Estimation of Soil Organic Carbon Content of Grassland in West Songnen Plain Using Machine Learning Algorithms and Sentinel-1/2 Data
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition and Preprocessing
2.2.1. Soil Sampling and Laboratory Analysis
2.2.2. Geospatial Data Sources and Preprocessing
- 1.
- S2 image: S2 images were downloaded from the European Space Agency’s data sharing platform (https://dataspace.copernicus.eu/) (accessed on 22 October 2023). Level-2A data, comprising atmospherically corrected bottom-of-atmosphere reflectance data, were used in this study. The selected images were acquired in August 2022, closely matching the soil sampling time. Four MSI bands commonly used in soil property assessments were selected from S2 bands: blue band (B2), green band (B3), red band (B4), and near-infrared band (B8). Additionally, eight vegetation indices (Table 1) were selected to predict SOC contents in the western grasslands of the Songnen Plain.
- 2.
- S1 image: The S1 RS imagery used in this study was acquired in interferometric wide (IW) mode and included ground range detected (GRD) data with a resolution of 10 m, which were downloaded from the ASF Data Search platform (https://search.asf.alaska.edu/) (accessed on 25 October 2023). Dual-polarization data, including VV and VH, were selected for the analysis. Based on the S1 images, five predictive variables were derived, including two dual-polarization bands (VH and VV) and three transformed bands (VH/VV, VH-VV, and (VH + VV)/2).
- 3.
- Topography and position data: The digital elevation model (DEM) data were obtained from the GEE database. The DEM was reprojected into WGS_1984_Albers and resampled to a spatial resolution of 10 m. Two topography variables, slope and elevation, were calculated using ArcGIS 10.6. Additionally, longitude (X) and latitude (Y) geographic coordinate data were input as auxiliary geographic information.
- 4.
- Climate data: Temperature and precipitation data were obtained from the National Earth System Science Data Center (http://www.geodata.cn/) (accessed on 27 October 2023) with a resolution of 1 km. These data were stored as INT16 type in NC (NETCDF) files. MAT and MAP values at the sampling points were calculated and extracted through batch processing in Python 3.10.
2.3. Research Methods
2.3.1. Soil Organic Carbon Prediction
2.3.2. Model Accuracy Validation
3. Results
3.1. Correlation Between Predictive Variables and SOC
3.2. Evaluation and Comparison of the Accuracy Rates of Different Models
3.3. Evaluation of the Relative Importance of Predictive Variables
3.4. Spatial Distribution of SOC in the Grassland of Western Songnen Plain
4. Discussion
4.1. Performance of the Prediction Models
4.2. Variable Importance
4.3. Research Limitations and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Raich, J.; Potter, C.; Bhagawati, D. Interannual variability in global soil respiration, 1980–94. Glob. Change Biol. 2002, 8, 800–812. [Google Scholar] [CrossRef]
- Bengtsson, J.; Bullock, J.M.; Egoh, B.; Everson, C.; Everson, T.; O’Connor, T.; Lindborg, R. Grasslands—More Important for Ecosystem Services than You Might Think. Ecosphere 2019, 10, e02582. [Google Scholar] [CrossRef]
- Lal, R. Digging Deeper: A Holistic Perspective of Factors Affecting Soil Organic Carbon Sequestration in Agroecosystems. Glob. Change Biol. 2018, 24, 3285–3301. [Google Scholar] [CrossRef]
- Wang, G.; Li, Y.; Fan, L.; Ma, X.; Mao, J. The Response of Soil Organic Carbon Content of Grasslands in Northern Xinjiang to Future Climate Change. Phys. Chem. Earth 2024, 134, 103576. [Google Scholar] [CrossRef]
- Schuman, G.E.; Janzen, H.H.; Herrick, J.E. Soil Carbon Dynamics and Potential Carbon Sequestration by Rangelands. Environ. Pollut. 2002, 116, 391–396. [Google Scholar] [CrossRef]
- Ma, L.; Wang, Q.; Shen, S.T. Response of Soil Aggregate Stability and Distribution of Organic Carbon to Alpine Grassland Degradation in Northwest Sichuan. Geoderma Reg. 2020, 22, e00309. [Google Scholar] [CrossRef]
- Zhang, H.; Wan, L.; Li, Y. Prediction of Soil Organic Carbon Content Using Sentinel-1/2 and Machine Learning Algorithms in Swamp Wetlands in Northeast China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 5219–5230. [Google Scholar] [CrossRef]
- Castaldi, F.; Chabrillat, S.; Chartin, C.; Genot, V.; Jones, A.; van Wesemael, B. Estimation of Soil Organic Carbon in Arable Soil in Belgium and Luxembourg with the LUCAS Topsoil Database. Eur. J. Soil Sci. 2018, 69, 592–603. [Google Scholar] [CrossRef]
- Soriano-Disla, J.M.; Janik, L.J.; Viscarra Rossel, R.A.; Macdonald, L.M.; McLaughlin, M.J. The Performance of Visible, Near-, and Mid-Infrared Reflectance Spectroscopy for Prediction of Soil Physical, Chemical, and Biological Properties. Appl. Spectrosc. Rev. 2014, 49, 139–186. [Google Scholar] [CrossRef]
- Tziolas, N.; Tsakiridis, N.; Ben-Dor, E.; Theocharis, J.; Zalidis, G. A Memory-Based Learning Approach Utilizing Combined Spectral Sources and Geographical Proximity for Improved VIS-NIR-SWIR Soil Properties Estimation. Geoderma 2019, 340, 11–24. [Google Scholar] [CrossRef]
- Liu, L.; Ji, M.; Buchroithner, M. Combining Partial Least Squares and the Gradient-Boosting Method for Soil Property Retrieval Using Visible Near-Infrared Shortwave Infrared Spectra. Remote Sens. 2017, 9, 1299. [Google Scholar] [CrossRef]
- Angelopoulou, T.; Tziolas, N.; Balafoutis, A.; Zalidis, G.; Bochtis, D. Remote Sensing Techniques for Soil Organic Carbon Estimation: A Review. Remote Sens. 2019, 11, 676. [Google Scholar] [CrossRef]
- Tsakiridis, N.; Tziolas, N.; Theocharis, J.; Zalidis, G. A Genetic Algorithm-Based Stacking Algorithm for Predicting Soil Organic Matter from VIS-NIR Spectral Data. Eur. J. Soil Sci. 2019, 70, 578–590. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef]
- Muro, J.; Linstädter, A.; Magdon, P.; Wöllauer, S.; Männer, F.A.; Schwarz, L.-M.; Ghazaryan, G.; Schultz, J.; Malenovský, Z.; Dubovyk, O. Predicting plant biomass and species richness in temperate grasslands across regions, time, and land management with remote sensing and deep learning. Remote Sens. Environ. 2022, 282, 113262. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Pelletier, C.; Gorrab, A.; Lili-Chabaane, Z.; Baghdadi, N.; Ben Aissa, N.; Mougenot, B. Soil Texture Estimation Using Radar and Optical Data from Sentinel-1 and Sentinel-2. Remote Sens. 2019, 11, 1520. [Google Scholar] [CrossRef]
- Solly, E.F.; Weber, V.; Zimmermann, S.; Walthert, L.; Hagedorn, F.; Schmidt, M.W.I. A Critical Evaluation of the Relationship Between the Effective Cation Exchange Capacity and Soil Organic Carbon Content in Swiss Forest Soils. Front. For. Glob. Change 2020, 3, 98. [Google Scholar] [CrossRef]
- Zhang, Y.; Sui, B.; Shen, H.; Ouyang, L. Mapping Stocks of Soil Total Nitrogen Using Remote Sensing Data: A Comparison of Random Forest Models with Different Predictors. Comput. Electron. Agric. 2019, 160, 23–30. [Google Scholar] [CrossRef]
- Nocita, M.; Stevens, A.; van Wesemael, B.; Aitkenhead, M.; Bachmann, M.; Barthès, B.G.; Ben-Dor, E.; Brown, D.J.; Clairotte, M.; Demattê, J.A.M.; et al. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring. Adv. Agron. 2015, 132, 139–159. [Google Scholar] [CrossRef]
- Yang, R.; Guo, W. Using Time-Series Sentinel-1 Data for Soil Prediction on Invaded Coastal Wetlands. Environ. Monit. Assess. 2019, 191, 446. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Guo, W.; Liu, L.; Wang, Y.; Zhang, X.; Yang, R.; Li, Y. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.J.; Baghdadi, N. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at 100 m Resolution. Sensors 2017, 17, 1966. [Google Scholar] [CrossRef]
- Dabrowska-Zielinska, K.; Musial, J.; Malinska, A.; Budzynska, M.; Gurdak, R.; Kiryla, W.; Bartold, M.; Grzybowski, P. Soil Moisture in the Biebrza Wetlands Retrieved from Sentinel-1 Imagery. Remote Sens. 2018, 10, 1979. [Google Scholar] [CrossRef]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. High-Resolution Digital Mapping of Soil Organic Carbon and Soil Total Nitrogen Using DEM Derivatives, Sentinel-1 and Sentinel-2 Data Based on Machine Learning Algorithms. Sci. Total Environ. 2020, 729, 138244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Geng, Y.; Chen, J.; Pan, J.; Haase, D.; Lausch, A. Prediction of Soil Organic Carbon and the C:N Ratio on a National Scale Using Machine Learning and Satellite Data: A Comparison between Sentinel-2, Sentinel-3 and Landsat-8 Images. Sci. Total Environ. 2021, 755, 142661. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.; Tassinari, W.; Pinheiro, H.; Beutler, S.; dos Anjos, L. Mapping Soil Organic Carbon and Organic Matter Fractions by Geographically Weighted Regression. J. Environ. Qual. 2018, 47, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Geng, Y.; Chen, J.; Liu, M.; Haase, D.; Lausch, A. Mapping Soil Organic Carbon Content Using Multi-Source Remote Sensing Variables in the Heihe River Basin in China. Ecol. Indic. 2020, 114, 106288. [Google Scholar] [CrossRef]
- Xu, M.; Chu, X.; Fu, Y.; Wang, C.; Wu, S. Improving the Accuracy of Soil Organic Carbon Content Prediction Based on Visible and Near-Infrared Spectroscopy and Machine Learning. Environ. Earth Sci. 2021, 80, 326. [Google Scholar] [CrossRef]
- Meliho, M.; Boulmane, M.; Khattabi, A.; Dansou, C.E.; Orlando, C.A.; Mhammdi, N.; Noumonvi, K.D. Spatial Prediction of Soil Organic Carbon Stock in the Moroccan High Atlas Using Machine Learning. Remote Sens. 2023, 15, 2494. [Google Scholar] [CrossRef]
- Mosaid, H.; Barakat, A.; John, K.; Faouzi, E.; Bustillo, V.; El Garnaoui, M.; Heung, B. Improved Soil Carbon Stock Spatial Prediction in a Mediterranean Soil Erosion Site Through Robust Machine Learning Techniques. Environ. Monit. Assess. 2024, 196, 130. [Google Scholar] [CrossRef]
- Keskin, H.; Grunwald, S.; Harris, W.G. Digital Mapping of Soil Carbon Fractions with Machine Learning. Geoderma 2019, 339, 40–58. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High Resolution Mapping of Soil Organic Carbon Stocks Using Remote Sensing Variables in the Semi-Arid Rangelands of Eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; ACM: San Francisco, CA, USA, 2016; pp. 785–794. [Google Scholar] [CrossRef]
- Chen, H.; Ju, P.; Zhu, Q.; Xu, X.; Wu, N.; Gao, Y.; Feng, X.; Tian, J.; Niu, S.; Zhang, Y.; et al. Carbon and Nitrogen Cycling on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 701–716. [Google Scholar] [CrossRef]
- Wang, Y.; Lv, W.; Xue, K.; Wang, S.; Zhang, L.; Hu, R.; Zeng, H.; Xu, X.; Li, Y.; Jiang, L.; et al. Grassland Changes and Adaptive Management on the Qinghai-Tibetan Plateau. Nat. Rev. Earth Environ. 2022, 3, 668–683. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Jobbágy, E.; Jackson, R. The Vertical Distribution of Soil Organic Carbon and Its Relation to Climate and Vegetation. Ecol. Appl. 2000, 10, 423–436. [Google Scholar] [CrossRef]
- Obu, J.; Lantuit, H.; Myers-Smith, I.; Heim, B.; Wolter, J.; Fritz, M. Effect of Terrain Characteristics on Soil Organic Carbon and Total Nitrogen Stocks in Soils of Herschel Island, Western Canadian Arctic. Permafr. Periglac. Process. 2017, 28, 92–107. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, Q.; Wang, Q.; Jin, X.; Han, C. Mapping Stocks of Soil Organic Carbon and Soil Total Nitrogen in Liaoning Province of China. Geoderma 2017, 305, 250–263. [Google Scholar] [CrossRef]
- Tsui, C.-C.; Chen, Z.-S.; Hsieh, C.-F. Relationships Between Soil Properties and Slope Position in a Lowland Rain Forest of Southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Griffiths, R.P.; Madritch, M.D.; Swanson, A.K. The Effects of Topography on Forest Soil Characteristics in the Oregon Cascade Mountains (USA): Implications for the Effects of Climate Change on Soil Properties. For. Ecol. Manag. 2009, 257, 1–7. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, X.; Hou, N.; Zhang, W.; Jia, K.; Yao, Y. Estimation of Surface Downward Shortwave Radiation over China from AVHRR Data Based on Four Machine Learning Methods. Sol. Energy 2019, 177, 32–46. [Google Scholar] [CrossRef]
- Menze, B.; Kelm, B.M.; Masuch, R.; Himmelreich, U.; Bachert, P.; Petrich, W.; Hamprecht, F.A. A Comparison of Random Forest and Its Gini Importance with Standard Chemometric Methods for the Feature Selection and Classification of Spectral Data. BMC Bioinform. 2009, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Strobl, C.; Boulesteix, A.L.; Kneib, T.; Augustin, T.; Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 2008, 9, 307. [Google Scholar] [CrossRef] [PubMed]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Were, K.; Bui, D.; Dick, O.; Singh, B. A Comparative Assessment of Support Vector Regression, Artificial Neural Networks, and Random Forests for Predicting and Mapping Soil Organic Carbon Stocks across an Afromontane Landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Neupane, R.; Sood, K.; Kumar, S. Artificial Bee Colony Feature Selection Algorithm Combined with Machine Learning Algorithms to Predict Vertical and Lateral Distribution of Soil Organic Matter in South Dakota, USA. Carbon Manag. 2017, 8, 277–291. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating Soil Moisture Using Remote Sensing Data: A Machine Learning Approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Jebur, M.; Pradhan, B.; Tehrany, M. Manifestation of LiDAR-Derived Parameters in the Spatial Prediction of Landslides Using Novel Ensemble Evidential Belief Functions and Support Vector Machine Models in GIS. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 674–690. [Google Scholar] [CrossRef]
- Pham, T.; Yokoya, N.; Xia, J.; Ha, N.T.; Le, N.N.; Nguyen, T.T.T.; Dao, T.H.; Vu, T.T.P.; Pham, T.D.; Takeuchi, W. Comparison of Machine Learning Methods for Estimating Mangrove Above-Ground Biomass Using Multiple Source Remote Sensing Data in the Red River Delta Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 1334. [Google Scholar] [CrossRef]
- Osman, A.I.A.; Ahmed, A.N.; Chow, M.F.; Huang, Y.F.; El-Shafie, A. Extreme gradient boosting (XGBoost) model to predict the groundwater levels in Selangor Malaysia. Ain Shams Eng. J. 2021, 12, 1545–1556. [Google Scholar] [CrossRef]
- Pham, T.; Le, N.N.; Ha, N.T.; Nguyen, L.V.; Xia, J.; Yokoya, N.; To, T.T.; Trinh, H.X.; Kieu, L.Q.; Takeuchi, W. Estimating mangrove above-ground biomass using extreme gradient boosting decision trees algorithm with fused Sentinel-2 and ALOS-2 PALSAR-2 data in Can Gio Biosphere Reserve, Vietnam. Remote Sens. 2020, 12, 777. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Schmidt, K.; Amirian-Chakan, A.; Rentschler, T.; Zeraatpisheh, M.; Sarmadian, F.; Valavi, R.; Davatgar, N.; Behrens, T.; Scholten, T. Improving the spatial prediction of soil organic carbon content in two contrasting climatic regions by stacking machine learning models and rescanning covariate space. Remote Sens. 2020, 12, 1095. [Google Scholar] [CrossRef]
- Wei, L.; Yuan, Z.; Wang, Z.; Zhao, L.; Zhang, Y.; Lu, X.; Cao, L. Hyperspectral inversion of soil organic matter content based on a combined spectral index model. Sensors 2020, 20, 2777. [Google Scholar] [CrossRef]
- Le, N.; Yokoya, N.; Ha, N.T.; Nguyen, T.T.T.; Tran, T.D.T.; Pham, T.D. Learning from multimodal and multisensor earth observation dataset for improving estimates of mangrove soil organic carbon in Vietnam. Int. J. Remote Sens. 2021, 42, 6866–6890. [Google Scholar] [CrossRef]
- Yang, R.-M.; Guo, W.-W. Modelling of soil organic carbon and bulk density in invaded coastal wetlands using Sentinel-1 imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101906. [Google Scholar] [CrossRef]
- Siewert, M. High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: A case study in a sub-Arctic peatland environment. Biogeosciences 2018, 15, 1663–1682. [Google Scholar] [CrossRef]
- Khaledian, Y.; Miller, B. Selecting appropriate machine learning methods for digital soil mapping. Appl. Math. Model. 2020, 81, 401–418. [Google Scholar] [CrossRef]
- Padarian, J.; Minasny, B.; McBratney, A. Machine learning and soil sciences: A review aided by machine learning tools. Soil 2020, 6, 35–52. [Google Scholar] [CrossRef]
- Nguyen, T.; Pham, T.D.; Nguyen, C.T.; Delfos, J.; Archibald, R.; Dang, K.B.; Hoang, N.B.; Guo, W.; Ngo, H.H. A novel intelligence approach based active and ensemble learning for agricultural soil organic carbon prediction using multispectral and SAR data fusion. Sci. Total Environ. 2022, 804, 150187. [Google Scholar] [CrossRef]
- Zayani, H.; Fouad, Y.; Michot, D.; Kassouk, Z.; Baghdadi, N.; Vaudour, E.; Lili-Chabaane, Z.; Walter, C. Using Machine-Learning Algorithms to Predict Soil Organic Carbon Content from Combined Remote Sensing Imagery and Laboratory Vis-NIR Spectral Datasets. Remote Sens. 2023, 15, 4264. [Google Scholar] [CrossRef]
- Stevens, A.; Nocita, M.; Tóth, G.; Montanarella, L.; van Wesemael, B. Prediction of soil organic carbon at the European scale by visible and near infrared reflectance spectroscopy. PLoS ONE 2013, 8, e66409. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Wu, W.; Liu, H. Prediction of soil organic carbon under different land use types using Sentinel-1/-2 data in a small watershed. Remote Sens. 2021, 13, 1229. [Google Scholar] [CrossRef]
- Asmuss, T.; Bechtold, M.; Tiemeyer, B. On the potential of Sentinel-1 for high resolution monitoring of water table dynamics in grasslands on organic soils. Remote Sens. 2019, 11, 1659. [Google Scholar] [CrossRef]
- Xu, L.; Wang, C.; Zhu, J.; Gao, Y.; Li, M.; Lv, Y.; Yu, G.; He, N. Latitudinal patterns and influencing factors of soil humic carbon fractions from tropical to temperate forests. J. Geogr. Sci. 2018, 28, 15–30. [Google Scholar] [CrossRef]
- Zhou, Z.; Wang, C.; Luo, Y. Meta-analysis of the impacts of global change factors on soil microbial diversity and functionality. Nat. Commun. 2020, 11, 3072. [Google Scholar] [CrossRef] [PubMed]
- Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sens. Environ. 2018, 218, 89–103. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Meng, B.; Ge, J.; Liang, T.; Yang, S.; Gao, J.; Feng, Q.; Cui, X.; Huang, X.; Xie, H. Evaluation of remote sensing inversion error for the above-ground biomass of alpine meadow grassland based on multi-source satellite data. Remote Sens. 2017, 9, 372. [Google Scholar] [CrossRef]
- Gao, Q.; Zribi, M.; Escorihuela, M.; Baghdadi, N.; Segui, P. Irrigation mapping using Sentinel-1 time series at field scale. Remote Sens. 2018, 10, 1495. [Google Scholar] [CrossRef]
- Gregorutti, B.; Michel, B.; Saint-Pierre, P. Correlation and variable importance in random forests. Stat. Comput. 2017, 27, 659–678. [Google Scholar] [CrossRef]
- Li, Q.; Yue, T.-X.; Wang, C.-Q.; Zhang, W.-J.; Yu, Y.; Li, B.; Yang, J.; Bai, G.-C. Spatially distributed modeling of soil organic matter across China: An application of artificial neural network approach. Catena 2013, 104, 210–218. [Google Scholar] [CrossRef]
- Kokulan, V.; Akinremi, O.; Moulin, A.; Kumaragamage, D. Importance of terrain attributes in relation to the spatial distribution of soil properties at the micro scale: A case study. Can. J. Soil Sci. 2018, 98, 292–305. [Google Scholar] [CrossRef]
- Wei, B.; Wei, Y.; Zhang, H.; Guo, T.; Zhang, R.; Zhang, Y.; Liu, N. Mowing in Place of Conventional Grazing Increased Soil Organic Carbon Stability and Altered Depth-Dependent Protection Mechanisms. Catena 2025, 248, 108629. [Google Scholar] [CrossRef]
- Geng, J.; Tan, Q.; Lv, J.; Fang, H. Assessing Spatial Variations in Soil Organic Carbon and C:N Ratio in Northeast China’s Black Soil Region: Insights from Landsat-9 Satellite and Crop Growth Information. Soil Tillage Res. 2024, 235, 105897. [Google Scholar] [CrossRef]
Indexes | Formulas |
---|---|
Difference Vegetation Index (DVI) | B8 − B4 |
Infrared Percentage Vegetation Index (IPVI) | B8/(B8 + B4) |
Enhanced Vegetation Index (EVI) | 2.5 × (B8 − B4)/(2.5 × (B8 − B4)) |
Green Normalized Difference Vegetation Index (GNDVI) | (B8 − B3)/(B8 + B3) |
Normalized Difference Vegetation Index(NDVI) | (B8 − B4)/(B8 + B4) |
Normalized Difference Water Index (NDWI) | (B3 − B8)/(B3 + B8) |
Ratio Vegetation Index (RVI) | B8/B4 |
Soil-Adjusted Vegetation Index (SAVI) | (1 + L) × (B8 − B4)/(B8 + B4 + L) |
Scenario | Data Sources |
---|---|
1 | S1, topography, position, and climate |
2 | S2, topography, position, and climate |
3 | all variables |
Machine Learning Algorithms | Scenario | R2 | RMSE (g/kg) | MAE (g/kg) | AICc | RPIQ |
---|---|---|---|---|---|---|
1 | 0.52 | 4.13 | 3.27 | −475.99 | 5.78 | |
RF | 2 | 0.55 | 4.09 | 3.21 | −461.77 | 5.85 |
3 | 0.58 | 4.09 | 3.23 | −464.89 | 5.88 | |
1 | 0.54 | 4.45 | 3.36 | −382.62 | 5.78 | |
SVM | 2 | 0.55 | 4.55 | 3.47 | −386.97 | 5.81 |
3 | 0.56 | 4.89 | 3.64 | −370.28 | 5.23 | |
1 | 0.25 | 5.03 | 3.86 | −40.77 | 4.67 | |
XGBoost | 2 | 0.46 | 4.25 | 3.23 | −392.25 | 5.75 |
3 | 0.49 | 4.26 | 3.35 | −389.91 | 5.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Xia, J.; Yang, Y.; Bo, Y.; Li, X. Estimation of Soil Organic Carbon Content of Grassland in West Songnen Plain Using Machine Learning Algorithms and Sentinel-1/2 Data. Agriculture 2025, 15, 1640. https://doi.org/10.3390/agriculture15151640
Li H, Xia J, Yang Y, Bo Y, Li X. Estimation of Soil Organic Carbon Content of Grassland in West Songnen Plain Using Machine Learning Algorithms and Sentinel-1/2 Data. Agriculture. 2025; 15(15):1640. https://doi.org/10.3390/agriculture15151640
Chicago/Turabian StyleLi, Haoming, Jingyao Xia, Yadi Yang, Yansu Bo, and Xiaoyan Li. 2025. "Estimation of Soil Organic Carbon Content of Grassland in West Songnen Plain Using Machine Learning Algorithms and Sentinel-1/2 Data" Agriculture 15, no. 15: 1640. https://doi.org/10.3390/agriculture15151640
APA StyleLi, H., Xia, J., Yang, Y., Bo, Y., & Li, X. (2025). Estimation of Soil Organic Carbon Content of Grassland in West Songnen Plain Using Machine Learning Algorithms and Sentinel-1/2 Data. Agriculture, 15(15), 1640. https://doi.org/10.3390/agriculture15151640