Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Airflow Mechanism in Multi-Branch Pipelines
2.2.2. Simulation Modeling
Experimental Factors
Numerical Simulation Methods
Establishment of Simulation Model
Single-Factor Experimental Design
2.2.3. Full-Scale Model Experiment
Method of Dimensional Analysis
Experimental Design of the π Equations
3. Results and Analysis
3.1. Analysis and Discussion of Results from Single-Factor Experiments and Simulations
3.1.1. Influence of Q on the Main Pipe’s Pressure Loss P
3.1.2. Influence of d on the Main Pipe’s Pressure Loss P
3.1.3. Influence of γ on the Main Pipe’s Pressure Loss P
3.1.4. Influence of D on the Main Pipe’s Pressure Loss P
3.1.5. Influence of δ on the Main Pipe’s Pressure Loss P
3.2. Fitting of the Bench Test Results with the π Equation
3.2.1. Fitting of the π Equation
3.2.2. Verification of the Validity of the π Equation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Huang, Z.; Jiang, Y.; Qin, W.; He, S.; Qian, C.; Wang, Z.; Wang, Z.; Zang, Y. Establishment and validation of a negative pressure prediction model for rice air-suction seed-metering device. Biosyst. Eng. 2025, 253, 104126. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, P.; Gao, X.; Lai, Q. Development of a new environmentally friendly and efficient centrifugal variable diameter metering device. Front. Plant Sci. 2024, 15, 1404201. [Google Scholar] [CrossRef]
- Niu, Q.; Yu, W.; Yan, W.; Zhang, H.; Wang, L.; Li, C.; Wang, C. Optimised Design and Simulation Analysis of a Double-Row Pneumatic Injection Seeding Device. Agriculture 2024, 14, 1376. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, W.; Shi, B.; Li, X.; Liao, Q.; Liao, Y. Numerical and experimental study on the performance of a stabilizing turbine inside a seed distribution device. Biosyst. Eng. 2024, 246, 219–232. [Google Scholar] [CrossRef]
- Antonio, B.G.; Noé, S.R.; Diego, R.J.; Cesar, G.V.; Jorge, A.A.A.; Jimmy, B.B.; Alberto, S.R. Advancements in pneumatic seed-metering devices: A review of numerical and experimental approaches. Results Eng. 2025, 26, 105626. [Google Scholar] [CrossRef]
- Dong, J.; Gao, X.; Zheng, Z.; Zhao, P.; Bi, Y.; Huang, Y. Design and testing of a posture-adjusting precision metering device for high-speed maize planting. Front. Plant Sci. 2025, 16, 1458597. [Google Scholar] [CrossRef]
- Ma, X.; Gong, Q.; Wang, Q.; Xu, D.; Zhou, Y.; Chen, G.; Cao, X.; Wang, L. Design of an Air Suction Wheel-Hole Single Seed Drill for a Wheat Plot Dibbler. Agriculture 2022, 12, 1735. [Google Scholar] [CrossRef]
- Zang, Y.; He, S.; Wang, Z.; Liu, S.; Wang, X.; Wen, Z. Design of pneumatic single seed metering device for coated hybrid rice. Trans. Chin. Soc. Agri. Eng. 2021, 37, 10–18. [Google Scholar]
- Zhang, Z.; Chen, J.; Li, Y.; Guan, Z.; Liao, C.; Qiao, X. Design and experiment on the air-blowing and vibrating supply seed tray for precision seeders. Int. J. Agric. Biol. Eng. 2022, 15, 115–121. [Google Scholar] [CrossRef]
- Hai, N.T.; Chosa, T.; Tojo, S.; Thi-Hien, N. Application of a Similarity Measure Using Fuzzy Sets to Select the Optimal Plan for an Air-Assisted Rice Seeder. Appl. Sci. 2021, 11, 6715. [Google Scholar] [CrossRef]
- Rice Today—Farmer-Focused Partnership Leads to Improvement, Innovation of Cambodia’s Rice Sector. Available online: https://ricetoday.irri.org/farmer-focused-partnership-leads-to-improvement-innovation-of-cambodias-rice-sector/ (accessed on 1 June 2020).
- APV-PS 800 M1 D. Available online: https://en.apv.at/products/crop-protection-fertilisation/pneumatic-seeders-fertiliser-edition/ps-800-m1-d/ (accessed on 19 April 2025).
- Jhon Deere–1725C. Available online: https://www.deere.com/en/planting-equipment/1725c-planter/ (accessed on 12 November 2023).
- Hu, L.; Sun, X.; Liu, F. On the relationship between the input of agricultural energy consumption, agricultural Economic growth and agricultural energy carbon emission in China–based on the perspective of green total factor productivity. J. Nanjing Agric. Univ. (Soc. Sci. Ed.) 2024, 24, 174–186. [Google Scholar]
- Zhuang, M.; Wang, X.; Yang, Y.; Wu, Y.; Wang, L.; Lu, X. Agricultural machinery could contribute 20% of total carbon and air pollutant emissions by 2050 and compromise carbon neutrality targets in China. Nat. Food 2025, 6, 513–522. [Google Scholar] [CrossRef]
- Masami, F.; Tadashi, C.; Yukiharu, S.; Takayuki, T.; Masahiro, S.; Hisashi, H. Developing direct seeding cultivation using an air-assisted strip seeder. Jpn. Agric. Res. Q. 2015, 49, 227–233. [Google Scholar]
- Wang, B.; Na, Y.; Chen, M.; Ge, Z.; Pan, Y.; Liu, J.; Wu, W.; Luo, X. Design and Experiment on a Distributed Seed Delivery System with a Pneumatic Central-Cylinder Seeder. Agronomy 2023, 13, 1337. [Google Scholar] [CrossRef]
- Salavat, M.; Ildar, B.; Zinnur, R.; Ramil, L.; Elmas, N. Numerical simulation of two-phase “Air-Seed” flow in the distribution system of the grain seeder. Comput. Electron. Agric. 2020, 168, 105151. [Google Scholar]
- Li, Z.; Zhang, H.; Xie, R.; Gu, X.; Du, J.; Chen, Y. Evaluation on the Performance of Airflow Dis-tribution Device of Pneumatic Seeder for Rapeseed through CFD Simulations. Agriculture 2022, 12, 1781. [Google Scholar] [CrossRef]
- Xiong, D.; Wu, M.; Xie, W.; Liu, R.; Luo, H. Design and experimental study of the general mechanical pneumatic combined seed metering device. Appl. Sci. 2021, 11, 7223. [Google Scholar] [CrossRef]
- Gao, X.; Xi, G.; Li, J.; Shi, G.; Lai, Q.; Huang, Y. Design and validation of a centrifugal variable-diameter pneumatic high-speed precision seed-metering device for maize. Biosyst. Eng. 2023, 227, 161–181. [Google Scholar] [CrossRef]
- Li, Z.; Wu, J.; Du, J.; Duan, D.; Zhang, T.; Chen, Y. Experimenting and optimizing design parameters for a pneumatic hill-drop rapeseed metering device. Agronomy 2023, 13, 141. [Google Scholar] [CrossRef]
- Ding, L.; Yuan, Y.; Dou, Y.; Li, C.; He, Z.; Guo, G.; Zhang, Y.; Chen, B.; Li, H. Design and experiment of air-suction maize seed-metering device with auxiliary guide. Agriculture 2024, 14, 169. [Google Scholar] [CrossRef]
- Yang, H. Research on Flow Field Characteristics and Structure Optimization of Macro-Scale Fluid Distribution Manifolds. Ph.D. Thesis, Xi’an University of Architecture and Technology, Xian, China, 2018. [Google Scholar]
- Song, P.; Yang, L. Research and design on flow characteristics of single-phase multi-branch parallel pipeline. Pet. Refin. Eng. 2020, 50, 42–47. [Google Scholar]
- Qin, L.; Zhou, F.; Yang, J.; Wu, R.; Lu, L. Numerical Research on Flow Distribution and Pressure Loss of Multi-Branch Pipeline Based on Confluence and Distribution. J. South China Univ. Technol. (Nat. Sci. Ed.) 2021, 49, 109–119. [Google Scholar]
- Yin, X.; Yang, L.; Zhang, D.; Cui, T.; Han, D.; Zhang, T.; Yu, Y. Design and experiment of balance and low-loss air allotter in air pressure maize precision planter. Trans. Chin. Soc. Agri. Eng. 2016, 32, 9–17. [Google Scholar]
- Wei, Y. Research on Negative Pressure Characteristics and Its Control Strategy of Precision Seed-Metering Pneumatic System of Planter for Rapeseed. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2016. [Google Scholar]
- Zhang, X.; Wen, Z.; Wang, Q.; Li, H.; Zhang, Z.; Liu, J. Research on characteristics of airway pressure loss in seeding-wheel-type pneumatic seeder. Agriculture 2022, 12, 2021. [Google Scholar] [CrossRef]
- Li, K.; Li, S.; Ni, X.; Lu, B.; Zhao, B. Analysis and experimental of seeding process of pneumatic split seeder for cotton. Agriculture 2023, 13, 1050. [Google Scholar] [CrossRef]
- Wang, B.; Na, Y.; Pan, Y.; Ge, Z.; Liu, J.; Luo, X. CFD Simulation and Experiments of Pneumatic Centralized Cylinder Metering Device Cavity and Airflow Distributor. Agronomy 2022, 12, 1775. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, Y.; Zhang, M.; Shen, D. Experimental study on rapeseed extrusion cooking using dimensional analysis. Trans. Chin. Soc. Agri. Eng. 2007, 23, 247–252. [Google Scholar]
- Wang, K.; Wang, W.; Zhang, H.; Fang, J. Suction force of vibrating suction method based on pi theorem: Analysis and experiment. Vacuum 2012, 86, 1783–1788. [Google Scholar] [CrossRef]
- Gao, G. Dimensional Analysis: Theories and Application; China Science Publishing: Beijing, China, 2021. [Google Scholar]
- Heba, K.; Mohamed, I.; Hassan, A.; Navya, T.; Isam, J.; Hassan, A.A. Utilizing Buckingham Pi theorem and multiple regression analysis in scaling up direct contact membrane distillation processes. Desalination 2022, 528, 115606. [Google Scholar] [CrossRef]
- Michael, W.O.; David, B.D.; Justin, D.M. Multi-scale physics-informed machine learning using the Buckingham Pi theorem. J. Comput. Phys. 2023, 474, 111810. [Google Scholar]
- Liao, H.; Yang, K.; Liang, H.; Hu, H.; Wang, X.; Wang, H. A new paradigm in critical flow analysis: Combining Buckingham Pi theorem with neural network for improved predictions in microchannels. Chem. Eng. Sci. 2024, 299, 120483. [Google Scholar] [CrossRef]
- Juan, C.F.; Yusuke, S. Correlating mean particle size of pure solids in supercritical antisolvent processes using dimensional analysis with the Buckingham π-theorem. J. Supercrit. Fluids 2025, 218, 106512. [Google Scholar] [CrossRef]
- Jiang, Y. Proper formulation of π-equation and a comparison with regressive orthogonal rotating experimental design. Trans. Chin. Soc. Agri. Eng. 1996, 12, 7–11. [Google Scholar]
- Yasuhiko, S.; Seiichi, I.; Ikuma, E.; Hideyuki, H.; Horibe, K. Development of pneumatic direct seeding system for submerged paddy field (Part 1)–basic study on the development of seeding system. J. Jpn. Soc. Agric. Mach. 1996, 58, 69–76. [Google Scholar]
- Sivasankaran, S.; Hany, R.; Abdulaziz, S.; Mohammad, S. Mathematical modeling (Buckingham’s π Theorem) and optimization technique on mechanically alloyed nanocomposite materials. Int. J. Adv. Technol. Eng. Explor. 2020, 9, 1915–1921. [Google Scholar] [CrossRef]
- Li, J.; Lai, Q.; Su, W.; Xie, Y.; Zhang, Z. Research on the influence of the suction force on spherical particles in suction flow. Powder Technol. 2021, 393, 824–836. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Wang, Z.; Lai, Q. Model construction of the suction force of high-sphericity particles based on the PI theorem. Powder Technol. 2024, 445, 120095. [Google Scholar] [CrossRef]
- Liao, Q.; Yang, S.; Liao, Y.; Cong, J.; Wang, L. Modeling for performance and parameters of pneumatic seed-metering system of precision planter for rapeseed. Trans. Chin. Soc. Agri. Eng. 2013, 29, 9–15. [Google Scholar]
- Shu, C.; Wei, Y.; Liao, Y.; Lei, X.; Li, Z.; Wang, D.; Liao, Q. Influence of air blower parameters of pneumatic seed-metering system for rapeseed on negative pressure characteristics and air blower selection. Trans. Chin. Soc. Agri. Eng. 2016, 32, 26–33. [Google Scholar]
- Xing, H.; Wang, Z.; Luo, X.; Cao, X.; Liu, C.; Zang, Y. General structure design and field experiment of pneumatic rice direct-seeder. Int. J. Agric. Biol. Eng. 2017, 10, 31–42. [Google Scholar] [CrossRef]
- Bajura, R. A model for flow distribution in manifolds. J. Eng. Gas Turbines Power 1971, 93, 7–13. [Google Scholar] [CrossRef]
- Qin, W. Research on Pneumatic System of Air Suction Type Rice Precision Direct Seeder. Ph.D. Thesis, South China Agricultural University, Guangzhou, China, 2023. [Google Scholar]
- Duan, J. Rice Planting Distribution and Its Response to Climate Change in China. Ph.D. Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2012. [Google Scholar]
- GB/T 1236-2017; Industrial fan—Performance testing using standardized airways. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China: Beijing, China, 2017.
- Shao, M.; Wu, Q.; Zhao, F.; Wang, J.; He, Y.; Tang, R.; Mostafa, R.; Li, W.; Jiang, Q. A review of current GHG emissions in Chinese farmland and the carbon sequestration and emission reduction technologies. J. Intell. Agric. Mech. 2025, 6, 99–110. [Google Scholar]
- Wu, J.; Su, J.; Du, H.; Wei, J.; Chen, X. Application of Electric Energy Substitution Technology in Agricultural Carbon Emission Reduction. Rural. Electrif. 2023, 10, 61–67. [Google Scholar]
- Han, S.; Zhang, H.; Li, H.; Xun, Z. Digital transformation and carbon emission reduction: The moderating effect of external pressure and support. J. Clean. Prod. 2025, 500, 145108. [Google Scholar] [CrossRef]
Level | Factors | ||||
---|---|---|---|---|---|
Q/m3·s−1 | d/m | γ/m | δ/m | D/m | |
1 | 0.0009 | 0.0194 | 0.0426 | 0.200 | 0.0340 |
2 | 0.0018 | 0.0272 | 0.0536 | 0.225 | 0.0360 |
3 | 0.0027 | 0.0340 | 0.0570 | 0.250 | 0.0426 |
4 | 0.0036 | 0.0426 | 0.0678 | 0.275 | 0.0536 |
5 | 0.0045 | 0.0452 | 0.0814 | 0.300 | 0.0570 |
Factor | ρ | Δl | μ | Q | d | δ | γ | D | P |
---|---|---|---|---|---|---|---|---|---|
Unit | kg·m−3 | m | Pa·s | m3·s−1 | m | m | m | m | Pa |
Dimensional | ML−3 | L | ML−1T−1 | LT−1 | L | L | L | L | ML−1T−2 |
Factor | Q | d | δ | γ | D | P |
---|---|---|---|---|---|---|
ρ | −1 | 0 | 0 | 0 | 0 | −1 |
L | 1 | 1 | 1 | 1 | 1 | −2 |
μ | 1 | 0 | 0 | 0 | 0 | 2 |
Design of and | No. | ρ/kg·m−3 | Δl/m | μ/Pa·s | Q/m3·s−1 | d/m | δ/m | γ/m | D/m |
1 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0009 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
2 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0018 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
3 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
4 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0036 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
5 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0045 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
Design of and | 1 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.0194 | 0.25 (0.3) | 0.057 | 0.0426 |
2 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.0272 | 0.25 (0.3) | 0.057 | 0.0426 | |
3 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.0340 | 0.25 (0.3) | 0.057 | 0.0426 | |
4 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.0426 | 0.25 (0.3) | 0.057 | 0.0426 | |
5 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.0452 | 0.25 (0.3) | 0.057 | 0.0426 | |
Design of and | 1 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 (0.0045) | 0.034 | 0.200 | 0.057 | 0.0426 |
2 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 (0.0045) | 0.034 | 0.225 | 0.057 | 0.0426 | |
3 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 (0.0045) | 0.034 | 0.250 | 0.057 | 0.0426 | |
4 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 (0.0045) | 0.034 | 0.275 | 0.057 | 0.0426 | |
5 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 (0.0045) | 0.034 | 0.300 | 0.057 | 0.0426 | |
Design of and | 1 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.0426 | 0.0426 |
2 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.0536 | 0.0426 | |
3 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.0570 | 0.0426 | |
4 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.0678 | 0.0426 | |
5 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.0814 | 0.0426 | |
Design of and | 1 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0340 |
2 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0360 | |
3 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0426 | |
4 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0536 | |
5 | 1.17 | 0.1 | 1.84 × 10−5 | 0.0027 | 0.034 | 0.25 (0.3) | 0.057 | 0.0570 |
Q/m3·s−1 | d = 0.034 m, δ = 0.25 m, γ = 0.057 m, D = 0.0426 m | 3, Other Parts Are Identical to the Table on the Left | ||||
π2 | P/Pa | The Actual Value of π1 | π2 | P/Pa | The Actual Value of π1 | |
0.0009 | 571.79 | 32.67 | 1.13 × 109 | 571.79 | 34.00 | 1.17 × 109 |
0.0018 | 1143.59 | 75.00 | 2.59 × 109 | 1143.59 | 63.50 | 2.19 × 109 |
0.0027 | 1715.38 | 111.00 | 3.84 × 109 | 1715.38 | 101.50 | 3.51 × 109 |
0.0036 | 2287.17 | 172.00 | 5.94 × 109 | 2287.17 | 155.00 | 5.36 × 109 |
0.0045 | 2858.97 | 227.33 | 7.86 × 109 | 2858.97 | 209.00 | 7.22 × 109 |
C2 = −0.00084π24 + 5.74π23 − 13203.1π22 + 1.44 × 107π2 − 3.78 × 109 R2 = 0.99 | c2 = −0.0023π24 + 1.91π23 − 3681.9π22+ 4.56 × 106π2 − 5.53 × 108 R2 = 0.99 | |||||
Results and π Equations of Design of | ||||||
d/m | Q = 0.0027 m3·s−1, δ = 0.25 m, γ = 0.057 m, D = 0.0426 m; 1715.38, 0.57, | δ = 0.3 m, 3, Other Parts Are Identical to the Table on the Left | ||||
π3 | P/Pa | The Actual Value of π1 | π3 | P/Pa | The Actual Value of π1 | |
0.0194 | 0.194 | 379.33 | 1.32 × 1010 | 0.194 | 392.33 | 1.36 × 109 |
0.0272 | 0.272 | 155.00 | 5.36 × 109 | 0.272 | 137.67 | 4.76 × 109 |
0.0340 | 0.340 | 111.00 | 3.84 × 109 | 0.340 | 101.50 | 3.51 × 109 |
0.0360 | 0.360 | 152.67 | 5.28 × 109 | 0.360 | 121.33 | 4.19 × 109 |
0.0452 | 0.452 | 93.00 | 3.21 × 109 | 0.452 | 122.00 | 4.22 × 109 |
C3 = −5.40 × 1013π34 + 6.62 × 1013π33 − 2.92 × 1013π32+ 5.42 × 1012π3 − 3.47 × 1011 R2 = 0.99 | c3 = −1.83 × 1013π34 + 2.10 × 1013π33 − 8.28 × 1012π32 + 1.24 × 1012π3 − 4.33 × 1010 R2 = 0.99 | |||||
Results and π Equations of | ||||||
δ/m | Q = 0.0027 m3·s−1, d = 0.034 m, γ = 0.057 m, D = 0.0426 m; 1715.38, 0.57, | Q = 0.0045 m3·s−1, 2858.97, Other Parts Are Identical to the Table on the Left | ||||
π4 | P/Pa | The Actual Value of π1 | π4 | P/Pa | The Actual Value of π1 | |
0.200 | 2.00 | 181.00 | 6.26 × 109 | 2.00 | 375.00 | 1.30 × 1010 |
0.225 | 2.25 | 186.00 | 6.43 × 109 | 2.25 | 429.00 | 1.48 × 1010 |
0.250 | 2.50 | 111.00 | 3.84 × 109 | 2.50 | 227.33 | 7.86 × 109 |
0.275 | 2.75 | 87.00 | 3.01 × 109 | 2.75 | 212.00 | 7.33 × 109 |
0.300 | 3.00 | 101.50 | 3.51 × 109 | 3.00 | 209.00 | 7.22 × 109 |
C4 = −5.28 × 1010π54 + 5.51 × 1011π53 − 2.13 × 1012π52+ 3.62 × 1012π5 − 2.27 × 1012 R2 = 0.99 | c4 = −2.27 × 1011π54 + 2.32 × 1012π53 − 8.82 × 1012π52 + 1.48 × 1013π5 − 9.18 × 1012 R2 = 0.99 | |||||
Results and π Equations of | ||||||
γ/m | Q = 0.0027 m3·s−1, d = 0.034 m, δ = 0.25 m, D = 0.0426 m; 2.5, | δ = 0.3 m, 3, Other Parts Are Identical to the Table on the Left | ||||
π5 | P/Pa | The Actual Value of π1 | π5 | P/Pa | The Actual Value of π1 | |
0.0426 | 0.426 | 50.68 | 1.75 × 109 | 0.426 | 67.00 | 2.32 × 109 |
0.0536 | 0.536 | 189.33 | 6.54 × 109 | 0.536 | 213.33 | 7.37 × 109 |
0.0570 | 0.570 | 111.00 | 3.84 × 109 | 0.570 | 101.50 | 3.51 × 109 |
0.0678 | 0.678 | 116.67 | 4.03 × 109 | 0.678 | 109.00 | 3.77 × 109 |
0.0814 | 0.814 | 135.00 | 4.67 × 109 | 0.814 | 128.67 | 4.45 × 109 |
C5 = −1.98 × 1013π64 + 4.95 × 1013π63 − 4.55 × 1013π62+ 1.83 × 1013π6 − 2.70 × 1012 R2 = 0.99 | c5 = −2.72 × 1013π64 + 6.77 × 1013π63 − 6.22 × 1013π62 + 2.49 × 1013π6 − 3.66 × 1012 R2 = 0.99 | |||||
Results and π Equations of | ||||||
D/m | Q = 0.0027 m3·s−1, d = 0.034 m, δ = 0.25 m, γ = 0.057 m; 1715.38, 2.5, 0.57 | δ = 0.3 m, 3, Other Parts Are Identical to the Table on the Left | ||||
π6 | P/Pa | The Actual Value of π1 | π6 | P/Pa | The Actual Value of π1 | |
0.0340 | 0.340 | 318.67 | 1.10 × 1010 | 0.340 | 315.67 | 1.09 × 1010 |
0.0360 | 0.360 | 305.50 | 1.06 × 1010 | 0.360 | 328.33 | 1.13 × 1010 |
0.0426 | 0.426 | 111.00 | 3.84 × 109 | 0.426 | 101.50 | 3.51 × 109 |
0.0536 | 0.536 | 6.00 | 2.07 × 108 | 0.536 | 4.33 | 1.50 × 108 |
0.0570 | 0.570 | 7.33 | 2.53 × 108 | 0.570 | 3.00 | 1.04 × 108 |
C6 = −3.22 × 1013π84 + 6.03 × 1013π83 − 4.14 × 1013π82 + 1.24 × 1013π8 − 1.34 × 1012 R2 = 0.99 | c6 = −5.36 × 1013π84 + 1.00 × 1013π83 − 6.88 × 1013π82 + 2.06 × 1013π8 − 2.26 × 1012 R2 = 0.99 |
0.57 | |||||||||
π2 | π1* | P*/Pa | P/Pa | Er./% | π3 | π1* | P*/Pa | P/Pa | Er./% |
571.79 | 1.13 × 109 | 32.25 | 32.67 | 1.31 | 0.194 | 1.31 × 1010 | 374.49 | 379.33 | 1.29 |
1143.59 | 2.59 × 109 | 74.03 | 75.00 | 1.31 | 0.272 | 5.36 × 109 | 153.01 | 155.00 | 1.30 |
1715.38 | 3.84 × 109 | 109.57 | 111.00 | 1.31 | 0.340 | 3.84 × 109 | 109.57 | 111.00 | 1.31 |
2287.17 | 5.94 × 109 | 169.78 | 172.00 | 1.31 | 0.360 | 5.28 × 109 | 150.70 | 152.67 | 1.31 |
2858.97 | 7.86 × 109 | 224.39 | 227.33 | 1.31 | 0.452 | 3.21 × 109 | 91.77 | 93.00 | 1.34 |
0.57 | |||||||||
π4 | π1* | P*/Pa | P/Pa | Er./% | π5 | π1* | P*/Pa | P/Pa | Er./% |
2.00 | 6.26 × 109 | 179.52 | 181.00 | 0.82 | 0.426 | 1.75 × 109 | 49.66 | 50.68 | 2.06 |
2.25 | 6.43 × 109 | 184.34 | 186.00 | 0.90 | 0.536 | 6.54 × 109 | 187.12 | 189.33 | 1.18 |
2.50 | 3.84 × 109 | 109.57 | 111.00 | 1.31 | 0.570 | 3.84 × 109 | 109.36 | 111.00 | 1.50 |
2.75 | 3.01 × 109 | 85.48 | 87.00 | 1.77 | 0.678 | 4.03 × 109 | 114.92 | 116.67 | 1.53 |
3.00 | 3.51 × 109 | 99.66 | 101.50 | 1.85 | 0.814 | 4.67 × 109 | 133.10 | 135.00 | 1.43 |
0.57 | |||||||||
π6 | π1* | P*/Pa | P/Pa | Er./% | — | — | — | — | — |
0.0340 | 1.10 × 1010 | 318.88 | 318.67 | −0.06 | — | — | — | — | — |
0.0360 | 1.06 × 1010 | 305.71 | 305.50 | −0.07 | — | — | — | — | — |
0.0426 | 3.84 × 109 | 111.21 | 111.00 | −1.87 | — | — | — | — | — |
0.0536 | 2.07 × 109 | 6.17 | 6.00 | −2.73 | — | — | — | — | — |
0.0570 | 2.53 × 109 | 7.47 | 7.33 | −1.94 | — | — | — | — | — |
π2 | Er./% | π3 | Er./% | π4 | Er./% | π5 | Er./% | π6 | Er./% |
---|---|---|---|---|---|---|---|---|---|
571.79 | 17.67 | 0.194 | 16.89 | 2.00 | 3.41 | 0.426 | 49.38 | 0.340 | 11.56 |
1143.59 | 4.26 | 0.272 | 0.40 | 2.25 | 15.18 | 0.536 | 26.70 | 0.360 | 21.04 |
1715.38 | 3.40 | 0.340 | 3.40 | 2.50 | 3.40 | 0.570 | 3.40 | 0.426 | 3.40 |
2287.17 | 1.90 | 0.360 | 10.14 | 2.75 | 23.69 | 0.678 | 5.96 | 0.536 | 6.55 |
2858.97 | 3.96 | 0.452 | 48.32 | 3.00 | 5.03 | 0.814 | 8.46 | 0.570 | 43.61 |
No. | Q/m3·s−1 | d/m | δ/m | γ/m | D/m | π2 | π3 | π4 | π5 | π6 | P*/Pa | P/Pa | Er./% |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00227 | 0.034 | 0.25 | 0.057 | 0.0426 | 1442.19 | 0.34 | 2.5 | 0.57 | 0.426 | 86.67 | 89.98 | 3.82 |
2 | 0.00270 | 0.021 | 0.25 | 0.057 | 0.0426 | 1715.38 | 0.21 | 2.5 | 0.57 | 0.426 | 274.67 | 356.01 | 22.85 |
3 | 0.00270 | 0.028 | 0.25 | 0.057 | 0.0426 | 1715.38 | 0.24 | 2.5 | 0.57 | 0.426 | 129.33 | 131.71 | 1.80 |
4 | 0.00270 | 0.034 | 0.26 | 0.057 | 0.0426 | 1715.38 | 0.34 | 2.6 | 0.57 | 0.426 | 91.35 | 92.94 | 1.74 |
5 | 0.00270 | 0.034 | 0.25 | 0.0452 | 0.0426 | 1715.38 | 0.34 | 2.5 | 0.452 | 0.426 | 210.89 | 184.53 | 12.50 |
6 | 0.00270 | 0.034 | 0.25 | 0.0638 | 0.0426 | 1715.38 | 0.34 | 2.5 | 0.638 | 0.426 | 56.37 | 51.17 | 9.23 |
7 | 0.00270 | 0.034 | 0.25 | 0.057 | 0.0452 | 1715.38 | 0.34 | 2.5 | 0.57 | 0.452 | 45.33 | 43.77 | 3.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, W.; Qian, C.; Li, Y.; Yan, D.; Fan, Z.; Zhang, M.; Zang, Y.; Wang, Z. Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder. Agriculture 2025, 15, 1681. https://doi.org/10.3390/agriculture15151681
Qin W, Qian C, Li Y, Yan D, Fan Z, Zhang M, Zang Y, Wang Z. Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder. Agriculture. 2025; 15(15):1681. https://doi.org/10.3390/agriculture15151681
Chicago/Turabian StyleQin, Wei, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang, and Zaiman Wang. 2025. "Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder" Agriculture 15, no. 15: 1681. https://doi.org/10.3390/agriculture15151681
APA StyleQin, W., Qian, C., Li, Y., Yan, D., Fan, Z., Zhang, M., Zang, Y., & Wang, Z. (2025). Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder. Agriculture, 15(15), 1681. https://doi.org/10.3390/agriculture15151681