Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields
Abstract
1. Introduction
2. Literature Review
2.1. A Smart Farming Approach to Yield Prediction
2.2. IoT Technologies in Agriculture
2.3. Studies on Technology Acceptance, Usability and Adoption in Agriculture
2.4. Barriers to ICT Adoption in Agriculture
Adoption of ICT in Agriculture: From Digital Literacy to Knowledge Management
2.5. Research Gap
3. Methodology
3.1. Research Design
3.2. Description of the Study Area
3.3. Sampling Technique
3.4. Data Collection
3.5. Data Analysis
4. Results
4.1. Characteristics of the Sample
4.2. Internal Validity and Consistency of the Instrument
4.3. Exploratory Factor Analysis
4.4. Confirmatory Factor Analysis
5. Discussion
Recommendations for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Dimension | Question | Scale |
---|---|---|
General perception of IoT in agriculture (GP) | How much do you agree that IoT is important for the future of agriculture? |
|
How much do you agree that IoT could improve productivity and optimize resource use (water, fertilizer, energy) on your farm? | ||
How much do you agree that IoT adoption will generate economic growth in the agricultural sector? | ||
Practical and operational functionality of the IoT (POF) | How much do you agree that IoT could improve the quality and quantity of your agricultural production? |
|
How much do you agree that you could monitor and control your crops remotely using IoT? | ||
How likely do you agree that IoT would allow you to forecast and control production in real time? | ||
Intention to use (IUTR) | How likely are you to use IoT technologies (sensors, drones, automation) in your farming in the future? |
|
How likely are you to recommend the use of IoT to other agribusinesses to improve agricultural productivity? | ||
How likely are you to increase the use of IoT technologies in your crops in the coming years? | ||
Costs of application (COST) | How much do you agree that using IoT could reduce waste and better control costs in your agricultural production? |
|
The advantages of using IoT in agriculture outweigh the disadvantages of not using it. | ||
How much do you agree that IoT would make it easier to collect data and manage your farm? | ||
Technical Training (TRAI) | How much do you think you need to improve your knowledge of IoT in agriculture? |
|
How interested would you be in receiving training on IoT to improve agricultural performance? | ||
How easy do you think it is to use IoT technologies (such as sensors or drones) in your agricultural work? | ||
Educational Level (EDU) | How much do you know about the application of IoT in agricultural crop monitoring? |
|
How important do you think technology is in improving agricultural productivity? | ||
How much do you incorporate technology in your current agricultural production process? | ||
Institutional Support (IS) | Would you use electrical devices at any stage of the agricultural process? |
|
Do you consider that there are factors that prevent the implementation of technological systems in agricultural production? | ||
I consider that IoT is a useful tool to improve food security in the province of Guayas. | ||
Adoption of IoT (ADOP) | Adopting IoT for crops is a good idea. |
|
I would be willing to voluntarily use IoT soon. | ||
I would be willing to routinely use IoT to improve crop production. | ||
Agricultural performance (PERF) | You could increase productivity using IoT. |
|
I could improve resource utilization efficiency using IoT. | ||
I believe that using IoT can improve productivity. |
Appendix B
Communalities | ||
---|---|---|
Initial | Extraction | |
GP1 | 1.000 | 0.925 |
GP2 | 1.000 | 0.921 |
GP3 | 1.000 | 0.921 |
POF1 | 1.000 | 0.903 |
POF2 | 1.000 | 0.927 |
POF3 | 1.000 | 0.910 |
IUTR1 | 1.000 | 0.921 |
IUTR2 | 1.000 | 0.940 |
IUTR3 | 1.000 | 0.921 |
COST1 | 1.000 | 0.934 |
COST2 | 1.000 | 0.933 |
COST3 | 1.000 | 0.921 |
TRAI1 | 1.000 | 0.911 |
TRAI2 | 1.000 | 0.940 |
TRAI3 | 1.000 | 0.914 |
EDU1 | 1.000 | 0.916 |
EDU2 | 1.000 | 0.917 |
EDU3 | 1.000 | 0.917 |
IS1 | 1.000 | 0.920 |
IS2 | 1.000 | 0.926 |
IS3 | 1.000 | 0.921 |
ADOP1 | 1.000 | 0.914 |
ADOP2 | 1.000 | 0.898 |
ADOP3 | 1.000 | 0.916 |
PERF1 | 1.000 | 0.924 |
PERF2 | 1.000 | 0.932 |
PERF3 | 1.000 | 0.926 |
References
- FAO. Agricultura, Expansión del Comercio y Equidad de Género; FAO: Roma, Italy, 2006; Available online: https://www.fao.org/4/a0493s/a0493s02.htm (accessed on 1 February 2025).
- World Bank. World Development Indicators Online; World Bank: Washington, DC, USA, 2012; Available online: http://databank.worldbank.org/ddp/home.do?Step=12&id=4&CNO=2 (accessed on 1 February 2025).
- FAO. El Estado Mundial de la Agricultura y la Alimentación 2024; FAO: Roma, Italy, 2024. [Google Scholar] [CrossRef]
- INEC. Encuesta de Superficie y Producción Agropecuaria Continua; ESPAC: Ecuador, 2024; pp. 27–51. Available online: https://www.ecuadorencifras.gob.ec/documentos/web-inec/Estadisticas_agropecuarias/espac/2023/Principales_resultados_ESPAC_2023.pdf (accessed on 3 January 2025).
- Pacheco, J.; Ochoa-Moreno, W.-S.; Ordoñez, J.; Izquierdo-Montoya, L. Agricultural Diversification and Economic Growth in Ecuador. Sustainability 2018, 10, 2257. [Google Scholar] [CrossRef]
- Jones, A.D.; Ejeta, G. A New Global Agenda for Nutrition and Health: The Importance of Agriculture and Food Systems. Bull. World Health Organ. 2015, 94, 228–229. [Google Scholar] [CrossRef]
- Pretty, J. Agricultural Sustainability: Concepts, Principles and Evidence. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 447–465. [Google Scholar] [CrossRef] [PubMed]
- Hrustek, L. Sustainability Driven by Agriculture through Digital Transformation. Sustainability 2020, 12, 8596. [Google Scholar] [CrossRef]
- Yahya, N. Agricultural 4.0: Its Implementation Toward Future Sustainability. In Green Urea; Green Energy and Technology; Springer: Singapore, 2018; pp. 125–145. [Google Scholar] [CrossRef]
- Meinke, H. The Role of Modeling and Systems Thinking in Contemporary Agriculture. In Sustainable Food Supply Chains; Elsevier: Amsterdam, The Netherlands, 2019; pp. 39–47. [Google Scholar] [CrossRef]
- Nikolidakis, S.A.; Kandris, D.; Vergados, D.D.; Douligeris, C. Energy Efficient Automated Control of Irrigation in Agriculture by Using Wireless Sensor Networks. Comput. Electron. Agric. 2015, 113, 154–163. [Google Scholar] [CrossRef]
- Bersani, C.; Ouammi, A.; Sacile, R.; Zero, E. Model Predictive Control of Smart Greenhouses as the Path towards Near Zero Energy Consumption. Energies 2020, 13, 3647. [Google Scholar] [CrossRef]
- Lanucara, S.; Oggioni, A.; Di Fazio, S.; Modica, G. A Prototype of Service Oriented Architecture for Precision Agriculture. In Innovative Biosystems Engineering for Sustainable Agriculture, Forestry and Food Production; Coppola, A., Di Renzo, G.C., Altieri, G., D’Antonio, P., Eds.; Lecture Notes in Civil Engineering; Springer International Publishing: Cham, Switzerland, 2020; Volume 67, pp. 765–774. [Google Scholar] [CrossRef]
- FAO. Alimentar al Mundo En 2050; Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO): Roma, Italy, 2018. [Google Scholar]
- USAID. Digital Farmer Profile: Reimagining Smallholder Agriculture; FAO: Washington, DC, USA, 2018; Available online: http://fao.org/e-agriculture/news/digital-farmer-profiles-reimagining-smallholder-agriculture (accessed on 3 January 2025).
- Fuentes-Peñailillo, F.; Gutter, K.; Vega, R.; Silva, G.C. Transformative Technologies in Digital Agriculture: Leveraging Internet of Things, Remote Sensing, and Artificial Intelligence for Smart Crop Management. J. Sens. Actuator Netw. 2024, 13, 39. [Google Scholar] [CrossRef]
- Farooq, M.S.; Riaz, S.; Abid, A.; Umer, T.; Zikria, Y.B. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics 2020, 9, 319. [Google Scholar] [CrossRef]
- Khan, I. Digital Agriculture: Revolutionizing the future of farming. Int. J. Agric. Ext. Rural. Dev. 2024, 11. Available online: https://www.internationalscholarsjournals.com/articles/digital-agriculture-revolutionizing-the-future-of-farming.pdf (accessed on 10 January 2025).
- Shafique, K.; Khawaja, B.A.; Sabir, F.; Qazi, S.; Mustaqim, M. Internet of Things (IoT) for Next-Generation Smart Systems: A Review of Current Challenges, Future Trends and Prospects for Emerging 5G-IoT Scenarios. IEEE Access 2020, 8, 23022–23040. [Google Scholar] [CrossRef]
- Mekonnen, Y.; Namuduri, S.; Burton, L.; Sarwat, A.; Bhansali, S. Review—Machine Learning Techniques in Wireless Sensor Network Based Precision Agriculture. J. Electrochem. Soc. 2020, 167, 037522. [Google Scholar] [CrossRef]
- Quy, V.K.; Hau, N.V.; Anh, D.V.; Quy, N.M.; Ban, N.T.; Lanza, S.; Randazzo, G.; Muzirafuti, A. IoT-Enabled Smart Agriculture: Architecture, Applications, and Challenges. Appl. Sci. 2022, 12, 3396. [Google Scholar] [CrossRef]
- Balducci, F.; Impedovo, D.; Pirlo, G. Machine Learning Applications on Agricultural Datasets for Smart Farm Enhancement. Machines 2018, 6, 38. [Google Scholar] [CrossRef]
- Champaneri, M.; Chachpara, D.; Chandvidkar, C.; Rathod, M. Crop Yield Prediction Using Machine Learning. Int. J. Sci. Res. 2020, 9, 645–648. [Google Scholar] [CrossRef]
- Mohammed, M.; Hamdoun, H.; Sagheer, A. Toward Sustainable Farming: Implementing Artificial Intelligence to Predict Optimum Water and Energy Requirements for Sensor-Based Micro Irrigation Systems Powered by Solar PV. Agronomy 2023, 13, 1081. [Google Scholar] [CrossRef]
- Vera Chalaco, J.D.; Carvajal Romer, H.R.; Díaz Hernández, J.A. Avancesen la inteligencia artificial para incrementar el rendimiento en los cultivos. Rev. Científica Agroecosistemas 2025, 13, e748. [Google Scholar]
- Garg, S.; Pundir, P.; Jindal, H.; Saini, H.; Garg, S. Towards a Multimodal System for Precision Agriculture Using IoT and Machine Learning. In Proceedings of the 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 6–8 July 2021; pp. 1–7. [Google Scholar] [CrossRef]
- Adel, A.A.; Abd Elhameed, M.M.; Magdy, N.M.; Said, L.A.; Abdelaal, N.; Abd Allah, Y.T.; Darweesh, M.S.; Fahim, M.A.; Mostafa, H. Smart IoT Monitoring System for Agriculture with Predictive Analysis. In Proceedings of the 2019 8th International Conference on Modern Circuits and Systems Technologies (MOCAST), Thessaloniki, Greece, 13–15 May 2019; pp. 1–4. [Google Scholar] [CrossRef]
- Li, C.; Niu, B. Design of Smart Agriculture Based on Big Data and Internet of Things. Int. J. Distrib. Sens. Netw. 2020, 16, 155014772091706. [Google Scholar] [CrossRef]
- Jabbari, A.; Humayed, A.; Reegu, F.A.; Uddin, M.; Gulzar, Y.; Majid, M. Smart Farming Revolution: Farmer’s Perception and Adoption of Smart IoT Technologies for Crop Health Monitoring and Yield Prediction in Jizan, Saudi Arabia. Sustainability 2023, 15, 14541. [Google Scholar] [CrossRef]
- Bouni, M.; Hssina, B.; Douzi, K.; Douzi, S. Integrated Iot Approaches for Crop Recommendation and Yield-Prediction Using Machine-Learning. Internet Things 2024, 5, 634–649. [Google Scholar] [CrossRef]
- Dhanaraju, M.; Chenniappan, P.; Ramalingam, K.; Pazhanivelan, S.; Kaliaperumal, R. Smart Farming: Internet of Things (IoT)-Based Sustainable Agriculture. Agriculture 2022, 12, 1745. [Google Scholar] [CrossRef]
- Maraseni, T.; An-Vo, D.-A.; Mushtaq, S.; Reardon-Smith, K. Carbon Smart Agriculture: An Integrated Regional Approach Offers Significant Potential to Increase Profit and Resource Use Efficiency, and Reduce Emissions. J. Clean. Prod. 2021, 282, 124555. [Google Scholar] [CrossRef]
- Khosla, R. Precision Agriculture: Challenges and Opportunities in a Flat World. World Congr. Soil Sci. 2010, 19, 26–28. [Google Scholar]
- McBratney, A.; Whelan, B.; Ancev, T.; Bouma, J. Future Directions of Precision Agriculture. Precis. Agric. 2005, 6, 7–23. [Google Scholar] [CrossRef]
- Goo, J.J.; Heo, J.-Y. The Impact of the Regulatory Sandbox on the Fintech Industry, with a Discussion on the Relation between Regulatory Sandboxes and Open Innovation. J. Open Innov. Technol. Mark. Complex. 2020, 6, 43. [Google Scholar] [CrossRef]
- Yee-Loong Chong, A.; Ooi, K. Adoption of Interorganizational System Standards in Supply Chains: An Empirical Analysis of RosettaNet Standards. Ind. Manag. Data Syst. 2008, 108, 529–547. [Google Scholar] [CrossRef]
- Marakarkandy, B.; Yajnik, N.; Dasgupta, C. Enabling Internet Banking Adoption: An Empirical Examination with an Augmented Technology Acceptance Model (TAM). J. Enterp. Inf. Manag. 2017, 30, 263–294. [Google Scholar] [CrossRef]
- Nawi, N.C.; Al Mamun, A.; Md Nasir, N.A.; Rahman, M.K. Analyzing Customer Acceptance of the Internet of Things (IoT) in the Retail Industry. J. Ambient Intell. Humaniz. Comput. 2023, 14, 5225–5237. [Google Scholar] [CrossRef]
- Romero-Riaño, E.; Galeano-Barrera, C.; Guerrero, C.D.; Martinez-Toro, M.; Rico-Bautista, D. IoT Applied to Irrigation Systems in Agriculture: A Usability Analysis. Rev. Colomb. Comput. 2022, 23, 44–52. [Google Scholar] [CrossRef]
- Tohidyan Far, S.; Rezaei-Moghaddam, K. Determinants of Iranian Agricultural Consultants’ Intentions toward Precision Agriculture: Integrating Innovativeness to the Technology Acceptance Model. J. Saudi Soc. Agric. Sci. 2017, 16, 280–286. [Google Scholar] [CrossRef]
- Hanson, E.D.; Cossette, M.K.; Roberts, D.C. The Adoption and Usage of Precision Agriculture Technologies in North Dakota. Technol. Soc. 2022, 71, 102087. [Google Scholar] [CrossRef]
- Lin, H.C.; Chang, T.Y.; Kuo, S.H. Effects of Social Influence and System Characteristics on Traceable Agriculture Product Reuse Intention of Elderly People: Integrating Trust and Attitude Using the Technology Acceptance Model. J. Res. Educ. Sci. 2018, 63, 291–319. [Google Scholar] [CrossRef]
- Khoza, S.; De Beer, L.T.; Van Niekerk, D.; Nemakonde, L. A Gender-Differentiated Analysis of Climate-Smart Agriculture Adoption by Smallholder Farmers: Application of the Extended Technology Acceptance Model. Gend. Technol. Dev. 2021, 25, 1–21. [Google Scholar] [CrossRef]
- McDonald, N.; Fogarty, E.S.; Cosby, A.; McIlveen, P. Technology Acceptance, Adoption and Workforce on Australian Cotton Farms. Agriculture 2022, 12, 1180. [Google Scholar] [CrossRef]
- Anas, S.A.B.; Singh, R.S.S.; Kamarudin, N.A.B. Designing an IoT Agriculture Monitoring System for Improving Farmer’s Acceptance of Using IoT Technology. Eng. Technol. Appl. Sci. Res. 2022, 12, 8157–8163. [Google Scholar] [CrossRef]
- Thomas, R.J.; O’Hare, G.; Coyle, D. Understanding Technology Acceptance in Smart Agriculture: A Systematic Review of Empirical Research in Crop Production. Technol. Forecast. Soc. Chang. 2023, 189, 122374. [Google Scholar] [CrossRef]
- Cornejo-Olivares, L.; Contreras-Cossio, J.; Hoyos-Rivas, F.; Segura-Villarreal, C.; Gutierrez-Pinta, E.; Chavez-Sanchez, W.; Grados, J. IoT Application Technologies for Agriculture in Latin America during the COVID-19 Pandemic. In Proceedings of the 21th LACCEI International Multi-Conference for Engineering, Education and Technology (LACCEI 2023): “Leadership in Education and Innovation in Engineering in the Framework of Global Transformations: Integration and Alliances for Integral Development”; Latin American and Caribbean Consortium of Engineering Institutions, Buenos Aires, Argentina, 19–21 July 2023. [Google Scholar] [CrossRef]
- Nagel, J. Principales Barreras Para la Adopción de Las TIC en la Agricultura y en Las Áreas Rurales; CEPAL: Santiago de Chile, Chile, 2012; Available online: https://repositorio.cepal.org/server/api/core/bitstreams/0956dd01-50c3-498f-86a0-6787062a5fdc/content (accessed on 13 December 2024).
- Best, S. Tecnologías Asociadas a La Producción de Cultivos Commodities. Tecnologías Aplicables a Agricultura de Precisión; FIA Fund. Para Innov. Agrar.: Santiago de Chile, Chile, 2008. [Google Scholar]
- Nagel Amaro, J.; Martínez Vergara, C. Chile: Agricultores y Nuevas Tecnologías de Información; ODEPA: Santiago, Chile, 2006. [Google Scholar]
- INEGI. Censo Agropecuario 2022; INEGI: Aguascalientes, Mexico, 2022; p. 62. Available online: https://www.inegi.org.mx/contenidos/programas/ca/2022/doc/ca2022_rdnal.pdf (accessed on 21 November 2024).
- Khelladi, Y.; Apolinario, V. Los Centros de Acceso Colectivo (CAC) a Las TIC Impulsados Desde El Estado En La República Dominicana; Oficina Nacional de Estadística. Departamento de Investigaciones: Santo Domingo, Dominican Republic, 2010. [Google Scholar]
- Nagel, J.; Martínez, C. Visión Fundada del Acceso y Uso de Las Nuevas Tecnologías de Información de Los Agricultores; CENDEC: Santiago de Chile, Chile, 2005; Volume 135. [Google Scholar]
- Censo Nacional. Estadísticas de Trabajo En Ecuador. 2022. Available online: https://www.censoediocuador.gob.ec/wp-content/uploads/2024/12/Trabajo_Resultados_CPV_Dic2024.pdf (accessed on 29 November 2024).
- Martillo Alchundia, I.; Gómez Pereira, S.V.; Lozano Sacoto, A.Y. Análisis Del Internet de Las Cosas Para La Automatización Del Campo Agrícola: Estudio de Caso Milagro—Ecuador. Sapienza Int. J. Interdiscip. Stud. 2022, 3, 281–288. [Google Scholar] [CrossRef]
- Guillermo, J.C.; García-Cedeño, A.; Rivas-Lalaleo, D.; Huerta, M.; Clotet, R. IoT Architecture Based on Wireless Sensor Network Applied to Agricultural Monitoring: A Case of Study of Cacao Crops in Ecuador. In Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II; Corrales, J.C., Angelov, P., Iglesias, J.A., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2019; Volume 893, pp. 42–57. [Google Scholar] [CrossRef]
- Mercado, H.S. Mercadotecnia Programada: Principios y Aplicaciones para Orientar la Empresa Hacia el Mercado, 2nd ed.; Limusa: Mexico City, Mexico, 2000. [Google Scholar]
- Jumbri, I.A.; Alias, M.R.M.; Fauzan, A.F.; Ismail, M.F.; Widjajanti, K.; Kurnianingrum, D.; Karmagatri, M. Awareness and Acceptance of the Internet of Things (IOT) among Agropreneurs. Int. J. Acad. Res. Bus. Soc. Sci. 2024, 14, 1712–1737. [Google Scholar] [CrossRef]
- Hair, J.F.; Hult, G.T.; Ringle, C.M..; Sarstedt. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; SAGE Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Fincham, J.E. Response Rates and Responsiveness for Surveys, Standards, and the Journal. Am. J. Pharm. Educ. 2008, 72, 43. [Google Scholar] [CrossRef]
- Watkins, M.W. A Step-By-Step Guide to Exploratory Factor Analysis with Stata, 1st ed.; Routledge: New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- MacCallum, R.C.; Browne, M.W.; Sugawara, H.M. Power Analysis and Determination of Sample Size for Covariance Structure Modeling. Psychol. Methods 1996, 1, 130–149. [Google Scholar] [CrossRef]
- Whittaker, T.A.; Schumacker, R.E. A Beginner’s Guide to Structural Equation Modeling, 5th ed.; Routledge: New York, NY, USA; London, UK, 2022. [Google Scholar]
- Strong, R.; Wynn, J.T.; Lindner, J.R.; Palmer, K. Evaluating Brazilian Agriculturalists’ IoT Smart Agriculture Adoption Barriers: Understanding Stakeholder Salience Prior to Launching an Innovation. Sensors 2022, 22, 6833. [Google Scholar] [CrossRef]
- Stone, G.D. Surveillance Agriculture and Peasant Autonomy. J. Agrar. Chang. 2022, 22, 608–631. [Google Scholar] [CrossRef]
- Iliopoulos, C.; Theodorakopoulou, I.; Giotis, T.; Brunori, G. Perceptions of Costs and Benefits of Farm Digitalization in Europe. Int. Food Agribus. Manag. Rev. 2025, 1, 1–22. [Google Scholar] [CrossRef]
Frequency | Percentage % | |
---|---|---|
Gender | ||
Men | 181 | 78.017 |
Woman | 51 | 21.983 |
Age (years) | ||
Less than 25 years old | 19 | 8.190 |
25–34 | 41 | 17.672 |
35–44 | 62 | 26.724 |
45–54 | 87 | 37.500 |
>55 | 23 | 9.914 |
Educational level | ||
Incomplete primary school | 27 | 11.638 |
Primary complete | 82 | 35.345 |
Secondary | 91 | 39.224 |
Third level | 23 | 9.914 |
Fourth level or higher | 9 | 3.879 |
Years of experience in agriculture | ||
Less than 5 years | 13 | 5.603 |
5–10. | 21 | 9.052 |
11–15. | 35 | 15.086 |
16–20 | 67 | 28.879 |
More than 20 years | 96 | 41.379 |
Approximate size of your agricultural land | ||
Less than 1 ha | 23 | 9.914 |
1–5 ha | 34 | 14.655 |
6–10 ha | 73 | 31.466 |
More than 10 ha | 102 | 43.966 |
Internet access on your farm or community | ||
Yes | 129 | 55.603 |
No | 103 | 44.397 |
Mean | Variance | Sta. Deviation | Cronbach’s Alpha α | N of Items |
---|---|---|---|---|
2.981 | 0.790 | 0.888 | 0.701 | 27 |
Item | Factor | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
GP1 | 0.956 | ||||||||
GP2 | 0.950 | ||||||||
GP3 | 0.955 | ||||||||
POF1 | 0.947 | ||||||||
POF2 | 0.959 | ||||||||
POF3 | 0.949 | ||||||||
IUTR1 | 0.954 | ||||||||
IUTR2 | 0.962 | ||||||||
IUTR3 | 0.954 | ||||||||
COST1 | 0.961 | ||||||||
COST2 | 0.959 | ||||||||
COST3 | 0.947 | ||||||||
TRAI1 | 0.947 | ||||||||
TRAI2 | 0.961 | ||||||||
TRAI3 | 0.947 | ||||||||
EDU1 | 0.952 | ||||||||
EDU2 | 0.945 | ||||||||
EDU3 | 0.952 | ||||||||
IS1 | 0.956 | ||||||||
IS2 | 0.959 | ||||||||
IS3 | 0.955 | ||||||||
ADOP1 | 0.947 | ||||||||
ADOP2 | 0.940 | ||||||||
ADOP3 | 0.948 | ||||||||
PERF1 | 0.955 | ||||||||
PERF2 | 0.959 | ||||||||
PERF3 | 0.957 | ||||||||
α de Cronbach | 0.956 | 0.951 | 0.960 | 0.959 | 0.955 | 0.952 | 0.957 | 0.949 | 0.960 |
Fit Measures | Index | Value | Recommended Value |
---|---|---|---|
Absolute Adjustment Measures | CMIN/DF | 1.213 | (<2) |
RMSEA | 0.032 | (≤0.05) | |
Incremental Adjustment Measures | CFI | 0.985 | [0.9–1] |
TLI | 0.955 | [0.9–1] | |
NFI | 0.977 | (0.9–1) | |
Parsimony-Adjusted Measures | Pratio | 0.773 | (0.5–1) |
PCFI | 0.770 | (0.5–1) | |
PNFI | 0.760 | (0.5–1) | |
AIC | 139.857 | - |
Unstandardized Regression Weights | |||||
---|---|---|---|---|---|
Relation | Estimate | S.E. | C.R. | p | Significance |
ADOP ← GP | 0.575 | 0.04 | 14.281 | *** | Significant |
ADOP ← POF | 0.806 | 0.053 | 15.256 | *** | Significant |
PERF ← ADOP | 0.795 | 0.046 | 17.435 | *** | Significant |
Standardized Regression Weights | |||||
Relation | Standardized Estimation | ||||
ADOP ← GP | 0.582 | ||||
ADOP ← POF | 0.658 | ||||
PERF ← ADOP | 0.840 | ||||
R2 (Coefficients of Determination-Squared Multiple Correlations) | |||||
Endogenous Variable | R2 (Variance Explained) | ||||
ADOP | 0.771 | ||||
PERF | 0.706 |
Fit Measures | Index | Value | Recommended Value |
---|---|---|---|
Absolute Adjustment Measures | CMIN/DF | 3.528 | (<2) |
RMSEA | 0.111 | (≤0.05) | |
Incremental Adjustment Measures | CFI | 0.926 | [0.9–1] |
TLI | 0.910 | [0.9–1] | |
NFI | 0.901 | (0.9–1) | |
Parsimony-Adjusted Measures | Pratio | 0.819 | (0.5–1) |
PCFI | 0.759 | (0.5–1) | |
PNFI | 0.738 | (0.5–1) | |
AIC | 401.411 | - |
Unstandardized regression Weights | |||||
Relation | Estimate | S.E. | C.R. | p | Significance |
ADOP ← GP | 0.396 | 0.032 | 12.235 | *** | Significant |
ADOP ← POF | 0.466 | 0.041 | 11.416 | *** | Significant |
ADOP ← COST | −0.978 | 0.274 | −3.570 | *** | Significant |
ADOP ← TRAI | 0.593 | 0.163 | 3.444 | *** | Significant |
Standardized Regression Weights | |||||
Relation | Standardized Estimation | ||||
ADOP ← GP | 0.514 | ||||
ADOP ← POF | 0.488 | ||||
ADOP ← COST | −0.651 | ||||
ADOP ← TRAI | 0.523 |
Unstandardized Regression Weights | |||||
---|---|---|---|---|---|
Relation | Estimate | S.E. | C.R. | p | Significance |
ADOP ← IS | 0.430 | 0.031 | 13.929 | *** | Significant |
ADOP ← EDU | 0.442 | 0.037 | 11.941 | *** | Significant |
ADOP ← TRAI | 0.387 | 0.113 | 3.418 | *** | Significant |
ADOP ← IUTR | 0.329 | 0.1029 | 11.508 | *** | Significant |
Fit Measures | Index | Value | Recommended Value |
---|---|---|---|
Absolute Adjustment Measures | CMIN/DF | 3.694 | (<2) |
RMSEA | 0.114 | (≤0.05) | |
Incremental Adjustment Measures | CFI | 0.938 | [0.9–1] |
TLI | 0.925 | [0.9–1] | |
NFI | 0.918 | (0.9–1) | |
Parsimony-Adjusted Measures | Pratio | 0.819 | (0.5–1) |
PCFI | 0.819 | (0.5–1) | |
PNFI | 0.752 | (0.5–1) | |
AIC | 385.658 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peña-Holguín, R.R.; Vaca-Coronel, C.A.; Farías-Lema, R.M.; Zapatier-Castro, S.V.; Valenzuela-Cobos, J.D. Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields. Agriculture 2025, 15, 1679. https://doi.org/10.3390/agriculture15151679
Peña-Holguín RR, Vaca-Coronel CA, Farías-Lema RM, Zapatier-Castro SV, Valenzuela-Cobos JD. Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields. Agriculture. 2025; 15(15):1679. https://doi.org/10.3390/agriculture15151679
Chicago/Turabian StylePeña-Holguín, Ruth Rubí, Carlos Andrés Vaca-Coronel, Ruth María Farías-Lema, Sonnia Valeria Zapatier-Castro, and Juan Diego Valenzuela-Cobos. 2025. "Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields" Agriculture 15, no. 15: 1679. https://doi.org/10.3390/agriculture15151679
APA StylePeña-Holguín, R. R., Vaca-Coronel, C. A., Farías-Lema, R. M., Zapatier-Castro, S. V., & Valenzuela-Cobos, J. D. (2025). Smart Agriculture in Ecuador: Adoption of IoT Technologies by Farmers in Guayas to Improve Agricultural Yields. Agriculture, 15(15), 1679. https://doi.org/10.3390/agriculture15151679