Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska
Abstract
1. Introduction
2. Materials and Methods
2.1. Crop Models and Cultivars
2.2. Crop Model Input Data
2.3. Cover Crop Management
2.4. Corn Agronomic Management
2.5. Statistical Analysis
3. Results and Discussion
3.1. Impact of Cover Crop Adoption on Corn Yield
3.2. Cover Crop Termination Date
3.2.1. Corn Yield Trends
3.2.2. Corn Yield Trends
3.2.3. Cover Crop Biomass and Growth-Stage Trends
3.2.4. Trade-Offs and Management Implications
3.3. Cover Crop Termination–Corn Planting Interval
3.3.1. Cover Crop Biomass Across Termination–Planting Intervals
3.3.2. Balancing Yield and Biomass with Termination–Planting Intervals
3.4. Cover Crop Seeding Rates
4. Conclusions and Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameter | Definition | Unit | Range | Value |
---|---|---|---|---|
P1197 Corn hybrid | ||||
P1 | Thermal time from emergence to end of juvenile stage | °C | 100–400 | 255 |
P2 | Delay in development per h above 25 °C | Days | 0–4 | 0.042 |
P5 | Thermal time from silking to physiological maturity | °C | 600–900 | 775 |
G2 | Maximum kernels per plant | # plant−1 | 500–1000 | 807 |
G3 | Kernel fill rate under optimal conditions | mg d−1 | 5–12 | 8.51 |
PHINT | Thermal time between successive leaf tip appearance | °C | 40–55 | 49.79 |
Elbon Cereal Rye Variety | ||||
P1V | Optimum vernalizing temperature | Days | 0–60 | 50 |
P1D | Photoperiod response (reduction in rate) | % | 0–200 | 20 |
P5 | Grain filling (excluding lag) phase duration | °C | 100–999 | 450 |
G1 | Kernel number per unit canopy weight at anthesis | # g−1 | 10–50 | 20 |
G2 | Standard kernel size under optimum conditions | mg | 10–80 | 60 |
G3 | Standard, non-stressed mature tiller wt (dry) | g | 0.5–8 | 4.0 |
PHINT | Interval between successive leaf tip appearances | °C | 30–150 | 70 |
Management Aspect | Falls City | Memphis | Concord | Holdrege | North Platte | Valentine | Alliance |
---|---|---|---|---|---|---|---|
CC planting date | 22 October (applied to all sites) | ||||||
CC seeding rate | 300 plants/m2 (applied to all sites) | ||||||
CC seeding rate (scenario) | 200, 250, 300, 350, 400, 450, 500 plants/m2 | ||||||
CC seeding method | No-till drill at 3 cm depth | ||||||
CC termination date | 26 April | 6 May | 11 May | 6 May | 6 May | 1 May | 11 May |
CC termination date (scenario) | 20, 25, 30 April; 5, 10, 15, 20 May | ||||||
Termination-to-planting interval (days) | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
Termination-to-planting interval (scenario) | 1, 5, 10, 15, 20 days before 11 May | ||||||
Corn planting date | 6 May | 16 May | 21 May | 16 May | 16 May | 11 May | 21 May |
Corn planting date (scenario) | Adjusted to maintain 10-day interval after termination | ||||||
Corn seeding rate (plants/m2) | 9 | 9 | 8 | 9 | 8 | 8 | 8 |
Fertilizer rate (kg N/ha) | 200 | 180 | 180 | 180 | 140 | 140 | 140 |
Irrigation volume (corn, mm) | 170 | 180 | 190 | 210 | 220 | 300 | 300 |
Corn seeding method | No-till planter at 5 cm depth with 76 cm row spacing | ||||||
Simulation period | 1991–2020 (applied to all sites) |
Source | Sum Sq | df | F | Pr (>F) |
---|---|---|---|---|
CoverCrop | 271,512 | 1 | 0.058 | 0.810 |
Timing | 4,853,660 | 1 | 1.034 | 0.309 |
Site | 1,180,860,000 | 6 | 41.947 | <0.001 |
CoverCrop:Timing | 27,269 | 1 | 0.006 | 0.939 |
CoverCrop:Site | 896,697 | 6 | 0.032 | 1.000 |
Timing:Site | 5,258,740 | 6 | 0.187 | 0.981 |
CoverCrop:Timing:Site | 62,581 | 6 | 0.002 | 1.000 |
Residual | 3,809,790,000 | 812 | – | – |
Source | Sum Sq | F-Value | p-Value |
---|---|---|---|
Site | 74.04 | <0.001 | |
Termination Date | 0.37 | 0.901 | |
Site × Termination Date | 0.18 | 1.000 | |
Residual | – | – |
Factor | Sum Sq | df | F-Value | p-Value | |
---|---|---|---|---|---|
Site | 6 | 168.49 | <0.001 | ||
Termination Date | 6 | 42.33 | <0.001 | ||
Site × Termination Date | 36 | 1.25 | |||
Residual | 1372 | — | — | ||
Group 1 | Group 2 | Mean Diff | p-Adj | Lower | Upper |
5-May | 10-May | 143.759 | 0.555 | −93.293 | 380.810 |
5-May | 15-May | 293.483 | 0.005 | 56.431 | 530.534 |
5-May | 20-April | −307.084 | 0.003 | −544.135 | −70.032 |
5-May | 20-May | 470.123 | 0.000 | 233.072 | 707.175 |
5-May | 25-April | −221.724 | 0.084 | −458.776 | 15.328 |
5-May | 30-April | −118.498 | 0.759 | −355.549 | 118.554 |
10-May | 15-May | 149.724 | 0.504 | −87.328 | 386.776 |
10-May | 20-April | −450.842 | 0.000 | −687.894 | −213.791 |
10-May | 20-May | 326.365 | 0.001 | 89.313 | 563.416 |
10-May | 25-April | −365.483 | 0.000 | −602.534 | −128.431 |
10-May | 30-April | −262.256 | 0.019 | −499.308 | −25.205 |
15-May | 20-April | −600.567 | 0.000 | −837.618 | −363.515 |
15-May | 20-May | 176.640 | 0.296 | −60.411 | 413.692 |
15-May | 25-April | −515.207 | 0.000 | −752.259 | −278.155 |
15-May | 30-April | −411.980 | 0.000 | −649.032 | −174.929 |
20-April | 20-May | 777.207 | 0.000 | 540.155 | 1014.259 |
20-April | 25-April | 85.360 | 0.939 | −151.692 | 322.411 |
20-April | 30-April | 188.586 | 0.222 | −48.465 | 425.638 |
20-May | 25-April | −691.847 | 0.000 | −928.899 | −454.796 |
20-May | 30-April | −588.621 | 0.000 | −825.672 | −351.569 |
25-April | 30-April | 103.227 | 0.859 | −133.825 | 340.278 |
Effect | F-Value | p-Value | |||
---|---|---|---|---|---|
Site | 101.939 | <0.001 | |||
Termination Date | 109.014 | <0.001 | |||
Site × Termination Date | 0.466 | 0.997 | |||
Group 1 | Group 2 | Mean Diff | p-Adj | Lower | Upper |
10-May | 15-May | 6.2616 | 0.014 | 0.7605 | 11.7627 |
10-May | 20-April | −18.4842 | 0 | −23.9853 | −12.9831 |
10-May | 20-May | 13.9591 | 0 | 8.4580 | 19.4602 |
10-May | 25-April | −14.2236 | 0 | −19.7247 | −8.7225 |
10-May | 30-April | −10.2852 | 0 | −15.7863 | −4.7841 |
10-May | 5-May | −6.2296 | 0.0148 | −11.7307 | −0.7285 |
15-May | 20-April | −24.7458 | 0 | −30.2469 | −19.2447 |
15-May | 20-May | 7.6975 | 0.0008 | 2.1964 | 13.1986 |
15-May | 25-April | −20.4852 | 0 | −25.9863 | −14.9841 |
15-May | 30-April | −16.5468 | 0 | −22.0479 | −11.0457 |
15-May | 5-May | −12.4911 | 0 | −17.9922 | −6.9900 |
20-April | 20-May | 32.4433 | 0 | 26.9422 | 37.9445 |
20-April | 25-April | 4.2606 | 0.251 | −1.2405 | 9.7617 |
20-April | 30-April | 8.1990 | 0.0002 | 2.6979 | 13.7001 |
20-April | 5-May | 12.2547 | 0 | 6.7536 | 17.7558 |
20-May | 25-April | −28.1828 | 0 | −33.6839 | −22.6817 |
20-May | 30-April | −24.2443 | 0 | −29.7454 | −18.7432 |
20-May | 5-May | −20.1887 | 0 | −25.6898 | −14.6876 |
25-April | 30-April | 3.9384 | 0.3449 | −1.5627 | 9.4395 |
25-April | 5-May | 7.9941 | 0.0004 | 2.4930 | 13.4952 |
30-April | 5-May | 4.0557 | 0.3088 | −1.4454 | 9.5568 |
Site | Termination Date | Yield (kg[Dry]/ha) | Biomass (kg[Dry]/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean | Median | Min | Max | Mean | Median | Min | Max | ||
Falls City | 20-April | 10,645 | 10,550 | 7677 | 13,094 | 1163 | 823 | 89 | 4362 |
25-April | 10,616 | 10,644 | 7068 | 13,098 | 1421 | 1122 | 147 | 5099 | |
30-April | 10,607 | 11,058 | 7019 | 13,419 | 1665 | 1454 | 184 | 5364 | |
5-May | 10,413 | 10,916 | 6521 | 13,251 | 1931 | 1826 | 119 | 5919 | |
10-May | 10,346 | 10,852 | 5580 | 13,383 | 2169 | 2139 | 234 | 6095 | |
15-May | 10,620 | 11,030 | 4533 | 13,555 | 2322 | 2216 | 352 | 6036 | |
20-May | 10,883 | 10,924 | 4597 | 13,320 | 2512 | 2245 | 585 | 5671 | |
Memphis | 20-April | 9787 | 10,244 | 6000 | 12,232 | 211 | 156 | 0 | 1075 |
25-April | 9688 | 9988 | 5590 | 12,083 | 297 | 232 | 0 | 1589 | |
30-April | 9621 | 10,146 | 5673 | 11,882 | 382 | 284 | 3 | 2203 | |
5-May | 9606 | 10,124 | 5302 | 11,836 | 501 | 366 | 0 | 2492 | |
10-May | 9711 | 10,324 | 6267 | 11,681 | 584 | 413 | 0 | 2510 | |
15-May | 9709 | 10,048 | 6482 | 11,293 | 690 | 551 | 0 | 2695 | |
20-May | 9716 | 9852 | 7397 | 11,910 | 836 | 842 | 0 | 2762 | |
Concord | 20-April | 10,386 | 10,666 | 6657 | 12,746 | 144 | 61 | 0 | 525 |
25-April | 10,321 | 10,574 | 6791 | 12,685 | 186 | 110 | 0 | 656 | |
30-April | 10,248 | 10,542 | 6876 | 12,610 | 255 | 150 | 0 | 1232 | |
5-May | 10,226 | 10,391 | 7181 | 12,806 | 319 | 209 | 0 | 1678 | |
10-May | 10,134 | 10,408 | 7715 | 12,725 | 379 | 201 | 0 | 1947 | |
15-May | 10,121 | 10,530 | 5829 | 12,601 | 469 | 260 | 0 | 1866 | |
20-May | 10,002 | 10,446 | 5826 | 12,357 | 528 | 295 | 0 | 1534 | |
Holdrege | 20-April | 11,700 | 12,368 | 6059 | 14,003 | 304 | 154 | 0 | 1399 |
25-April | 11,690 | 12,282 | 6470 | 14,063 | 399 | 258 | 0 | 1633 | |
30-April | 11,537 | 12,017 | 6304 | 13,879 | 555 | 428 | 0 | 2115 | |
5-May | 11,146 | 12,130 | 6726 | 14,019 | 689 | 481 | 0 | 2415 | |
10-May | 11,720 | 12,121 | 7160 | 14,037 | 896 | 719 | 0 | 3043 | |
15-May | 11,774 | 11,936 | 7650 | 14,019 | 1144 | 801 | 0 | 3314 | |
20-May | 11,847 | 12,645 | 6863 | 14,994 | 1384 | 1067 | 0 | 3772 | |
North Platte | 20-April | 9676 | 10,083 | 4731 | 13,691 | 118 | 77 | 0 | 493 |
25-April | 9570 | 10,174 | 4710 | 14,189 | 149 | 93 | 0 | 704 | |
30-April | 9482 | 9822 | 4189 | 13,913 | 201 | 130 | 0 | 1062 | |
5-May | 9559 | 10,170 | 4708 | 13,803 | 254 | 142 | 0 | 1253 | |
10-May | 9715 | 10,409 | 5267 | 13,430 | 360 | 313 | 0 | 1490 | |
15-May | 9611 | 10,290 | 5567 | 12,999 | 536 | 495 | 0 | 1806 | |
20-May | 9401 | 10,052 | 5843 | 12,616 | 701 | 568 | 0 | 2267 | |
Valentine | 20-April | 8797 | 8646 | 3599 | 12,954 | 154 | 143 | 0 | 436 |
25-April | 8525 | 8338 | 3730 | 12,313 | 200 | 195 | 0 | 524 | |
30-April | 8489 | 8318 | 3569 | 11,810 | 271 | 293 | 0 | 626 | |
5-May | 8333 | 8756 | 4528 | 11,521 | 370 | 390 | 0 | 799 | |
10-May | 8352 | 8868 | 4702 | 12,370 | 551 | 482 | 0 | 1923 | |
15-May | 8325 | 8951 | 4365 | 11,920 | 705 | 683 | 0 | 2366 | |
20-May | 8080 | 8508 | 3693 | 12,869 | 956 | 912 | 0 | 2852 | |
Alliance | 20-April | 7946 | 7812 | 2234 | 15,695 | 100 | 43 | 0 | 667 |
25-April | 7917 | 7748 | 2259 | 14,792 | 139 | 53 | 0 | 899 | |
30-April | 7895 | 7680 | 2270 | 15,979 | 186 | 145 | 0 | 1300 | |
5-May | 7832 | 7754 | 2128 | 13,763 | 280 | 196 | 0 | 1618 | |
10-May | 7813 | 7698 | 2817 | 13,838 | 411 | 356 | 0 | 1785 | |
15-May | 7582 | 7504 | 1509 | 14,691 | 532 | 448 | 0 | 2144 | |
20-May | 7199 | 6718 | 1064 | 13,822 | 718 | 583 | 0 | 2403 |
Effect | Sum Sq | F-Value | p-Value |
---|---|---|---|
Site | 54.57 | <0.001 | |
Termination–Planting Interval | 0.04 | 0.996 | |
Site × Interval | 0.001 | 1.000 | |
Residual | – | – |
Effect | F-Value | p-Value | |||
---|---|---|---|---|---|
Site | 63.99 | <0.001 | |||
Interval | 21.17 | <0.001 | |||
Site × Interval | 1.05 | 0.391 | |||
Group 1 | Group 2 | Mean Diff | p-Adj | Lower | Upper |
10-day | 15-day | −111.2 | 0.502 | −301.97 | 79.58 |
10-day | 1-day | 276.1 | 0.0008 | 85.28 | 466.83 |
10-day | 20-day | −211.5 | 0.021 | −402.25 | −20.70 |
10-day | 5-day | 135.4 | 0.297 | −55.39 | 326.16 |
15-day | 1-day | 387.2 | <0.001 | 196.47 | 578.02 |
15-day | 20-day | −100.3 | 0.604 | −291.06 | 90.49 |
15-day | 5-day | 246.6 | 0.0039 | 55.80 | 437.35 |
1-day | 20-day | −487.5 | <0.001 | −678.30 | −296.75 |
1-day | 5-day | −140.7 | 0.259 | −331.44 | 50.10 |
20-day | 5-day | 346.9 | <0.001 | 156.08 | 537.63 |
Effect | F-Value | p-Value | |||
---|---|---|---|---|---|
Site | 63.99 | <0.001 | |||
Interval | 21.17 | <0.001 | |||
Site × Interval | 1.05 | 0.391 | |||
Site | 92.12 | <0.001 | |||
Seeding Rate | 4.31 | <0.001 | |||
Site × Seeding Rate | 0.19 | 1.000 | |||
Group 1 | Group 2 | Mean Diff | p-Adj | Lower | Upper |
SR200 | SR250 | 65.75 | 0.967 | −142.50 | 274.00 |
SR200 | SR300 | 115.36 | 0.659 | −92.89 | 323.61 |
SR200 | SR350 | 163.28 | 0.237 | −44.97 | 371.53 |
SR200 | SR400 | 192.42 | 0.092 | −15.83 | 400.67 |
SR200 | SR450 | 226.24 | 0.023 | 17.99 | 434.49 |
SR200 | SR500 | 243.72 | 0.010 | 35.47 | 451.97 |
SR250 | SR300 | 49.62 | 0.992 | −158.63 | 257.87 |
SR250 | SR350 | 97.53 | 0.811 | −110.72 | 305.78 |
SR250 | SR400 | 126.67 | 0.551 | −81.58 | 334.92 |
SR250 | SR450 | 160.49 | 0.257 | −47.76 | 368.74 |
SR250 | SR500 | 177.98 | 0.152 | −30.28 | 386.23 |
SR300 | SR350 | 47.91 | 0.994 | −160.34 | 256.16 |
SR300 | SR400 | 77.05 | 0.930 | −131.20 | 285.30 |
SR300 | SR450 | 110.88 | 0.700 | −97.37 | 319.13 |
SR300 | SR500 | 128.36 | 0.535 | −79.89 | 336.61 |
SR350 | SR400 | 29.14 | 1.000 | −179.11 | 237.39 |
SR350 | SR450 | 62.97 | 0.974 | −145.28 | 271.22 |
SR350 | SR500 | 80.45 | 0.915 | −127.80 | 288.70 |
SR400 | SR450 | 33.82 | 0.999 | −174.43 | 242.07 |
SR400 | SR500 | 51.31 | 0.991 | −156.95 | 259.56 |
SR450 | SR500 | 17.48 | 1.000 | −190.77 | 225.73 |
References
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2013, 33, 121–131. [Google Scholar] [CrossRef]
- Arora, K. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophys. Res. Lett. 2011, 38, L05805. [Google Scholar] [CrossRef]
- Basche, A.D. Simulating long-term impacts of cover crops and climate change on crop production and environmental outcomes in the Midwestern United States. Agric. Ecosyst. Environ. 2016, 218, 95–106. [Google Scholar] [CrossRef]
- Birru, G.; Shiferaw, A.; Tadesse, T.; Wardlow, B.; Jin, V.L.; Schmer, M.R.; Awada, T.; Kharel, T.; Iqbal, J. Cover Crop Performance Under a Changing Climate in Continuous Maize System over Nebraska. J. Environ. Qual. 2024, 53, 66–77. [Google Scholar] [CrossRef]
- Shiferaw, A.; Birru, G.; Tadesse, T.; Schmer, M.R.; Awada, T.; Jin, V.L.; Wardlow, B.; Iqbal, J.; Freidenreich, A.; Kharel, T.; et al. Optimizing Cover Crop Management in Eastern Nebraska: Insights from Crop Simulation Modeling. Agronomy 2024, 14, 1561. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Chatterjee, N. Simulating winter rye cover crop production under alternative management in a corn-soybean rotation. Agron. J. 2020, 112, 4648–4665. [Google Scholar] [CrossRef]
- Cherr, M.; Scholberg, J.; Mcsorley, R.M. Green manure approaches to crop production: A synthesis. Agron. J. 2006, 98, 302–319. [Google Scholar] [CrossRef]
- Clarke, L.; Edmonds, J.; Jacoby, H.; Pitcher, H.; Reilly, J.; Richels, R. Sub-Report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research; Office of Biological & Environmental Research: Washington DC, USA, 2007; p. 154.
- Bowman, M.; Afi, M.; Beenken, A.; Boline, A.; Drewnoski, M.; Krupek, F.S.; Parsons, J.; Redfearn, D.; Wallander, S.; Whitt, C. Cover Crops on Livestock Operations: Potential for Expansion in the United States (Report No. AP-120); Economic Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2024. [CrossRef]
- Miller, J.J.; Koehler-Cole, K.; Werle, R.; Redfearn, D. Cover Crops: A Primer 2017. Available online: https://extensionpubs.unl.edu/publication/g2284/cover-crops (accessed on 25 April 2025).
- Daigh, A.L. Soil water during the drought of 2012 as affected by rye cover crops in fields in Iowa and Indiana. J. Soil Water Conserv. 2014, 69, 564–573. [Google Scholar] [CrossRef]
- Gryze, S.D. Simulating greenhouse gas budgets of four California cropping systems under conventional and alternative management. Ecol. Appl. 2010, 20, 1805–1819. [Google Scholar] [CrossRef]
- Elhakeem, A. Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Ecosyst. Environ. 2019, 285, 106627. [Google Scholar] [CrossRef]
- Fageria, N.K.; Baligar, V.C.; Bailey, B.A. Role of cover crops in improving soil and row crop productivity. Commun. Soil Sci. Plant Anal. 2005, 36, 2733–2757. [Google Scholar] [CrossRef]
- Holste, N.; Koehler-Cole, K.; Elmore, R. Carbon and Nitrogen Content of Winter Cover Crop Dry Matter; Institute of Agriculture and Natural Resources: Lincoln, NE, USA, 2016. [Google Scholar]
- Jones, C. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Kahiluoto, H. The role of modelling in adapting and building the climate resilience of cropping systems. In Climate Change Impact and Adaptation in Agricultural Systems; Fuhrer, J., Ed.; CABI: Wallingford, UK, 2014; pp. 204–215. [Google Scholar]
- Kaspar, T.C.; Bakker, M.G. Biomass production of 12 winter cereal cover crop cultivars and their effect on subsequent no-till corn yield. J. Soil Water Conserv. 2015, 70, 353–364. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Butts, L.; Werle, R. Assessment of Cover Crop Management Strategies in Nebraska, US. Agriculture 2019, 9, 124. [Google Scholar] [CrossRef]
- Singer, J.W. Corn Belt Assessment of Cover Crop Management and Preferences. Agron. J. 2008, 100, 1670–1672. [Google Scholar] [CrossRef]
- USDA-NASS. 2017 Census of Agriculture: Nebraska State and County Data, Volume 1, Geographic Area Series, Part 27; U.S. Department of Agriculture: Washington, DC, USA, 2019.
- USDA-NASS. 2022 Census of Agriculture: Nebraska State and County Data, Volume 1, Geographic Area Series, Part 27; U.S. Department of Agriculture: Washington, DC, USA, 2024.
- Martinez-Feria, R.A.; Dietzel, R.; Liebman, M.; Helmers, M.J.; Archontoulis, S.V. Rye cover crop effects on maize: A system-level analysis. Field Crops Res. 2016, 196, 145–159. [Google Scholar] [CrossRef]
- Arbuckle, J.G.J.; Roesch-McNally, G. Cover crop adoption in Iowa: The role of perceived practice characteristics. J. Soil Water Conserv. 2015, 70, 418–429. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Baker, J.M.; Porter, P.M.; Reicosky, D.C. Rye-corn silage double-cropping reduces corn yield but improves environmental impacts. Agron. J. 2012, 104, 888–896. [Google Scholar] [CrossRef]
- Duiker, S.W.; Curran, W.S. Rye Cover Crop Management for Corn Production in the Northern Mid-Atlantic Region. Agron. J. 2005, 97, 1413–1418. [Google Scholar] [CrossRef]
- Dabney, S.M.; Delgado, J.A.; Collins, F.; Meisinger, J.J.; Schomberg, H.H.; Liebig, M.A.; Kaspar, T.; Mitchell, J. Using cover crops and cropping systems for nitrogen management. In Advances in Nitrogen Management for Water Quality; Delgado, A.J., Follett, F.R., Eds.; Soil and Water Conservation Society: Ankeny, IA, USA, 2010; pp. 230–281. [Google Scholar]
- Dinnes, D.L.; Karlen, D.L.; Jaynes, D.B.; Kaspar, T.C.; Hatfield, J.L.; Colvin, T.S.; Cambardella, C. Nitrogen management strategies to reduce nitrateleaching in tile-drained Midwestern soils. Agron. J. 2002, 94, 153–171. [Google Scholar] [CrossRef]
- Malone, R.W.; Jaynes, D.B.; Kaspar, T.C.; Thorp, K.R.; Kladivko, E.; Ma, L.; Searchinger, T. Cover crops in the upper midwestern United States: Simulated effect on nitrate leaching with artificial drainage. J. Soil Water Conserv. 2014, 69, 292–305. [Google Scholar] [CrossRef]
- Jian, J.; Lester, B.J.; Du, X.; Reiter, M.S.; Stewart, R.D. A calculator to quantify cover crop effects on soil health and productivity. Soil Tillage Res. 2020, 199, 104575. [Google Scholar] [CrossRef]
- Kaspar, T.C.; Singer, J. The Use of Cover Crops to Manage Soil. In Soil Management: Building a Stable Base for Agriculture; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 2011. [Google Scholar]
- Kaspar, T. Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water. Agric. Water Manag. 2012, 110, 25–33. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F. The temperature dependence of organic-matter decomposition-still a topic of debate. Soil Biol. Biochem. 2006, 38, 2510–2518. [Google Scholar] [CrossRef]
- Carlson, S.; Stockwell, R. Research Priorities for Advancing Adoption of Cover Crops in Agriculture-intensive Regions. J. Agric. Food Syst. Community Dev. 2013, 3, 125–129. [Google Scholar] [CrossRef]
- Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Shelia, V.; Wilkens, P.W.; Singh, U.; White, J.W.; Asseng, S.; Lizaso, J.I.; Moreno, L.P.; et al. The DSSAT crop modeling ecosystem. In Crop Modeling for a Sustainable Agriculture; Boote, K., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 173–216. [Google Scholar]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 107–114. [Google Scholar] [CrossRef]
- Mackinnon, J.C. CERES-Maize: A simulation model of maize growth and development: C.A. Jones and J.R. Kiniry (editors). Texas A&M University Press, College Station, TX, 1986. 194 pp., US$33.50. ISBN 0-89096-269-3. Comput. Electron. Agric. 1987, 2, 171–172. [Google Scholar]
- Ritchie, J.T.; Otter, S. Description and Performance of CERES-Wheat. A User Oriented Wheat Yield Model; USDA ARS Grassland Soil and Water Research Laboratory: Temple, TX, USA, 1984.
- Birru, G.; Shiferaw, A.; Tadesse, T.; Schmer, M.R.; Jin, V.L.; Wardlow, B.; Koehler-Cole, K.; Awada, T.; Beebout, S.; Tsegaye, T. Simulated impacts of winter rye cover crop on continuous corn yield and soil parameters. Agron. J. 2023, 115, 1114–1130. [Google Scholar] [CrossRef]
- Hunt, L.A.; Pararajasingham, S.; Jones, J.W.; Hoogenboom, G.; Imamura, D.T.; Ogoshi, R.M. GENCALC: Software to Facilitate the Use of Crop Models for Analyzing Field Experiments. Agron. J. 1993, 85, 1090–1094. [Google Scholar] [CrossRef]
- Barr, R.L.; Mason, S.C.; Novacek, M.J.; Wortmann, C.S.; Rees, J.M. Row Spacing and Seeding Rate Recommendations for Corn in Nebraska; University of Nebraska: Lincoln, NE, USA, 2013. [Google Scholar]
- NDNR. Annual Evaluation of Availability of Hydrologically Connected Water Supplies. Appendix D: County Average Net Irrigation Requirement. Nebraska Department of Natural Resources. Available online: https://dnr.nebraska.gov/water-planning/annual-evaluation-availability-hydrologically-connected-water-supplies-fab-report (accessed on 25 April 2025).
- Sharma, V.; Irmak, S. Mapping Spatially Interpolated Precipitation, Reference Evapotranspiration, Actual Crop Evapotranspiration, and Net Irrigation Requirements in Nebraska: Part II. Actual Crop Evapotranspiration and Net Irrigation Requirements. Trans. ASABE 2012, 55, 923–936. [Google Scholar] [CrossRef]
- USDA-ERS. Irrigation Technology and Water Use: Crop Production Practices for Corn in Nebraska. 2025. Available online: https://data.ers.usda.gov/reports.aspx?ID=4022 (accessed on 15 December 2024).
- Lopez, J.R.; Winter, J.M.; Elliott, J.; Ruane, A.C.; Porter, C.; Hoogenboom, G. Integrating growth stage deficit irrigation into a process-based crop model. Agric. For. Meteorol. 2017, 243, 84–92. [Google Scholar] [CrossRef]
- Basche, A.D. Soil water improvements with the long-term use of a winter rye cover crop. Agric. Water Manag. 2016, 172, 40–50. [Google Scholar] [CrossRef]
- Miguez, F.E.; Bollero, G.A. Review of Corn Yield Response under Winter Cover Cropping Systems Using Meta-Analytic Methods. Crop Sci. 2005, 45, 2318–2329. [Google Scholar] [CrossRef]
- Marcillo, G.S.; Miguez, F.E. Corn yield response to winter cover crops: An updated meta-analysis. J. Soil Water Conserv. 2017, 72, 226–239. [Google Scholar] [CrossRef]
- Duiker, S.W. Establishment and Termination Dates Affect Fall-Established Cover Crops. Agron. J. 2014, 106, 670–678. [Google Scholar] [CrossRef]
- Crespo, C.; O’Brien, P.L.; Ruis, S.J.; Kovar, J.L.; Kaspar, T.C. Thermal time and precipitation dictate cereal rye shoot biomass production. Field Crops Res. 2024, 315, 109473. [Google Scholar] [CrossRef]
- Pittman, K.B.; Cahoon, C.W.; Bamber, K.W.; Rector, L.S.; Flessner, M.L. Herbicide selection to terminate grass, legume, and brassica cover crop species. Weed Technol. 2019, 34, 48–54. [Google Scholar] [CrossRef]
- Whalen, D.M.; Bish, M.D.; Young, B.G.; Conley, S.P.; Reynolds, D.B.; Norsworthy, J.K.; Bradley, K.W. Herbicide programs for the termination of grass and broadleaf cover crop species. Weed Technol. 2020, 34, 1–10. [Google Scholar] [CrossRef]
- Palhano, M.G.; Norsworthy, J.K.; Barber, T. Evaluation of Chemical Termination Options for Cover Crops. Weed Technol. 2018, 32, 227–235. [Google Scholar] [CrossRef]
- Bradley, K.; Oseland, E. Final Results from a Multi-State Study on Cover Crop Termination with Herbicides; Institute of Agriculture and Natural Resources: Lincoln, NE, USA, 2020. [Google Scholar]
- USDA-NRCS. Cover Crop Termination Guidelines Version 4; United States Department of Agriculture: Washington, DC, USA, 2019.
- Plastina, A.; Liu, F.; Sawadgo, W.; Miguez, F.; Carlson, S.; Marcillo, G. Annual Net Returns to Cover Crops in Iowa; Iowa State University Extension and Outreach: Ames, IA, USA, 2018. [Google Scholar]
- Myers, R.; Weber, A.; Tellatin, S. Cover Crop Economics: Opportunities to Improve Your Bottom Line in Row Crops; SARE Technical Bulletin; Sustainable Agriculture Research and Education: College Park, MD, USA, 2019. [Google Scholar]
- BCS. The Effect of Cereal Rye Cover Crop Termination Timing on Irrigated Corn; Bayer Crop Science: Monheim am Rhein, Germany, 2023. [Google Scholar]
- Gailans, S.; Sloan, D.; Sieren, T. N fertilizer Strategies for Corn Following Cover Crop; Practical Farmers of Iowa: Ames, IA, USA, 2017. [Google Scholar]
- Marcos, F.M.; Acharya, J.; Parvej, M.R.; Robertson, A.E.; Licht, M.A. Cereal rye cover crop seeding method, seeding rate, and termination timing effects corn development and seedling disease. Agron. J. 2023, 115, 1356–1372. [Google Scholar] [CrossRef]
- Herget, M. A Comparison of Cool-Season Cover Crop Fall Planting Dates in Northeastern Missouri; Elsberry Plant Materials Center: Elsberry, MO, USA, 2024.
- Boyd, N.S.; Brennan, E.B.; Smith, R.F. Weed growth in winter cover crops in warm climates may contribute to weed management costs in subsequent crops. Weed Technol. 2009, 23, 488–496. [Google Scholar]
- Duzy, L.; Smith, A.; Barker, D.; Johnson, M. Economics of Cover Crops I: Profitability of Cover Crops in Row Crop Production and Federal Cost Share for Cover Crops; Sustainable Agriculture Research and Education: College Park, MD, USA, 2016. [Google Scholar]
- Schnitkey, G.; Gentry, L. New Study Measures Economic Impact of Cover Crops Ahead of Soybeans. Available online: https://www.covercropstrategies.com/articles/3048-new-study-measures-economic-impact-of-cover-crops-ahead-of-soybeans (accessed on 29 January 2025).
Weather Station | Climate Div. | Latitude | Longitude | Elevation (m) | Precipitation (mm) | Mean Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Fall | Winter | Spring | Summer | Fall | Winter | |||||
Falls City | 9 | 40.06 | −95.60 | 305 | 259 | 350 | 199 | 71 | 11.7 | 24.1 | 12.4 | −1.6 |
Memphis | 6 | 41.10 | −96.43 | 349 | 204 | 282 | 143 | 15 | 10.3 | 23.2 | 11.1 | −3.5 |
Concord | 3 | 42.38 | −96.98 | 440 | 189 | 275 | 125 | 6 | 8.6 | 21.8 | 9.7 | −5.3 |
Holdrege | 8 | 40.44 | −99.37 | 707 | 185 | 268 | 99 | 12 | 9.8 | 22.6 | 10.8 | −2.5 |
North Platte | 7 | 41.13 | −100.77 | 844 | 138 | 218 | 78 | 2 | 9.3 | 22.2 | 10.2 | −2.0 |
Valentine | 2 | 42.88 | −100.55 | 893 | 178 | 224 | 94 | 34 | 8.3 | 22.2 | 9.5 | −3.7 |
Alliance | 1 | 42.10 | −102.87 | 1217 | 126 | 151 | 64 | 27 | 7.8 | 21.3 | 9.1 | −2.9 |
Site | Soil Series | Pedon ID | Latitude | Longitude | SOC * (%) | Soil Texture | |
---|---|---|---|---|---|---|---|
Topsoil | Subsoil | ||||||
Falls City | Wabash | 93NE147011 | 40.13 | −95.67 | 0.71 | SIL | SIC |
Memphis | Yutan | 89NE155106 | 41.12 | −96.56 | 1.28 | SICL | SICL |
Concord | Crofton | S1959NE051003 | 42.39 | −96.96 | 1.12 | SIL | SIL |
Holdrege | Holdrege | 82NE137001 | 40.46 | −99.41 | 2.20 | SIL | SIL |
North Platte | Anselmo | S1969NE111001 | 41.02 | −100.74 | 1.04 | VFSL | VFSL |
Valentine | Hennings | 84NE031016 | 42.82 | −100.86 | 0.77 | FSL | SCL–L–FSL |
Alliance | Alliance | 79NE013039 | 42.17 | −103.01 | 1.06 | L | SICL–L–VFSL |
Trait | ||||||
Corn (P1197 hybrid) | ||||||
Grain yield (kg ) | 680 | 1496 | 5.9 | 11.0 | 0.70 | 0.65 |
Unit kernel weight (g) | 0.026 | 0.021 | 9.3 | 7.4 | — | — |
Kernel number () | 29 | 15 | 6.0 | 2.6 | — | — |
Emergence date (days) | 1.25 | 1.30 | 20 | 20 | — | — |
Cereal Rye (Elbon variety) | ||||||
Biomass (kg ) | 428 | 231 | 23.0 | 24.0 | 0.97 | 0.98 |
Biomass N content (kg ) | 9.0 | 6.1 | 25 | 27 | 0.89 | 0.90 |
Site | Termination Timing | CVNCC | CVCC | RangeNCC (kg ) | RangeCC (kg ) | Levene’s Test (F/p) |
---|---|---|---|---|---|---|
Falls City | Early | 0.153 | 0.149 | 5992 | 5417 | 0.002/0.961 |
Falls City | Late | 0.174 | 0.175 | 8135 | 7803 | 0.028/0.868 |
Memphis | Early | 0.155 | 0.166 | 6093 | 6232 | 0.114/0.736 |
Memphis | Late | 0.139 | 0.144 | 5088 | 5414 | 0.002/0.967 |
Concord | Early | 0.149 | 0.150 | 5929 | 6089 | 0.004/0.953 |
Concord | Late | 0.162 | 0.146 | 6244 | 5010 | 0.196/0.660 |
Holdrege | Early | 0.154 | 0.159 | 7941 | 7944 | 0.031/0.862 |
Holdrege | Late | 0.133 | 0.128 | 6750 | 6877 | 0.129/0.720 |
Valentine | Early | 0.256 | 0.263 | 9261 | 9355 | 0.051/0.823 |
Valentine | Late | 0.277 | 0.274 | 8692 | 7668 | 0.032/0.858 |
Alliance | Early | 0.443 | 0.423 | 15,368 | 13,461 | 0.018/0.895 |
Alliance | Late | 0.417 | 0.420 | 11,338 | 11,021 | 0.000/0.993 |
North Platte | Early | 0.263 | 0.273 | 8908 | 8960 | 0.070/0.792 |
North Platte | Late | 0.228 | 0.230 | 8298 | 8163 | 0.068/0.795 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiferaw, A.; Birru, G.; Tadesse, T.; Wardlow, B.; Awada, T.; Jin, V.; Schmer, M.; Freidenreich, A.; Iqbal, J. Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska. Agriculture 2025, 15, 1776. https://doi.org/10.3390/agriculture15161776
Shiferaw A, Birru G, Tadesse T, Wardlow B, Awada T, Jin V, Schmer M, Freidenreich A, Iqbal J. Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska. Agriculture. 2025; 15(16):1776. https://doi.org/10.3390/agriculture15161776
Chicago/Turabian StyleShiferaw, Andualem, Girma Birru, Tsegaye Tadesse, Brian Wardlow, Tala Awada, Virginia Jin, Marty Schmer, Ariel Freidenreich, and Javed Iqbal. 2025. "Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska" Agriculture 15, no. 16: 1776. https://doi.org/10.3390/agriculture15161776
APA StyleShiferaw, A., Birru, G., Tadesse, T., Wardlow, B., Awada, T., Jin, V., Schmer, M., Freidenreich, A., & Iqbal, J. (2025). Geographical Variation in Cover Crop Management and Outcomes in Continuous Corn Farming System in Nebraska. Agriculture, 15(16), 1776. https://doi.org/10.3390/agriculture15161776