July | 9-Auguest | 139 | 200 | 90 | 120 | ||
Ratoon crop | YLY911 | / | / | / | 14-Sepember | 9-October | 61 | 150 | 0 | 0 | |
LY6326 | / | / | / | 14-Sepember | 9-October | 61 | 150 | 0 | 0 |
Growth Stage | Indicator | Factor | Y | S | G | V | Y × S | Y × G | Y × V | S × G | S × V | G × V | Y × S × G | Y × S × V | Y × G × V | S × G × V | Y × S × G × V |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Tillering stage | Plant height | Plant | 0.54 ns 1 | / | 2.38 ns | 103.16 *** | / | 3.73 * | 0.83 ns | / | / | 0.38 ns | / | / | 2.59 ns | / | / |
Dry matter weight | Stem-sheath | 6.32 2,* | / | 4.49 * | 6.28 * | / | 2.60 ns | 2.64 ns | / | / | 2.62 ns | / | / | 0.38 ns | / | / | |
Leaf | 19.62 *** | / | 0.10 ns | 29.65 *** | / | 2.39 ns | 0.69 ns | / | / | 1.04 ns | / | / | 0.87 ns | / | / | ||
Plant | 19.62 *** | / | 0.10 ns | 29.65 *** | / | 2.39 ns | 0.69 ns | / | / | 1.04 ns | / | / | 0.87 ns | / | / | ||
Nitrogen accumulation | Stem-sheath | / | / | 0.06 ns | 10.10 ** | / | / | / | / | / | 0.98 ns | / | / | / | / | / | |
Leaf | / | / | 1.09 ns | 18.40 ** | / | / | / | / | / | 0.09 ns | / | / | / | / | / | ||
Plant | / | / | 0.30 ns | 22.36 *** | / | / | / | / | / | 0.28 ns | / | / | / | / | / | ||
Full heading stage | Plant height | Plant | 226.76 *** | 769.05 *** | 25.02 *** | 37.80 *** | 17.74 *** | 7.96 *** | 3.63 ns | 1.83 ns | 1.91 ns | 0.27 ns | 2.49 ns | 6.56 * | 1.34 ns | 2.45 ns | 3.24 * |
Dry matter weight | Stem-sheath | 0.10 ns | 22.11 *** | 20.21 *** | 0.77 ns | 0.25 ns | 2.68 ns | 25.29 *** | 0.45 ns | 2.77 ns | 0.56 ns | 5.66 ** | 14.55 *** | 1.52 ns | 1.95 ns | 0.72 ns | |
Leaf | 20.78 *** | 384.82 *** | 25.08 *** | 2.18 ns | 0.01 ns | 9.62 *** | 2.23 ns | 3.44 * | 2.21 ns | 0.35 ns | 1.20 ns | 16.53 *** | 0.37 ns | 0.63 ns | 1.57 ns | ||
Panicle | 36.74 *** | 0.26 ns | 4.77 * | 17.02 *** | 0.05 ns | 2.61 ns | 7.83 ** | 0.25 ns | 8.98 ** | 0.03 ns | 0.47 ns | 11.58 ** | 0.64 ns | 0.36 ns | 1.99 ns | ||
Plant | 12.88 *** | 62.63 *** | 24.80 *** | 7.13 * | 0.18 ns | 5.99 ** | 5.24 * | 0.85 ns | 0.02 ns | 0.21 ns | 2.83 ns | 3.92 ns | 1.05 ns | 0.79 ns | 0.23 ns | ||
Nitrogen accumulation | Stem-sheath | / | 8.19 ** | 6.40 ** | 0.95 ns | / | / | / | 4.99 * | 0.98 ns | 0.25 ns | / | / | / | 0.98 ns | / | |
Leaf | / | 116.08 *** | 21.49 *** | 0.07 ns | / | / | / | 2.42 ns | 18.28 *** | 2.96 ns | / | / | / | 3.86 * | / | ||
Panicle | / | 0.09 ns | 1.96 ns | 14.05 ** | / | / | / | 0.15 ns | 13.03 ** | 0.08 ns | / | / | / | 1.43 ns | / | ||
Plant | / | 20.59 *** | 11.72 *** | 1.55 ns | / | / | / | 2.44 ns | 0.00 ns | 0.04 ns | / | / | / | 0.97 ns | / | ||
Maturity stage | Plant height | Plant | 194.40 *** | 741.68 *** | 18.18 *** | 51.22 *** | 2.43 ns | 5.12 ** | 9.14 ** | 1.74 ns | 2.40 ns | 4.01 * | 2.54 ns | 7.05 ** | 1.36 ns | 1.57 ns | 0.57 ns |
Dry matter weight | Stem-sheath | 8.77 ** | 68.53 *** | 4.86 * | 8.16 ** | 13.11 *** | 0.68 ns | 4.53 * | 0.56 ns | 3.91 ns | 1.29 ns | 1.22 ns | 0.16 ns | 0.70 ns | 1.84 ns | 0.63 ns | |
Leaf | 141.27 *** | 843.75 *** | 9.84 *** | 28.54 *** | 34.22 *** | 5.75 ** | 15.16 *** | 2.32 ns | 48.94 *** | 2.37 ns | 1.57 ns | 1.87 ns | 0.71 ns | 1.51 ns | 3.13 ns | ||
Panicle | 1.25 ns | 155.69 *** | 9.50 *** | 13.71 *** | 5.65 * | 5.15 ** | 11.94 ** | 1.28 ns | 7.17 * | 0.67 ns | 0.42 ns | 2.91 ns | 0.75 ns | 0.50 ns | 1.56 ns | ||
Plant | 12.14 ** | 104.54 *** | 17.19 *** | 0.02 ns | 7.44 ** | 4.32 * | 0.18 ns | 0.94 ns | 0.50 ns | 1.37 ns | 0.87 ns | 0.52 ns | 0.46 ns | 0.39 ns | 0.99 ns | ||
Nitrogen accumulation | Stem-sheath | 9.93 ** | 0.53 ns | 1.69 ns | 1.22 ns | 0.56 ns | 1.41 ns | 1.60 ns | 2.00 ns | 19.49 *** | 2.23 ns | 1.35 ns | 1.81 ns | 0.07 ns | 0.59 ns | 0.90 ns | |
Leaf | 30.83 *** | 743.37 *** | 3.37 * | 36.53 *** | 36.50 *** | 1.56 ns | 19.80 *** | 5.20 ** | 50.03 *** | 1.12 ns | 3.51 * | 0.95 ns | 0.55 ns | 0.03 ns | 2.15 ns | ||
Panicle | 82.71 *** | 119.82 *** | 10.90 *** | 17.32 *** | 0.00 ns | 0.80 ns | 1.00 ns | 5.40 ** | 12.94 *** | 0.13 ns | 0.65 ns | 0.93 ns | 0.80 ns | 0.12 ns | 0.83 ns | ||
Plant | 19.79 *** | 220.09 *** | 12.10 *** | 2.32 ns | 2.69 ns | 0.16 ns | 0.67 ns | 9.97 *** | 1.14 ns | 0.46 ns | 1.61 ns | 1.87 ns | 0.22 ns | 0.07 ns | 0.05 ns | ||
After full heading stage | Nitrogen translocation | Stem-sheath | / | 8.28 ** | 5.24 * | 4.25 ns | / | / | / | 1.59 ns | 5.74 * | 1.68 ns | / | / | / | 2.68 ns | / |
Leaf | / | 16.72 *** | 12.16 *** | 10.50 ** | / | / | / | 1.15 ns | 40.04 *** | 1.30 ns | / | / | / | 5.35 * | / | ||
Panicle | / | 51.10 *** | 4.62 * | 42.87 *** | / | / | / | 4.94 * | 36.58 *** | 0.56 ns | / | / | / | 1.27 ns | / | ||
Nitrogen translocation rate | Stem-sheath | / | 8.52 ** | 5.02 * | 4.05 ns | / | / | / | 0.99 ns | 6.69 * | 1.17 ns | / | / | / | 2.59 ns | / | |
Leaf | / | 0.40 ns | 3.03 ns | 8.47 ** | / | / | / | 0.13 ns | 24.00 *** | 2.55 ns | / | / | / | 2.44 ns | / | ||
Maturity stage | Yield | Actual yield | 21.33 *** | 264.02 *** | 17.50 *** | 7.57 ** | 52.49 *** | 0.93 ns | 4.13 * | 5.89 ** | 0.44 ns | 0.41 ns | 0.36 ns | 0.07 ns | 0.06 ns | 1.58 ns | 0.13 ns |
Nitrogen use efficiency | NHI | 102.85 *** | 2.25 ns | 4.27 * | 16.48 *** | 10.93 ** | 2.74 ns | 7.72 ** | 0.61 ns | 39.98 *** | 1.12 ns | 0.35 ns | 0.04 ns | 0.46 ns | 0.17 ns | 2.17 ns | |
NDMPE | 36.22 *** | 46.95 *** | 2.20 ns | 3.41 ns | 6.54 * | 1.75 ns | 1.64 ns | 8.33 *** | 0.93 ns | 0.00 ns | 0.56 ns | 1.16 ns | 0.16 ns | 0.20 ns | 1.20 ns | ||
NGPE | 32.25 *** | 1.18 ns | 1.18 ns | 0.09 ns | 12.10 ** | 0.53 ns | 3.26 ns | 2.73 ns | 0.94 ns | 0.36 ns | 0.49 ns | 0.88 ns | 0.19 ns | 0.38 ns | 0.10 ns | ||
PFPNF | 27.92 *** | 6.48 * | 13.00 *** | 6.14 * | 54.52 *** | 0.75 ns | 3.50 ns | 3.09 ns | 0.07 ns | 0.36 ns | 0.27 ns | 0.00 ns | 0.05 ns | 1.37 ns | 0.11 ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, Q.; Shao, P.; Chen, S.; Yang, Z.; Yuan, Z.; Zhong, L.; Zhao, Z.; Wang, Y.; Ga, C.; Tang, J.; et al. Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties. Agriculture 2025, 15, 1801. https://doi.org/10.3390/agriculture15171801
Hou Q, Shao P, Chen S, Yang Z, Yuan Z, Zhong L, Zhao Z, Wang Y, Ga C, Tang J, et al. Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties. Agriculture. 2025; 15(17):1801. https://doi.org/10.3390/agriculture15171801
Chicago/Turabian StyleHou, Qiwen, Pufan Shao, Sheng Chen, Zhangzhen Yang, Zhixiong Yuan, Liusheng Zhong, Ziyuan Zhao, Yu Wang, Cuo Ga, Jiarui Tang, and et al. 2025. "Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties" Agriculture 15, no. 17: 1801. https://doi.org/10.3390/agriculture15171801
APA StyleHou, Q., Shao, P., Chen, S., Yang, Z., Yuan, Z., Zhong, L., Zhao, Z., Wang, Y., Ga, C., Tang, J., Xu, Y., Zeng, Y., Yu, C., Huang, C., & Xu, Y. (2025). Effects of Winter Green Manure Incorporation on Grain Yield, Nitrogen Uptake, and Nitrogen Use Efficiency in Different Ratoon Rice Varieties. Agriculture, 15(17), 1801. https://doi.org/10.3390/agriculture15171801