Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth
Abstract
1. Introduction
2. Materials and Methods
2.1. Insects and Amaranth
2.2. Dispersion and Feeding-Preference Bioassays of Neonate Larvae
2.3. Bioassay on the Feeding Preference of Third-Instar Larvae to Amaranth Volatiles
2.4. Production of Ethograms
2.5. Extraction and Identification of Volatile Compounds
2.6. Statistical Analysis
- P = Accumulated proportion of amaranth.
- Q = Accumulated proportion of neonate larvae in the amaranth.
- n = Types of amaranth bars in which larvae are distributed.
3. Results
3.1. Dispersion and Food Preference of Neonate Larvae of P. interpunctella
3.2. Preference of Amaranth Volatiles by Third-Instar Larvae
3.3. Identification of Volatile Compounds from Amaranth Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benitez, H.A.; Salinas, C.; Hernández, J.; Mejías, T.C.; Kim, S.; Maturana, C.S.; Rebolledo, L.; Pérez, L.M.; Câmara, P.E.A.S.; Ferreira, V.A.; et al. An outsider on the Antarctic Peninsula: A new record of the non-native moth Plodia interpunctella (Lepidoptera: Pyralidae). Ecol. Evol. 2024, 14, e10838. [Google Scholar] [CrossRef] [PubMed]
- Allotey, J.; Goswami, L. Competition Between the Phycitid Moths Plodia interpunctella (HUBN.) and Ephestia Cautella (WLK.) in Groundnuts and on a Laboratory Diet. Int. J. Trop. Insect Sci. 1992, 13, 719–723. [Google Scholar] [CrossRef]
- Mohandass, S.; Arthur, F.; Zhu, K.; Throne, J. Biology and management of Plodia interpunctella (Lepidoptera: Pyralidae) in stored products. J. Stored Prod. Res. 2007, 43, 302–311. [Google Scholar] [CrossRef]
- Cruz-Díaz, M.; Castrejón-Gómez, V.R.; Lara-Rojas, F.; Reyes-Prado, H. Molecular identification, life history description and biotic potential of Plodia interpunctella (Lepidoptera: Pyralidae) feeding on amaranth (Amaranthus sp.) products in the state of Morelos, Mexico. J. Stored Prod. Res. 2023, 102, 102–112. [Google Scholar] [CrossRef]
- Segura, A.J.G.; Cruz-Díaz, M.; Tapia-Maruri, D.; Prado, H.R. First report on Plodia interpunctella (Lepidoptera: Pyralidae) in stored Amaranth grains (Amaranthus spp.). Agro Prod. 2020, 13, 3–6. [Google Scholar] [CrossRef]
- Baker, J.E.; Mabie, J.A. Feeding Behavior of Larvae of Plodia interpunctella. Environ. Entomol. 1973, 2, 627–632. [Google Scholar] [CrossRef]
- Pszczolkowski, M.A.; Brown, J.J. Single experience learning of host fruit selection by lepidopteran larvae. Physiol. Behav. 2005, 86, 168–175. [Google Scholar] [CrossRef]
- Aulicky, R.; Vendl, T.; Stejskal, V. Evaluation of contamination of packages containing cereal-fruit bars by eggs of the pest Indian meal moth (Plodia interpunctella, Lepidoptera) due to perforations in their polypropylene foil packaging. J. Food Sci. Technol. 2019, 56, 3293–3299. [Google Scholar] [CrossRef]
- Hostachy, C.; Couzi, P.; Hanafi-Portier, M.; Portemer, G.; Halleguen, A.; Murmu, M.; Deisig, N.; Dacher, M. Responsiveness to Sugar Solutions in the Moth Agrotis ipsilon: Parameters Affecting Proboscis Extension. Front. Physiol. 2019, 10, 1423. [Google Scholar] [CrossRef]
- Olsson, C. The Function of Food Volatiles: Insect Behavior and Pest Control; Department of Ecology, Chemical Ecology, Lund University: Lund, Sweden, 2001; Volume 110, pp. 550–557. [Google Scholar]
- Bouayad, N.; Rharrabe, K.; Ghailani, N.; Sayah, F. Effects of different food commodities on larval development and α-amylase activity of Plodia interpunctella (Hübner) (Lepidoptera: Pyralidae). J. Stored Prod. Res. 2008, 44, 373–378. [Google Scholar] [CrossRef]
- Phillips, T.W.; Strand, M.R. Larval secretions and food odors affect orientation in female Plodia interpunctella. Entomol. Exp. Appl. 1994, 71, 185–192. [Google Scholar] [CrossRef]
- Riudavets, J.; Salas, I.; Pons, M. Damage characteristics produced by insect pests in packaging film. J. Stored Prod. Res. 2007, 43, 564–570. [Google Scholar] [CrossRef]
- Trematerra, P.; Savoldelli, S. Pasta preference and ability to penetrate through packaging of Sitophilus zeamais Motschulsky (Coleoptera: Dryophthoridae). J. Stored Prod. Res. 2014, 59, 126–132. [Google Scholar] [CrossRef]
- Stejskal, V.; Bostlova, M.; Nesvorna, M.; Volek, V.; Dolezal, V.; Hubert, J. Comparison of the resistance of mono- and multilayer packaging films to stored-product insects in a laboratory test. Food Control. 2017, 73, 566–573. [Google Scholar] [CrossRef]
- Ciganek, M.; Pisarikova, B.; Zraly, Z. Determination of volatile organic compounds in the crude and heat treated amaranth samples. Vet. Med. 2007, 52, 111–120. [Google Scholar] [CrossRef]
- Guera, O.G.M.; Castrejón-Ayala, F.; Robledo, N.; Jiménez-Pérez, A.; Sánchez-Rivera, G. Plant Selection for the Establishment of Push–Pull Strategies for Zea mays–Spodoptera frugiperda Pathosystem in Morelos, Mexico. Insects 2020, 11, 349. [Google Scholar] [CrossRef]
- Faguen, M.R.; Young, D.Y. Temporal patterns of behavior: Durations, intervals, latencies and sequences. In Quantitative Ethology; Colgan, P.W., Ed.; John Wiley and Sons: New York, NY, USA, 1978; pp. 79–114. [Google Scholar]
- Teal, P.E.A.; McLaughlin, J.R.; Tumlinson, J.H. Analysis of the Reproductive Behavior of Heliothis virescens (F.) under Laboratory Conditions. Ann. Entomol. Soc. Am. 1981, 74, 324–330. [Google Scholar] [CrossRef]
- Castrejón-Gómez, V.; Cibrián-Tovar, J.; Osorio-Osorio, R. Respuesta Conductual de Machos de Copitarsia consulta a hembras vírgenes conespecíficas y extractos glandulares. Zool. Inf. 1998, 40, 1–16. [Google Scholar]
- Luna-Espino, H.L.; Mendoza, A.C.; Espino, J.C.L.; Castrejón-Gómez, V.R.C. Comportamiento de búsqueda y capacidad depredadora de Chrysoperla externa sobre Frankliniella occidentalis. Southwest. Entomol. 2017, 42, 463–476. [Google Scholar] [CrossRef]
- Birch, M.C.; Lucas, D.; White, P.R. The courtship behavior of the cabbage moth, Mamestra brassicae (Lepidoptera: Noctuidae), and the role of male hair-pencils. J. Insect Behav. 1989, 2, 227–239. [Google Scholar] [CrossRef]
- Kovats, V.E. Gas-chromatographische charakterisierung organischer verbindungen. Teil 1: Retentionsindices aliphatischer halogenide, alkohole, aldehyde und ketone. Helv. Chim. Acta 1958, 41, 1915–1932. [Google Scholar] [CrossRef]
- Siddiq, F.K.; Klymentieva, H.; Lee, T.J. Aplicación de la curva de Lorenz y el coeficiente de Gini para medir la distribución de la población. Av. Int. Investig. Económica 2023, 29, 177–192. [Google Scholar]
- Castrejon, F.; Rojas, J.C. Behavioral Responses of Larvae and Adults of Estigmene acrea (Lepidoptera: Arctiidae) to Light of Different Wavelengths. Fla. Entomol. 2010, 93, 505–509. [Google Scholar] [CrossRef]
- Bernays, E.A.; Chapman, R.E. Host-Plant Selection by Phytophagous Insects; Chapman & Hall: New York, NY, USA, 1994; pp. 95–165. [Google Scholar]
- Olsson, P.-O.C.; Anderbrant, O.; Löfstedt, C.; Borg-Karlson, A.-K.; Liblikas, I. Electrophysiological and Behavioral Responses to Chocolate Volatiles in Both Sexes of the Pyralid Moths Ephestia cautella and Plodia interpunctella. J. Chem. Ecol. 2005, 31, 2947–2961. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.T.; Fraenkel, G. Assay of the principal gustatory stimulants for the tobacco hornworm, Manduca sexta, from solanaceous plants. Ann. Entomol. Soc. Am. 1960, 53, 499–503. [Google Scholar] [CrossRef]
- Heron, R.J. The Role of Chemotactic Stimuli in the Feeding Behavior of Spruce Budworm Larvae on White Spruce. Can. J. Zool. 1965, 43, 247–269. [Google Scholar] [CrossRef]
- Meisner, J.; Ascher, K.R.S.; Lavie, D. Phagostimulants for the larva of the potato tuber moth, Gnorimoschema operculella Zell. Z. Angew. Entomol. 1974, 77, 77–106. [Google Scholar] [CrossRef]
- Beck, S.D. The European corn borer, Pyrausta nubilalis (HUbn.) and its principal hostplant. IV. Larval saccharotrophism and host plants resistance. Annu. Entomoogical Soc. Am. 1957, 50, 247–250. [Google Scholar] [CrossRef]
- Cobbinah, J.R.; Morgan, E.D.; Douglas, T.J. Feeding responses of the gum leaf skeletonist Uraba lugens Walker, to sugars, amino acids, lipids, sterols, salts, vitamins, and certain extracts of eucalypt leaves. J. Austral. Entomol. Soc. 1982, 21, 225–236. [Google Scholar] [CrossRef]
- Ma, W.; Kubo, I. Phagostimulants for Spodoptera exempta: Identification of Adenosine from Zea mays. Entomol. Exp. Appl. 1977, 22, 107–112. [Google Scholar] [CrossRef]
- Elpino-Campos, Á. Feeding behavior of Heliconius erato phyllis (Fabricius) (Lepidoptera: Nymphalidae) larvae on passion vines. Acta Ethologica 2012, 15, 107–118. [Google Scholar] [CrossRef]
- Slansky, F., Jr.; Scriber, J.M. Consumo y utilización de alimentos. In Fisiología Integral de los Insectos, Bioquímica y Farmacología; Kerkut, G.A., Gilbert, L.I., Eds.; Pergamon Press: Oxford, UK, 1985; Volume 2, pp. 87–163. [Google Scholar]
- Waldbauer, G.P.; Friedman, S. Autoselección de dietas óptimas por insectos. Annu. Rev. Entomol. 1991, 36, 43–63. [Google Scholar] [CrossRef]
- Behmer, S.T. Regulación de nutrientes de los herbívoros de insectos. Annu. Rev. Entomol. 2009, 54, 165–187. [Google Scholar] [CrossRef]
- Tóth, M.; Répási, V.; Szocs, G. Chemical Attractants for Females of Pest Pyralids and Phycitids (Lepidoptera: Pyralidae, Phycitidae). Acta Phytopathol. Entomol. Hung. 2002, 37, 375–384. [Google Scholar] [CrossRef]
- Willis, E.R.; Roth, L.M. The Attraction of Tribolium castaneum to Flour. J. Econ. Entomol. 1950, 43, 927–932. [Google Scholar] [CrossRef]
- Silhacek, D.; Murphy, C.; Arbogast, R. Behavior and movements of Indian meal moths (Plodia interpunctella Hübner) during commodity infestation. J. Stored Prod. Res. 2003, 39, 171–184. [Google Scholar] [CrossRef]
- Hagstrum, D.W.; Leach, C.E. Infestation of flour by Tribolium castaneum: Rate of adult dispersal in relationship to sex, mated condition, and other factors. Ann. Entomol. Soc. Am. 1973, 66, 384–387. [Google Scholar] [CrossRef]
- Ascher, K.R.S.; Meisner, J.; Flowers, H.M. Effects of amino acids on the feeding behavior of the larva of the egyptian cotton leafworm, spodoptera littoralis boisd. Phytoparasitica 1976, 4, 85–91. [Google Scholar] [CrossRef]
- Lazzari, S.M.; Zonta-de-Carvalho, R.C. Sap-sucking insects (Aphidoidea). In Insect Bioecology and Nutrition for Integrated Pest Management; CRC Press: Boca Raton, FL, USA, 2012; pp. 473–513. [Google Scholar]
- Brownbridge, M. Feeding Stimulation in Chilo partellus (Swinhoe) (Lepidoptera: Pyralidae) Larvae by Some Commonly Available Sugars and its Effect on Larval Mortality Caused by Bacillus thuringiensis (Berliner). Int. J. Trop. Insect Sci. 1993, 14, 465–470. [Google Scholar] [CrossRef]
- Barrer, P.M. The Influence of Airborne Stimuli from Conspecific Adults on The Site of Oviposition of Ephestia cautella (Lepidoptera: Phycitidae). Entomol. Exp. Appl. 1977, 22, 13–22. [Google Scholar] [CrossRef]
- Barrer, P.; Jay, E. Laboratory observations on the ability of Ephestia cautella (Walker) (Lepidoptera: Phycitidae) to locate, and to oviposit in response to a source of grain odour. J. Stored Prod. Res. 1980, 16, 1–7. [Google Scholar] [CrossRef]
- Gothilf, S.; Shbnnaaya, E.; Levski, S. Effect of sex, age and mating on attraction of Cuadra cautella (Walker) (Lepidoptera: Phycitidae) to stored food. J. Appl. Entomol. 1993, 116, 139–144. [Google Scholar] [CrossRef]
- Būda, V.; Apšegaitė, V.; Blažytė-Čereškienė, L.; Butkienė, R.; Nedveckytė, I.; Pečiulytė, D. Response of moth Plodia interpunctella to volatiles of fungus-infected and uninfected wheat grain. J. Stored Prod. Res. 2016, 69, 152–158. [Google Scholar] [CrossRef]
- Rodriguez-Campos, J.; Escalona-Buendía, H.; Contreras-Ramos, S.; Orozco-Avila, I.; Jaramillo-Flores, E.; Lugo-Cervantes, E. Effect of fermentation time and drying temperature on volatile compounds in cocoa. Food Chem. 2012, 132, 277–288. [Google Scholar] [CrossRef]
Gini Index Value | Inequality |
---|---|
0.101–0.250 | Null to low |
0.251–0.500 | Low to medium |
0.501–0.700 | Medium to high |
0.701–0.900 | High to very high |
0.901–1 | Very high to absolute |
Compound | Formula | Molecular Weight (g/mol) | Class | CAS | Retention Time | Kovax Retention Index (IR) | Area Under the Curve ± SEM | Statistical Test | |||
---|---|---|---|---|---|---|---|---|---|---|---|
ACH | AH | NA | Cellophane | ||||||||
Acetic acid | C2H4O2 | 60.052 | Carboxylic acid | 64-19-7 | 3 | 948 | 156,285 ± 2100 | 219,453 ± 4679 | - | - | t = −1.233; gl = 1, 12 p = 0.25,1 n = 7 |
Benzaldehyde | C7H6O | 106.12 | Aldehyde | 100-52-7 | 3.5 | 1106 | 1,354,195 ± 376 | 1,684,596 ± 7908 | - | - | t = −1.616; gl = 1, 12 p = 0.713, n = 7 |
3,5-Octadien-2-ol | C8H14O | 126.2 | Alcohol | 69668-82-2 | 4.2 | 1119 | 1,218,130 ± 2312 | - | - | - | Mean average ± SEM |
5-Octen-2-ona | C8H14O | 126.19 | Ketone | 22610-86-2 | 4.7 | 1125 | - | - | - | 1,437,611 ± 2312 | Mean average ± SEM |
1,3-dimethyl-5-ethylbenzene | C10H14 | 134.22 | Aromatic hydrocarbon | 934-74-7 | 5 | 1158 | - | - | - | 643,165 ± 3019 | Mean average ± SEM |
D-limonene | C10H16 | 136.24 | Alkene | 138-86-3 | 5.6 | 1159 | 6,073,353 ± 126 | 5,100,216 ± 1189 | 4,173,709 ± 8398 | - | F = 0.729; gl = 2, 23; p = 0.494, n = 8 |
Alpha pinene | C10H16 | 136.23 | Terpene | 136.23 | 6.1 | 1163 | 421,043 ± 760 | 303,622 ± 88,710 | - | - | t = 1.005; gl = 2, 14; p = 0.332, n = 8 |
Nonanal | C9H118O | 142.23 | Aldehyde | 124-19-6 | 6.4 | 1167 | 901,788 ± 3918 | - | - | - | Mean average ± SEM |
Undecane | C10H8 | 156.31 | Alkane | 1120-21-4 | 6.9 | 1168 | - | - | - | 111,456 ± 193 | Mean average ± SEM |
Decanal | C10H20O | 156.27 | Aldehyde | 112-31-2 | 7.4 | 1170 | 340,420.5 ± 8315 * | 9,666,011 ± 155 | 6,960,869 ± 5015 | - | F = 3.856; gl = 2, 23; p = 0.037, n = 8 |
Nonanoic acid | C9H18O2 | 158.23 | Carboxylic acid | 112-05-0 | 7.9 | 1182 | 1,820,397 ± 1847 | 415,710 ± 5851 | 312,033 ± 44,037 | - | F = 153.67;gl = 2, 23; p = 0.09, n = 8 |
Decanoic acid | C10H20O2 | 172.26 | Carboxylic acid | 334-48-5 | 8.7 | 1194 | 1,756,537 ± 18,397 | - | - | - | Mean average ± SEM |
Dodecanoic acid | C12H24O2 | 200.32 | Carboxylic acid | 143-07-7 | 9.5 | 1628 | 1,369,119 ± 38,178 | - | - | - | Mean average ± SEM |
Tetradecanal | C14H28O | 212.37 | Aldehyde | 124-25-4 | 10.3 | 1716 | 299,004 ± 326 | 334,994 ± 97,157 | 5,744,056 ± 9459 * | - | F = 3.455; gl = 2, 23; p = 0.05, n = 8 |
Pentadecane | C15H32 | 212.42 | Alkene | 629-62-9 | 11.2 | 1734 | 537,295 ± 4436 | 454,644 ± 1108 | - | - | t = 0.692; gl = 1, 12; p = 0.502, n = 7 |
Butylated hydroxytoluene | C15H24O | 220.34 | Alkene | 128-37-0 | 12 | 1771 | - | - | - | 760,333 ± 1047 | Mean average ± SEM |
n-pentadecanol | C15H32O | 228.41 | Alcohol | 629-76-5 | 12.7 | 1936 | 236,545 ± 3418 | 218,689 ± 2602 | 559,092 ± 107,347 * | - | F = 8.171; gl = 2, 23; p = 0.431, n = 8 |
Octadecane | C18H38 | 254.4 | Alkane | 593-45-3 | 14.3 | 1940 | - | - | - | 352,882 ± 318 | Mean average ± SEM |
Hexadecanoic acid | C16H32O2 | 256.43 | Carboxylic acid | 57-10-3 | 15 | 1982 | 1,480,218 ± 7469 | 985,217 ± 8912 | - | - | t = −2.084; gl = 1, 14; p = 0.056, n = 7 |
Eicosano | C20H42 | 282.56 | Alkane | 112-95-8 | 15.8 | 2073 | 227,177 ± 7493 | 206,587 ± 3187 | 242,836 ± 5033 | - | F = 0.108; gl = 2, 20; p = 0.890, n = 7 |
Heneicosane | C21H44 | 296.583 | Alkane | 629-94-7 | 16.8 | 2108 | 167,200 ± 2654 | 194,269 ± 3358 | - | - | t = −0.633; gl = 1, 14; p = 0.537, n = 8 |
Cyclopentaxylsane, decamethy | C10H30O5 | 370.77 | Siloxane | 208-764-9 | 17.9 | 2202 | - | - | - | 1,178,222 ± 174 | Mean average ± SEM |
Hexanedioic acid1,6-bis(2-ethylhexyl)ester | C22H42O4 | 370.57 | Ester | 103-23-1 | 19.5 | 2462 | - | - | - | 766,032 ± 10,004 | Mean average ± SEM |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cruz-Díaz, M.; Reyes-Prado, H.; Castrejón-Gómez, V.R.; García-Sosa, P.R. Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth. Agriculture 2025, 15, 1637. https://doi.org/10.3390/agriculture15151637
Cruz-Díaz M, Reyes-Prado H, Castrejón-Gómez VR, García-Sosa PR. Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth. Agriculture. 2025; 15(15):1637. https://doi.org/10.3390/agriculture15151637
Chicago/Turabian StyleCruz-Díaz, Mariana, Humberto Reyes-Prado, Víctor R. Castrejón-Gómez, and Paola Rossy García-Sosa. 2025. "Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth" Agriculture 15, no. 15: 1637. https://doi.org/10.3390/agriculture15151637
APA StyleCruz-Díaz, M., Reyes-Prado, H., Castrejón-Gómez, V. R., & García-Sosa, P. R. (2025). Host-Seeking and Acceptance Behaviour of Plodia interpunctella (Lepidoptera: Pyralidae) Larvae in Response to Volatile Compounds Emitted by Amaranth. Agriculture, 15(15), 1637. https://doi.org/10.3390/agriculture15151637