Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D in Wastewater Set to Be Reused in Agricultural Ecosystems
Abstract
1. Introduction
2. Materials and Methods
2.1. Collection and Characterization of Wastewater Samples
2.2. Fungal Strains and Production of Fungal Pellets
2.3. Inoculation and Incubation of Rural Wastewater
2.4. Measurement of Residual 2,4-D and 2,4-DCP by High-Pressure Liquid Chromatography with UV/Vis Detection (HPLC-UV)
2.5. Viability and Measurement of Fungal Biomass
2.6. Statistical Analyses
3. Results
3.1. Physicochemical and Microbiological Characterization of the Wastewater Samples
3.2. Removal of 2,4-D by the A. oryzae Pellets in Natural and Sterile Rural Wastewater
3.3. Fungal Biomass Viability and Growth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2,4-D | 2,4-dichlorophenoxyacetic Acid |
2,4-DCP | 2,4-dichlorophenol |
DRBC | Dichloran Rose Bengal Chloramphenicol |
AN | Nutritive Agar |
MEA | Malt Extract Agar |
LSD | Fisher’s Protected Least Significant Difference |
CFU | Colony-Forming Units |
HCH | Hexachlorocyclohexane |
MSM | Minimal Salts Medium |
LOQ | Limit of Quantification |
LOD | Limit of Detection |
HPLC-UV | High-Pressure Liquid Chromatography with UV/Vis Detection |
References
- Hu, K.; Barbieri, M.V.; López-García, E.; Postigo, C.; López de Alda, M.; Caminal, G.; Sarrà, M. Fungal degradation of selected medium to highly polar pesticides by Trametes versicolor: Kinetics, biodegradation pathways, and ecotoxicity of treated waters. Anal. Bioanal. Chem. 2022, 414, 439–449. [Google Scholar] [CrossRef]
- Xiang, L.; Li, G.; Wen, L.; Su, C.; Liu, Y.; Tang, H.; Dai, J. Biodegradation of aromatic pollutants meets synthetic biology. Synth. Syst. Biotechnol. 2021, 6, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Morin-Crini, N.; Lichtfouse, E.; Fourmentin, M.; Ribeiro, A.R.L.; Noutsopoulos, C.; Mapelli, F.; Fenyvesi, É.; Vieira, M.G.A.; Picos-Corrales, L.A.; Moreno-Piraján, J.C.; et al. Removal of emerging contaminants from wastewater using advanced treatments. A Review. Environ. Chem. Lett. 2022, 20, 1333–1375. [Google Scholar] [CrossRef]
- Jayaraj, R.; Megha, P.; Sreedev, P. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdiscip. Toxicol. 2016, 9, 90–100. [Google Scholar] [CrossRef] [PubMed]
- Dobslaw, D.; Engesser, K.H. Degradation of 2-Chlorotoluene by Rhodococcus sp. OCT 10. Appl. Microbiol. Biotechnol. 2012, 93, 2205–2214. [Google Scholar] [CrossRef]
- Srivastav, A.L. Chemical Fertilizers and Pesticides: Role in Groundwater Contamination. In Agrochemicals Detection, Treatment and Remediation; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–159. [Google Scholar]
- Garba, Z.N.; Zhou, W.; Lawan, I.; Xiao, W.; Zhang, M.; Wang, L.; Chen, L.; Yuan, Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manag. 2019, 241, 59–75. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Xu, C.; Qiao, C.; Chen, S.; Zhao, C.; Liu, Q.; Zhang, X. Reconstruction of microbiome and functionality accelerated crude oil biodegradation of 2,4-DCP-oil-contaminated soil systems using composite microbial agent B-Cl. J. Hazard. Mater. 2023, 447, 130808. [Google Scholar] [CrossRef]
- Silva-Gálvez, A.L.; López-Sánchez, A.; Camargo-Valero, M.A.; Prosenc, F.; González-López, M.E.; Gradilla-Hernández, M.S. Strategies for livestock wastewater treatment and optimised nutrient recovery using microalgal-based Technologies. J. Environ. Manag. 2024, 354, 120258. [Google Scholar] [CrossRef]
- Blumenthal, U.J.; Mara, D.D.; Peasey, A.; Ruiz-Palacios, G.; Stott, R. Guidelines for the microbiological quality of treated wastewater used in agriculture: Recommendations for revising WHO Guidelines. Bull. World Health Organ. 2000, 79, 1104–1116. [Google Scholar]
- Provincia de Córdoba. Poder Ejecutivo. Decreto N 847/2016. Reglamentación de Estándares y Normas Sobre Vertidos Para La Preservación Del Recurso Hídrico Provincial. Boletín Oficial de La Provincia de Córdoba, 21 July 2016. [Google Scholar]
- Assad, R.; Sofi, I.A.; Bashir, I.; Rafiq, I.; Reshi, Z.A.; Rashid, I. Microbiological aspects of pesticide remediation in freshwater and soil environs. In Pesticide Contamination in Freshwater and Soil Environs; Apple Academic Press: Burlington, ON, USA, 2021; pp. 173–232. [Google Scholar] [CrossRef]
- Wang, J.; Han, R. Removal of Pesticide on Food by Electrolyzed Water. In Electrolyzed Water in Food: Fundamentals and Applications; Springer: Singapore, 2019; pp. 39–65. [Google Scholar] [CrossRef]
- Assad, R.; Bashir, I.; Rafiq, I.; Sofi, I.A.; Mir, S.H.; Reshi, Z.A.; Rashid, I. Global Scenario of Remediation Techniques to Combat Pesticide Pollution. In Agricultural Waste; Springer International Publishing: Cham, Switzerland, 2021; pp. 69–97. [Google Scholar] [CrossRef]
- Munir, S.; Azeem, A.; Sikandar Zaman, M.; Zia Ul Haq, M. From Field to Table: Ensuring Food Safety by Reducing Pesticide Residues in Food. Sci. Total Environ. 2024, 922, 171382. [Google Scholar] [CrossRef]
- Yang, R.; Liu, Z.; Chen, H.; Zhang, X.; El-Mesery, H.S.; Lu, W.; Dai, X.; Xu, R. Technology Empowering to Safeguard Agricultural Products: A review of innovative approaches toward pesticide residue monitoring. Microchem. J. 2025, 213, 113693. [Google Scholar] [CrossRef]
- Yang, J.; Song, L.; Pan, C.; Han, Y.; Kang, L. Removal of ten pesticide residues on/in Kumquat by washing with alkaline electrolysed water. Int. J. Environ. Anal. Chem. 2022, 102, 3638–3651. [Google Scholar] [CrossRef]
- Qi, H.; Huang, Q.; Hung, Y.C. Effectiveness of Electrolyzed Oxidizing Water Treatment in Removing Pesticide Residues and Its Effect on Produce Quality. Food Chem. 2018, 239, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Lian, J.; Jiang, Z.; Li, Y.; Wen, C. Thermodynamic analysis on wetting states and wetting state transitions of rough surfaces. Adv. Colloid. Interface Sci. 2020, 278, 102136. [Google Scholar] [CrossRef] [PubMed]
- Calvo, H.; Redondo, D.; Remón, S.; Venturini, M.E.; Arias, E. Efficacy of electrolyzed water, chlorine dioxide and photocatalysis for disinfection and removal of pesticide residues from stone fruit. Postharvest Biol. Technol. 2019, 148, 22–31. [Google Scholar] [CrossRef]
- Aidoo, O.F.; Osei-Owusu, J.; Chia, S.Y.; Dofuor, A.K.; Antwi-Agyakwa, A.K.; Okyere, H. Remediation of pesticide residues using ozone: A comprehensive overview. Sci. Total Environ. 2023, 894, 164933. [Google Scholar] [CrossRef]
- Feng, L.; Yue, X.; Li, J.; Zhao, F.; Yu, X.; Yang, K. Research advances in nanosensor for pesticide detection in agricultural products. Nanomaterials 2025, 15, 1132. [Google Scholar] [CrossRef]
- Ajiboye, T.O.; Kuvarega, A.T.; Onwudiwe, D.C. Recent strategies for environmental remediation of organochlorine pesticides. Appl. Sci. 2020, 10, 6286. [Google Scholar] [CrossRef]
- Kumar, A.; Yadav, A.N.; Mondal, R.; Kour, D.; Subrahmanyam, G.; Shabnam, A.A.; Khan, S.A.; Yadav, K.K.; Sharma, G.K.; Cabral-Pinto, M.; et al. Myco-remediation: A mechanistic understanding of contaminants alleviation from natural environment and future Prospect. Chemosphere 2021, 284, 131325. [Google Scholar] [CrossRef]
- Ferreira, J.A.; Varjani, S.; Taherzadeh, M.J. A Critical review on the ubiquitous role of filamentous fungi in pollution mitigation. Curr. Pollut. Rep. 2020, 6, 295–309. [Google Scholar] [CrossRef]
- Espinosa-Ortiz, E.J.; Rene, E.R.; Pakshirajan, K.; van Hullebusch, E.D.; Lens, P.N.L. Fungal pelleted reactors in wastewater treatment: Applications and perspectives. Chem. Eng. J. 2016, 283, 553–571. [Google Scholar] [CrossRef]
- Zheng, Z.; Ali, A.; Su, J.; Huang, T.; Wang, Y.; Zhang, S. Fungal pellets immobilized bacterial bioreactor for efficient nitrate removal at low C/N wastewater. Bioresour. Technol. 2021, 332, 125113. [Google Scholar] [CrossRef] [PubMed]
- Pandey, C.; Prabha, D.; Negi, Y.K.; Prasad, R. Mycoremediation and Environmental Sustainability; Prasad, R., Ed.; Springer International Publishing: Cham, Switzerland, 2018; ISBN 978-3-319-77385-8. [Google Scholar]
- Ogawa, M.; Moreno-García, J.; Barzee, T.J. Filamentous fungal pellets as versatile platforms for cell immobilization: Developments to date and future perspectives. Microb. Cell Factories 2024, 23, 280. [Google Scholar] [CrossRef] [PubMed]
- Nie, Y.; Wang, Z.; Zhang, R.; Ma, J.; Zhang, H.; Li, S.; Li, J. Aspergillus oryzae, a novel eco-friendly fungal bioflocculant for turbid drinking water treatment. Sep. Purif. Technol. 2021, 279, 119669. [Google Scholar] [CrossRef]
- Li, L.; Liang, T.; Zhao, M.; Lv, Y.; Song, Z.; Sheng, T.; Ma, F. A review on mycelial pellets as biological carriers: Wastewater treatment and recovery for resource and energy. Bioresour. Technol. 2022, 355, 127200. [Google Scholar] [CrossRef]
- Magnoli, K.; Carranza, C.S.; Aluffi, M.E.; Benito, N.; Magnoli, C.E.; Barberis, C.L. Survey of organochlorine-tolerant culturable mycota from contaminated soils and 2,4-D removal ability of Penicillium species in synthetic wastewater. Fungal Biol. 2023, 127, 891–899. [Google Scholar] [CrossRef]
- Soh, E.; Chew, Z.Y.; Saeidi, N.; Javadian, A.; Hebel, D.; Le Ferrand, H. Development of an extrudable paste to build mycelium-bound composites. Mater. Des. 2020, 195, 109058. [Google Scholar] [CrossRef]
- Piercy, E.; Verstraete, W.; Ellis, P.R.; Banks, M.; Rockström, J.; Smith, P.; Witard, O.C.; Hallett, J.; Hogstrand, C.; Knott, G.; et al. A Sustainable waste-to-protein system to maximize waste resource utilization for developing food- and feed-grade protein solutions. Green. Chem. 2023, 25, 808–832. [Google Scholar] [CrossRef]
- Borkertas, S.; Viskelis, J.; Viskelis, P.; Streimikyte, P.; Gasiunaite, U.; Urbonaviciene, D. Fungal biomass fermentation: Valorizing the food Industry’s Waste. Fermentation 2025, 11, 351. [Google Scholar] [CrossRef]
- Leonel, L.P.; Tonetti, A.L. Wastewater Reuse for Crop Irrigation: Crop Yield, Soil and Human Health Implications Based on Giardiasis Epidemiology. Sci. Total Environ. 2021, 775, 145833. [Google Scholar] [CrossRef]
- Gangola, S.; Joshi, S.; Kumar, S.; Pandey, S.C. Comparative Analysis of Fungal and Bacterial Enzymes in Biodegradation of Xenobiotic Compounds; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128183076. [Google Scholar]
- Magnoli, K.; Benito, N.; Aluffi, M.; Magnoli, C.; Barberis, C. Ability of non-Aalatoxigenic Aspergillus section Flavi strains to grow in the presence of herbicide 2,4-D and remove It from synthetic wastewater. Mycologia 2025, 117, 589–601. [Google Scholar] [CrossRef] [PubMed]
- Magnoli, K.; Benito, N.; Carranza, C.; Aluffi, M.; Magnoli, C.E.; Barberis, C.L. Effects of 2,4-D and environmental conditions on growth of P. crustosum strains and herbicide removal from rural-wastewater. Int. J. Environ. Sci. Tech. 2024, 22, 2625–2638. [Google Scholar] [CrossRef]
- Rice, E.; Baird, R.B.; Eaton, A.D.; Clesceri, L.S. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2012. [Google Scholar]
- King, A.D. Methodology for routine mycological examination of food—A collaborative study. In Modern Methods in Food Mycology, Developments in Food Science; Samson, R.A., Hocking, A.D., Pitt, J.I., King, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 11–20. [Google Scholar]
- Olicón-Hernández, D.R.; Camacho-Morales, R.L.; Pozo, C.; González-López, J.; Aranda, E. Evaluation of diclofenac biodegradation by the Ascomycete fungus Penicillium oxalicum at flask and bench bioreactor scales. Sci. Total Environ. 2019, 662, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Osborne, P.P.; Xu, Z.; Swanson, K.D.; Walker, T.; Farmer, D.K. Dicamba and 2,4-D Residues Following Applicator Cleanout: A Potential Point Source to the Environment and Worker Exposure. J. Air Waste Manage Assoc. 2015, 65, 1153–1158. [Google Scholar] [CrossRef]
- Sanchis, S.; Polo, A.M.; Tobajas, M.; Rodriguez, J.J.; Mohedano, A.F. Strategies to evaluate biodegradability: Application to chlorinated herbicides. Environ. Sci. Pollut. Res. 2014, 21, 9445–9452. [Google Scholar] [CrossRef]
- Gutiérrez-Zapata, H.M.; Rojas, K.L.; Sanabria, J.; Rengifo-Herrera, J.A. 2,4-D abatement from groundwater samples by photo-fenton processes at Circumneutral pH using naturally iron present. Effect of inorganic ions. Environ. Sci. Pollut. Res. 2017, 24, 6213–6221. [Google Scholar] [CrossRef]
- Pérez, D.J.; Okada, E.; De Gerónimo, E.; Menone, M.L.; Aparicio, V.C.; Costa, J.L. Spatial and temporal trends and flow dynamics of glyphosate and other pesticides within an agricultural watershed in Argentina. Environ. Toxicol. Chem. 2017, 36, 3206–3216. [Google Scholar] [CrossRef]
- Muradov, N.; Taha, M.; Miranda, A.F.; Wrede, D.; Kadali, K.; Gujar, A.; Stevenson, T.; Ball, A.S.; Mouradov, A. Fungal-Assisted Algal Flocculation: Application in Wastewater Treatment and Biofuel Production. Biotechnol. Biofuels 2015, 8, 24. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.; Robledo, Y.C. InfoStat; versión 2017. Grupo InfoStat, FCA, Universidad Nacional de Córdoba: Córdoba, Argentina, 2017. Available online: https://www.infostat.com.ar/ (accessed on 14 March 2025).
- Shaheen, M.N.F.; Elmahdy, E.M.; Rizk, N.M.; Abdo, S.M.; Hussein, N.A.; Elshershaby, A.; Shahein, Y.E.; Fawzy, M.E.; El-Liethy, M.A.; Marouf, M.A.; et al. Evaluation of physical, chemical, and microbiological characteristics of waste stabilization ponds, Giza, Egypt. Environ. Sci. Eur. 2024, 36, 170. [Google Scholar] [CrossRef]
- Hossain, M.S.; Sarker, P.; Rahaman, M.S.; Ahmed, F.F.; Shaibur, M.R.; Khabir Uddin, M. Biological treatment of textile wastewater by total aerobic mixed bacteria and comparison with chemical Fenton process. Pollution 2022, 8, 1418–1433. [Google Scholar] [CrossRef]
- El Ayari, T.; Bouhdida, R.; Ouzari, H.I.; El Menif, N.T. Bioremediation of petroleum refinery wastewater by fungal stains isolated from the fishing harbour of Bizerte (Mediterranean Sea). Biodegradation 2024, 35, 755–767. [Google Scholar] [CrossRef]
- Beltrán-Flores, E.; Pla-Ferriol, M.; Martínez-Alonso, M.; Gaju, N.; Blánquez, P.; Sarrà, M. Fungal bioremediation of agricultural wastewater in a long-term treatment: Biomass stabilization by immobilization strategy. J. Hazard. Mater. 2022, 439, 129614. [Google Scholar] [CrossRef]
- Khan, N.; Muge, E.; Mulaa, F.J.; Wamalwa, B.; von Bergen, M.; Jehmlich, N.; Wick, L.Y. Mycelial nutrient transfer promotes bacterial co-metabolic organochlorine pesticide degradation in nutrient-deprived environments. ISME J. 2023, 17, 570–578. [Google Scholar] [CrossRef]
- Yu, T.; Wang, L.; Ma, F.; Wang, Y.; Bai, S. A bio-functions integration microcosm: Self-immobilized biochar-pellets combined with two strains of bacteria to remove atrazine in water and mechanisms. J. Hazard. Mater. 2020, 384, 121326. [Google Scholar] [CrossRef]
- Magnoli, K.; Carranza, C.; Aluffi, M.; Magnoli, C.; Barberis, C. Fungal Biodegradation of Chlorinated Herbicides: An Overview with an Emphasis on 2,4-D in Argentina. Biodegradation 2023, 34, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.C.V.; Serbent, M.P.; Skoronski, E. Application of immobilized mycelium-based pellets for the removal of organochlorine compounds: A Review. Water Sci. Technol. 2021, 83, 1781–1796. [Google Scholar] [CrossRef] [PubMed]
- Cepero de García, M.C.; Restrepo, S.; Franco, A.E. Biologia de Hongos; Universidad de los Andes, Facultad de Ciencias, Ed.; Uniandes: Bogotá, Colombia, 2012. [Google Scholar]
- Vroumsia, T.; Steiman, R.; Seigle-Murandi, F.; Benoit-Guyod, J.L. Fungal bioconversion of 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2,4-Dichlorophenol (2,4-DCP). Chemosphere 2005, 60, 1471–1480. [Google Scholar] [CrossRef] [PubMed]
- Bokade, P.; Purohi, H.; Bajaj, A. Myco-remediation of chlorinated pesticides: Insights into fungal metabolic system. Indian J. Microbiol. 2021, 61, 237–249. [Google Scholar] [CrossRef]
- Bose, S.; Kumar, P.S.; Vo, D.V.N.; Rajamohan, N.; Saravanan, R. Microbial degradation of recalcitrant pesticides. Environ. Chem. Let. 2021, 19, 3209–3228. [Google Scholar] [CrossRef]
- Karas, P.A.; Perruchon, C.; Exarhou, K.; Ehaliotis, C.; Karpouzas, D.G. Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 2011, 22, 215–228. [Google Scholar] [CrossRef]
- Marinho, G.; Barbosa, B.C.A.; Rodrigues, K.; Aquino, M.; Pereira, L. Potential of the filamentous fungus Aspergillus niger AN 400 to degrade atrazine in wastewaters. Biocatal. Agric. Biotechnol. 2017, 9, 162–167. [Google Scholar] [CrossRef]
- Mohiuddin, M.; Mohammed, M.K. Influence of fungicide (carbendazim) and herbicides (2, 4-D and metribuzin) on non-target beneficial soil microorganisms of rhizospheric soil of tomato crop. J. Environ. Sci. Toxicol. Food Technol. 2013, 5, 47–50. [Google Scholar] [CrossRef]
- Jahin, H.S.; Gaber, S.E.; Hussain, M.T. Bioremediation of diazinon pesticide from aqueous solution by fungal strains isolated from wastewater. World J. Chem. 2020, 15, 15–23. [Google Scholar] [CrossRef]
- Lizano-Fallas, V.; Masís-Mora, M.; Espinoza-Villalobos, D.; Lizano-Brenes, M.; Rodríguez-Rodríguez, C.E. Removal of pesticides and ecotoxicological changes during the simultaneous treatment of triazines and chlorpyrifos in biomixtures. Chemosphere 2017, 182, 106–113. [Google Scholar] [CrossRef]
Strains–Incubation Time (d 1) | pH 2 | EC 3 (uS 4 cm−1) | TS 5 at 105 °C (g L−1) | Calcium (mg L−1) | Magnesium (mg L−1) | Sodium (mg L−1) | Potassium (mg L−1) | Nitrate (ppm) | Phosphorus (ppm) |
---|---|---|---|---|---|---|---|---|---|
RCA2–14 | 6.33 a | 11,870 c | 10.00 c | 400 b | 720 b | 160 c | 600 b | 64.16 f | 103.91 f |
RCA2–28 | 7.90 d | 9590 b | 8.38 a | 400 b | 240 a | 80 a | 760 d | 42.77 b | 44.79 b |
RCA2–42 | 7.80 d | 9550 b | 9.53 b | 200 a | 240 a | 120 b | 520 a | 38.50 a | 39.84 a |
RCA10–14 | 6.67 b | 12,630 c | 9.99 c | 200 a | 240 a | 200 d | 1600 f | 55.61 d | 82.10 e |
RCA10–28 | 7.55 c | 11,220 c | 9.50 b | 200 a | 240 a | 240 f | 800 e | 49.90 c | 52.86 c |
RCA10–42 | 7.88 d | 8960 a | 9.29 b | 200 a | 240 a | 120 b | 520 a | 35.65 a | 41.93 a |
Control | 6.90 b | 11,410 c | 9.34 b | 800 c | 720 b | 160 c | 680 c | 44.20 b | 73.96 d |
Source of Variation | Df 1 | SM 2 | F 3 |
---|---|---|---|
S | 3 | 4090.67 | 4462.55 * |
C | 2 | 24,540.00 | 26,770.91 * |
D | 2 | 2597.93 | 2834.11 * |
Co | 1 | 113.72 | 124.06 * |
S × C | 6 | 1412.59 | 1541.00 * |
S × D | 6 | 459.87 | 501.67 * |
S × Co | 3 | 1024.60 | 1117.75 * |
C × D | 4 | 165.74 | 180.81 * |
C × Co | 2 | 796.97 | 869.43 * |
D × Co | 2 | 238.52 | 260.20 * |
S × C × D | 12 | 353.44 | 385.57 * |
S × C × Co | 6 | 743.37 | 810.94 * |
S × D × Co | 6 | 180.80 | 197.23 * |
C × D × Co | 4 | 286.43 | 312.47 * |
S × C × D × Co | 12 | 119.57 | 130.44 * |
Error | 144 | 0.91 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magnoli, K.; Aluffi, M.E.; Benito, N.; Magnoli, C.E.; Barberis, C.L. Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D in Wastewater Set to Be Reused in Agricultural Ecosystems. Agriculture 2025, 15, 1795. https://doi.org/10.3390/agriculture15171795
Magnoli K, Aluffi ME, Benito N, Magnoli CE, Barberis CL. Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D in Wastewater Set to Be Reused in Agricultural Ecosystems. Agriculture. 2025; 15(17):1795. https://doi.org/10.3390/agriculture15171795
Chicago/Turabian StyleMagnoli, Karen, Melisa Eglé Aluffi, Nicolás Benito, Carina Elizabeth Magnoli, and Carla Lorena Barberis. 2025. "Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D in Wastewater Set to Be Reused in Agricultural Ecosystems" Agriculture 15, no. 17: 1795. https://doi.org/10.3390/agriculture15171795
APA StyleMagnoli, K., Aluffi, M. E., Benito, N., Magnoli, C. E., & Barberis, C. L. (2025). Aspergillus oryzae Pellets as a Biotechnological Tool to Remove 2,4-D in Wastewater Set to Be Reused in Agricultural Ecosystems. Agriculture, 15(17), 1795. https://doi.org/10.3390/agriculture15171795